
Searching in a List

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 15, 15 Nov 2021

https://www.cmi.ac.in/~madhavan

Search problem

Is value v present in list l?

Naive solution scans the list

Input size n, the length of the list

Worst case is when v is not present in l

Worst case complexity is O(n)

Madhavan Mukund Searching in a List PDSP Lecture 15 2 / 6

Search problem

Is value v present in list l?

Naive solution scans the list

Input size n, the length of the list

Worst case is when v is not present in l

Worst case complexity is O(n)

def naivesearch(v,l):

for x in l:

if v == x:

return(True)

return(False)

Madhavan Mukund Searching in a List PDSP Lecture 15 2 / 6

Search problem

Is value v present in list l?

Naive solution scans the list

Input size n, the length of the list

Worst case is when v is not present in l

Worst case complexity is O(n)

def naivesearch(v,l):

for x in l:

if v == x:

return(True)

return(False)

Madhavan Mukund Searching in a List PDSP Lecture 15 2 / 6

Search problem

Is value v present in list l?

Naive solution scans the list

Input size n, the length of the list

Worst case is when v is not present in l

Worst case complexity is O(n)

def naivesearch(v,l):

for x in l:

if v == x:

return(True)

return(False)

Madhavan Mukund Searching in a List PDSP Lecture 15 2 / 6

Search problem

Is value v present in list l?

Naive solution scans the list

Input size n, the length of the list

Worst case is when v is not present in l

Worst case complexity is O(n)

def naivesearch(v,l):

for x in l:

if v == x:

return(True)

return(False)

Madhavan Mukund Searching in a List PDSP Lecture 15 2 / 6

Searching a sorted list

What if l is sorted in ascending order?

Compare v with the midpoint of l

If midpoint is v, the value is found

If v less than midpoint, search the
first half

If v greater than midpoint, search the
second half

Stop when the interval to search
becomes empty

Binary search

Madhavan Mukund Searching in a List PDSP Lecture 15 3 / 6

Searching a sorted list

What if l is sorted in ascending order?

Compare v with the midpoint of l

If midpoint is v, the value is found

If v less than midpoint, search the
first half

If v greater than midpoint, search the
second half

Stop when the interval to search
becomes empty

Binary search

Madhavan Mukund Searching in a List PDSP Lecture 15 3 / 6

Searching a sorted list

What if l is sorted in ascending order?

Compare v with the midpoint of l

If midpoint is v, the value is found

If v less than midpoint, search the
first half

If v greater than midpoint, search the
second half

Stop when the interval to search
becomes empty

Binary search

def binarysearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(binarysearch(v,l[:m]))

else:

return(binarysearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 3 / 6

Searching a sorted list

What if l is sorted in ascending order?

Compare v with the midpoint of l

If midpoint is v, the value is found

If v less than midpoint, search the
first half

If v greater than midpoint, search the
second half

Stop when the interval to search
becomes empty

Binary search

def binarysearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(binarysearch(v,l[:m]))

else:

return(binarysearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 3 / 6

Binary search

How long does this take?

Each call halves the interval to search

Stop when the interval become empty

log n — number of times to divide n by
2 to reach 1

1 // 2 = 0, so next call reaches empty
interval

O(log n) steps

def binarysearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(binarysearch(v,l[:m]))

else:

return(binarysearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 4 / 6

Binary search

How long does this take?

Each call halves the interval to search

Stop when the interval become empty

log n — number of times to divide n by
2 to reach 1

1 // 2 = 0, so next call reaches empty
interval

O(log n) steps

def binarysearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(binarysearch(v,l[:m]))

else:

return(binarysearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 4 / 6

Binary search

How long does this take?

Each call halves the interval to search

Stop when the interval become empty

log n — number of times to divide n by
2 to reach 1

1 // 2 = 0, so next call reaches empty
interval

O(log n) steps

def binarysearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(binarysearch(v,l[:m]))

else:

return(binarysearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 4 / 6

Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 5 / 6

Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 5 / 6

Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 5 / 6

Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 5 / 6

Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1
= (T (n // 4) + 1) + 1

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 5 / 6

Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1
= (T (n // 4) + 1) + 1 = T (n // 22) + 1 + 1︸ ︷︷ ︸

2

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 5 / 6

Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1
= (T (n // 4) + 1) + 1 = T (n // 22) + 1 + 1︸ ︷︷ ︸

2= · · ·
= T (n // 2k) + 1 + · · · + 1︸ ︷︷ ︸

k

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 5 / 6

Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1
= (T (n // 4) + 1) + 1 = T (n // 22) + 1 + 1︸ ︷︷ ︸

2= · · ·
= T (n // 2k) + 1 + · · · + 1︸ ︷︷ ︸

k

= T (1) + k , for k = log n

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 5 / 6

Alternative calculation

T (n) : the time to search a list of length n

If n = 0, we exit, so T (n) = 1

If n > 0, T (n) = T (n // 2) + 1

Recurrence for T (n)

T (0) = 1

T (n) = T (n // 2) + 1, n > 0

Solve by “unwinding”

T (n) = T (n // 2) + 1
= (T (n // 4) + 1) + 1 = T (n // 22) + 1 + 1︸ ︷︷ ︸

2= · · ·
= T (n // 2k) + 1 + · · · + 1︸ ︷︷ ︸

k

= T (1) + k , for k = log n
= (T (0) + 1) + log n = 2 + log n

def bsearch(v,l):

if l == []:

return(False)

m = len(l)//2

if v == l[m]:

return(True)

if v < l[m]:

return(bsearch(v,l[:m]))

else:

return(bsearch(v,l[m+1:]))

Madhavan Mukund Searching in a List PDSP Lecture 15 5 / 6

Summary

Search in an unsorted list takes time O(n)

Need to scan the entire list

Worst case is when the value is not present in the list

For a sorted list, binary search takes time O(log n)

Halve the interval to search each time

In a sorted list, we can determine that v is absent by examining just log n values!

Madhavan Mukund Searching in a List PDSP Lecture 15 6 / 6

Summary

Search in an unsorted list takes time O(n)

Need to scan the entire list

Worst case is when the value is not present in the list

For a sorted list, binary search takes time O(log n)

Halve the interval to search each time

In a sorted list, we can determine that v is absent by examining just log n values!

Madhavan Mukund Searching in a List PDSP Lecture 15 6 / 6

Summary

Search in an unsorted list takes time O(n)

Need to scan the entire list

Worst case is when the value is not present in the list

For a sorted list, binary search takes time O(log n)

Halve the interval to search each time

In a sorted list, we can determine that v is absent by examining just log n values!

Madhavan Mukund Searching in a List PDSP Lecture 15 6 / 6

Selection Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 15, 15 Nov 2021

https://www.cmi.ac.in/~madhavan

Sorting a list

Sorting a list makes many other
computations easier

Binary search

Finding the median

Checking for duplicates

Building a frequency table of values

How do we sort a list?

You are the TA for a course

Instructor has a pile of evaluated
exam papers

Papers in random order of marks

Your task is to arrange the papers in
descending order of marks

Scan the entire pile and find the paper
with minimum marks

Move this paper to a new pile

Repeat with the remaining papers

Add the paper with next minimum
marks to the second pile each time

Eventually, the new pile is sorted in
descending order

Madhavan Mukund Selection Sort PDSP Lecture 15 2 / 6

Sorting a list

Sorting a list makes many other
computations easier

Binary search

Finding the median

Checking for duplicates

Building a frequency table of values

How do we sort a list?

You are the TA for a course

Instructor has a pile of evaluated
exam papers

Papers in random order of marks

Your task is to arrange the papers in
descending order of marks

Scan the entire pile and find the paper
with minimum marks

Move this paper to a new pile

Repeat with the remaining papers

Add the paper with next minimum
marks to the second pile each time

Eventually, the new pile is sorted in
descending order

Madhavan Mukund Selection Sort PDSP Lecture 15 2 / 6

Sorting a list

Sorting a list makes many other
computations easier

Binary search

Finding the median

Checking for duplicates

Building a frequency table of values

How do we sort a list?

You are the TA for a course

Instructor has a pile of evaluated
exam papers

Papers in random order of marks

Your task is to arrange the papers in
descending order of marks

Scan the entire pile and find the paper
with minimum marks

Move this paper to a new pile

Repeat with the remaining papers

Add the paper with next minimum
marks to the second pile each time

Eventually, the new pile is sorted in
descending order

Madhavan Mukund Selection Sort PDSP Lecture 15 2 / 6

Sorting a list

Sorting a list makes many other
computations easier

Binary search

Finding the median

Checking for duplicates

Building a frequency table of values

How do we sort a list?

You are the TA for a course

Instructor has a pile of evaluated
exam papers

Papers in random order of marks

Your task is to arrange the papers in
descending order of marks

Strategy 1

Scan the entire pile and find the paper
with minimum marks

Move this paper to a new pile

Repeat with the remaining papers

Add the paper with next minimum
marks to the second pile each time

Eventually, the new pile is sorted in
descending order

Madhavan Mukund Selection Sort PDSP Lecture 15 2 / 6

Sorting a list

Sorting a list makes many other
computations easier

Binary search

Finding the median

Checking for duplicates

Building a frequency table of values

How do we sort a list?

You are the TA for a course

Instructor has a pile of evaluated
exam papers

Papers in random order of marks

Your task is to arrange the papers in
descending order of marks

Strategy 1

Scan the entire pile and find the paper
with minimum marks

Move this paper to a new pile

Repeat with the remaining papers

Add the paper with next minimum
marks to the second pile each time

Eventually, the new pile is sorted in
descending order

Madhavan Mukund Selection Sort PDSP Lecture 15 2 / 6

Sorting a list

Sorting a list makes many other
computations easier

Binary search

Finding the median

Checking for duplicates

Building a frequency table of values

How do we sort a list?

You are the TA for a course

Instructor has a pile of evaluated
exam papers

Papers in random order of marks

Your task is to arrange the papers in
descending order of marks

Strategy 1

Scan the entire pile and find the paper
with minimum marks

Move this paper to a new pile

Repeat with the remaining papers

Add the paper with next minimum
marks to the second pile each time

Eventually, the new pile is sorted in
descending order

Madhavan Mukund Selection Sort PDSP Lecture 15 2 / 6

Sorting a list

Sorting a list makes many other
computations easier

Binary search

Finding the median

Checking for duplicates

Building a frequency table of values

How do we sort a list?

You are the TA for a course

Instructor has a pile of evaluated
exam papers

Papers in random order of marks

Your task is to arrange the papers in
descending order of marks

Strategy 1

Scan the entire pile and find the paper
with minimum marks

Move this paper to a new pile

Repeat with the remaining papers

Add the paper with next minimum
marks to the second pile each time

Eventually, the new pile is sorted in
descending order

Madhavan Mukund Selection Sort PDSP Lecture 15 2 / 6

Sorting a list

74 32 89 55 21 64

Madhavan Mukund Selection Sort PDSP Lecture 15 3 / 6

Sorting a list

74 32 89 55 21 64

21

Madhavan Mukund Selection Sort PDSP Lecture 15 3 / 6

Sorting a list

74 32 89 55 21 64

21 32

Madhavan Mukund Selection Sort PDSP Lecture 15 3 / 6

Sorting a list

74 32 89 55 21 64

21 32 55

Madhavan Mukund Selection Sort PDSP Lecture 15 3 / 6

Sorting a list

74 32 89 55 21 64

21 32 55 64

Madhavan Mukund Selection Sort PDSP Lecture 15 3 / 6

Sorting a list

74 32 89 55 21 64

21 32 55 64 74

Madhavan Mukund Selection Sort PDSP Lecture 15 3 / 6

Sorting a list

74 32 89 55 21 64

21 32 55 64 74 89

Madhavan Mukund Selection Sort PDSP Lecture 15 3 / 6

Selection sort

Select the next element in sorted
order

Append it to the final sorted list

Avoid using a second list

Swap the minimum element into
the first position

Swap the second minimum element
into the second position

. . .

Eventually the list is rearranged in
place in ascending order

Madhavan Mukund Selection Sort PDSP Lecture 15 4 / 6

Selection sort

Select the next element in sorted
order

Append it to the final sorted list

Avoid using a second list

Swap the minimum element into
the first position

Swap the second minimum element
into the second position

. . .

Eventually the list is rearranged in
place in ascending order

Madhavan Mukund Selection Sort PDSP Lecture 15 4 / 6

Selection sort

Select the next element in sorted
order

Append it to the final sorted list

Avoid using a second list

Swap the minimum element into
the first position

Swap the second minimum element
into the second position

. . .

Eventually the list is rearranged in
place in ascending order

Madhavan Mukund Selection Sort PDSP Lecture 15 4 / 6

Selection sort

Select the next element in sorted
order

Append it to the final sorted list

Avoid using a second list

Swap the minimum element into
the first position

Swap the second minimum element
into the second position

. . .

Eventually the list is rearranged in
place in ascending order

Madhavan Mukund Selection Sort PDSP Lecture 15 4 / 6

Selection sort

Select the next element in sorted
order

Append it to the final sorted list

Avoid using a second list

Swap the minimum element into
the first position

Swap the second minimum element
into the second position

. . .

Eventually the list is rearranged in
place in ascending order

def SelectionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

mpos = i

mpos: position of minimum in L[i:]

for j in range(i+1,n):

if L[j] < L[mpos]:

mpos = j

L[mpos] : smallest value in L[i:]

Exchange L[mpos] and L[i]

(L[i],L[mpos]) = (L[mpos],L[i])

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Selection Sort PDSP Lecture 15 4 / 6

Analysis of selection sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: n − i steps to find
minimum in L[i:]

T (n) = n + (n − 1) + · · · + 1

T (n) = n(n + 1)/2

T (n) is O(n2)

def SelectionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

mpos = i

mpos: position of minimum in L[i:]

for j in range(i+1,n):

if L[j] < L[mpos]:

mpos = j

L[mpos] : smallest value in L[i:]

Exchange L[mpos] and L[i]

(L[i],L[mpos]) = (L[mpos],L[i])

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Selection Sort PDSP Lecture 15 5 / 6

Analysis of selection sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: n − i steps to find
minimum in L[i:]

T (n) = n + (n − 1) + · · · + 1

T (n) = n(n + 1)/2

T (n) is O(n2)

def SelectionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

mpos = i

mpos: position of minimum in L[i:]

for j in range(i+1,n):

if L[j] < L[mpos]:

mpos = j

L[mpos] : smallest value in L[i:]

Exchange L[mpos] and L[i]

(L[i],L[mpos]) = (L[mpos],L[i])

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Selection Sort PDSP Lecture 15 5 / 6

Analysis of selection sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: n − i steps to find
minimum in L[i:]

T (n) = n + (n − 1) + · · · + 1

T (n) = n(n + 1)/2

T (n) is O(n2)

def SelectionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

mpos = i

mpos: position of minimum in L[i:]

for j in range(i+1,n):

if L[j] < L[mpos]:

mpos = j

L[mpos] : smallest value in L[i:]

Exchange L[mpos] and L[i]

(L[i],L[mpos]) = (L[mpos],L[i])

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Selection Sort PDSP Lecture 15 5 / 6

Analysis of selection sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: n − i steps to find
minimum in L[i:]

T (n) = n + (n − 1) + · · · + 1

T (n) = n(n + 1)/2

T (n) is O(n2)

def SelectionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

mpos = i

mpos: position of minimum in L[i:]

for j in range(i+1,n):

if L[j] < L[mpos]:

mpos = j

L[mpos] : smallest value in L[i:]

Exchange L[mpos] and L[i]

(L[i],L[mpos]) = (L[mpos],L[i])

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Selection Sort PDSP Lecture 15 5 / 6

Analysis of selection sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: n − i steps to find
minimum in L[i:]

T (n) = n + (n − 1) + · · · + 1

T (n) = n(n + 1)/2

T (n) is O(n2)

def SelectionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

mpos = i

mpos: position of minimum in L[i:]

for j in range(i+1,n):

if L[j] < L[mpos]:

mpos = j

L[mpos] : smallest value in L[i:]

Exchange L[mpos] and L[i]

(L[i],L[mpos]) = (L[mpos],L[i])

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Selection Sort PDSP Lecture 15 5 / 6

Analysis of selection sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: n − i steps to find
minimum in L[i:]

T (n) = n + (n − 1) + · · · + 1

T (n) = n(n + 1)/2

T (n) is O(n2)

def SelectionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

mpos = i

mpos: position of minimum in L[i:]

for j in range(i+1,n):

if L[j] < L[mpos]:

mpos = j

L[mpos] : smallest value in L[i:]

Exchange L[mpos] and L[i]

(L[i],L[mpos]) = (L[mpos],L[i])

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Selection Sort PDSP Lecture 15 5 / 6

Analysis of selection sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: n − i steps to find
minimum in L[i:]

T (n) = n + (n − 1) + · · · + 1

T (n) = n(n + 1)/2

T (n) is O(n2)

def SelectionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

mpos = i

mpos: position of minimum in L[i:]

for j in range(i+1,n):

if L[j] < L[mpos]:

mpos = j

L[mpos] : smallest value in L[i:]

Exchange L[mpos] and L[i]

(L[i],L[mpos]) = (L[mpos],L[i])

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Selection Sort PDSP Lecture 15 5 / 6

Summary

Selection sort is an intuitive algorithm to sort a list

Repeatedly find the minimum (or maximum) and append to sorted list

Worst case complexity is O(n2)

Every input takes this much time

No advantage even if list is arranged carefully before sorting

Madhavan Mukund Selection Sort PDSP Lecture 15 6 / 6

Summary

Selection sort is an intuitive algorithm to sort a list

Repeatedly find the minimum (or maximum) and append to sorted list

Worst case complexity is O(n2)

Every input takes this much time

No advantage even if list is arranged carefully before sorting

Madhavan Mukund Selection Sort PDSP Lecture 15 6 / 6

Summary

Selection sort is an intuitive algorithm to sort a list

Repeatedly find the minimum (or maximum) and append to sorted list

Worst case complexity is O(n2)

Every input takes this much time

No advantage even if list is arranged carefully before sorting

Madhavan Mukund Selection Sort PDSP Lecture 15 6 / 6

Insertion Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 15, 15 Nov 2021

https://www.cmi.ac.in/~madhavan

Sorting a list

You are the TA for a course

Instructor has a pile of
evaluated exam papers

Papers in random order of
marks

Your task is to arrange the
papers in descending order of
marks

Move the first paper to a new pile

Second paper

Lower marks than first paper? Place below
first paper in new pile

Higher marks than first paper? Place above
first paper in new pile

Third paper

Insert into correct position with respect to
first two

Do this for the remaining papers

Insert each one into correct position in the
second pile

Madhavan Mukund Insertion Sort PDSP Lecture 15 2 / 7

Sorting a list

You are the TA for a course

Instructor has a pile of
evaluated exam papers

Papers in random order of
marks

Your task is to arrange the
papers in descending order of
marks

Strategy 2

Move the first paper to a new pile

Second paper

Lower marks than first paper? Place below
first paper in new pile

Higher marks than first paper? Place above
first paper in new pile

Third paper

Insert into correct position with respect to
first two

Do this for the remaining papers

Insert each one into correct position in the
second pile

Madhavan Mukund Insertion Sort PDSP Lecture 15 2 / 7

Sorting a list

You are the TA for a course

Instructor has a pile of
evaluated exam papers

Papers in random order of
marks

Your task is to arrange the
papers in descending order of
marks

Strategy 2

Move the first paper to a new pile

Second paper

Lower marks than first paper? Place below
first paper in new pile

Higher marks than first paper? Place above
first paper in new pile

Third paper

Insert into correct position with respect to
first two

Do this for the remaining papers

Insert each one into correct position in the
second pile

Madhavan Mukund Insertion Sort PDSP Lecture 15 2 / 7

Sorting a list

You are the TA for a course

Instructor has a pile of
evaluated exam papers

Papers in random order of
marks

Your task is to arrange the
papers in descending order of
marks

Strategy 2

Move the first paper to a new pile

Second paper

Lower marks than first paper? Place below
first paper in new pile

Higher marks than first paper? Place above
first paper in new pile

Third paper

Insert into correct position with respect to
first two

Do this for the remaining papers

Insert each one into correct position in the
second pile

Madhavan Mukund Insertion Sort PDSP Lecture 15 2 / 7

Sorting a list

You are the TA for a course

Instructor has a pile of
evaluated exam papers

Papers in random order of
marks

Your task is to arrange the
papers in descending order of
marks

Strategy 2

Move the first paper to a new pile

Second paper

Lower marks than first paper? Place below
first paper in new pile

Higher marks than first paper? Place above
first paper in new pile

Third paper

Insert into correct position with respect to
first two

Do this for the remaining papers

Insert each one into correct position in the
second pile

Madhavan Mukund Insertion Sort PDSP Lecture 15 2 / 7

Sorting a list

You are the TA for a course

Instructor has a pile of
evaluated exam papers

Papers in random order of
marks

Your task is to arrange the
papers in descending order of
marks

Strategy 2

Move the first paper to a new pile

Second paper

Lower marks than first paper? Place below
first paper in new pile

Higher marks than first paper? Place above
first paper in new pile

Third paper

Insert into correct position with respect to
first two

Do this for the remaining papers

Insert each one into correct position in the
second pile

Madhavan Mukund Insertion Sort PDSP Lecture 15 2 / 7

Sorting a list

74 32 89 55 21 64

Madhavan Mukund Insertion Sort PDSP Lecture 15 3 / 7

Sorting a list

74 32 89 55 21 64

74

Madhavan Mukund Insertion Sort PDSP Lecture 15 3 / 7

Sorting a list

74 32 89 55 21 64

32 74

Madhavan Mukund Insertion Sort PDSP Lecture 15 3 / 7

Sorting a list

74 32 89 55 21 64

32 74 89

Madhavan Mukund Insertion Sort PDSP Lecture 15 3 / 7

Sorting a list

74 32 89 55 21 64

32 55 74 89

Madhavan Mukund Insertion Sort PDSP Lecture 15 3 / 7

Sorting a list

74 32 89 55 21 64

21 32 55 74 89

Madhavan Mukund Insertion Sort PDSP Lecture 15 3 / 7

Sorting a list

74 32 89 55 21 64

21 32 55 64 74 89

Madhavan Mukund Insertion Sort PDSP Lecture 15 3 / 7

Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation

Inductively sort L[:i]

Insert L[i] in L[:i]

Madhavan Mukund Insertion Sort PDSP Lecture 15 4 / 7

Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation

Inductively sort L[:i]

Insert L[i] in L[:i]

Madhavan Mukund Insertion Sort PDSP Lecture 15 4 / 7

Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation

Inductively sort L[:i]

Insert L[i] in L[:i]

Madhavan Mukund Insertion Sort PDSP Lecture 15 4 / 7

Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation

Inductively sort L[:i]

Insert L[i] in L[:i]

def InsertionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

Move L[i] to correct position in L[:i]

j = i

while(j > 0 and L[j] < L[j-1]):

(L[j],L[j-1]) = (L[j-1],L[j])

j = j-1

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 4 / 7

Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation

Inductively sort L[:i]

Insert L[i] in L[:i]

def InsertionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

Move L[i] to correct position in L[:i]

j = i

while(j > 0 and L[j] < L[j-1]):

(L[j],L[j-1]) = (L[j-1],L[j])

j = j-1

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 4 / 7

Insertion sort

Start building a new sorted list

Pick next element and insert it into the
sorted list

An iterative formulation

Assume L[:i] is sorted

Insert L[i] in L[:i]

A recursive formulation

Inductively sort L[:i]

Insert L[i] in L[:i]

def Insert(L,v):

n = len(L)

if n == 0:

return([v])

if v >= L[-1]:

return(L+[v])

else:

return(Insert(L[:-1],v)+L[-1:])

def ISort(L):

n = len(L)

if n < 1:

return(L)

L = Insert(ISort(L[:-1]),L[-1])

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 4 / 7

Analysis of iterative insertion sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: i steps to insert L[i] in
L[:i]

T (n) = 0 + 1 + · · · + (n − 1)

T (n) = n(n − 1)/2

T (n) is O(n2)

def InsertionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

Move L[i] to correct position in L[:i]

j = i

while(L[j] < L[j-1]):

(L[j],L[j-1]) = (L[j-1],L[j])

j = j-1

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 5 / 7

Analysis of iterative insertion sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: i steps to insert L[i] in
L[:i]

T (n) = 0 + 1 + · · · + (n − 1)

T (n) = n(n − 1)/2

T (n) is O(n2)

def InsertionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

Move L[i] to correct position in L[:i]

j = i

while(L[j] < L[j-1]):

(L[j],L[j-1]) = (L[j-1],L[j])

j = j-1

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 5 / 7

Analysis of iterative insertion sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: i steps to insert L[i] in
L[:i]

T (n) = 0 + 1 + · · · + (n − 1)

T (n) = n(n − 1)/2

T (n) is O(n2)

def InsertionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

Move L[i] to correct position in L[:i]

j = i

while(L[j] < L[j-1]):

(L[j],L[j-1]) = (L[j-1],L[j])

j = j-1

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 5 / 7

Analysis of iterative insertion sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: i steps to insert L[i] in
L[:i]

T (n) = 0 + 1 + · · · + (n − 1)

T (n) = n(n − 1)/2

T (n) is O(n2)

def InsertionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

Move L[i] to correct position in L[:i]

j = i

while(L[j] < L[j-1]):

(L[j],L[j-1]) = (L[j-1],L[j])

j = j-1

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 5 / 7

Analysis of iterative insertion sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: i steps to insert L[i] in
L[:i]

T (n) = 0 + 1 + · · · + (n − 1)

T (n) = n(n − 1)/2

T (n) is O(n2)

def InsertionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

Move L[i] to correct position in L[:i]

j = i

while(L[j] < L[j-1]):

(L[j],L[j-1]) = (L[j-1],L[j])

j = j-1

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 5 / 7

Analysis of iterative insertion sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: i steps to insert L[i] in
L[:i]

T (n) = 0 + 1 + · · · + (n − 1)

T (n) = n(n − 1)/2

T (n) is O(n2)

def InsertionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

Move L[i] to correct position in L[:i]

j = i

while(L[j] < L[j-1]):

(L[j],L[j-1]) = (L[j-1],L[j])

j = j-1

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 5 / 7

Analysis of iterative insertion sort

Correctness follows from the invariant

Efficiency

Outer loop iterates n times

Inner loop: i steps to insert L[i] in
L[:i]

T (n) = 0 + 1 + · · · + (n − 1)

T (n) = n(n − 1)/2

T (n) is O(n2)

def InsertionSort(L):

n = len(L)

if n < 1:

return(L)

for i in range(n):

Assume L[:i] is sorted

Move L[i] to correct position in L[:i]

j = i

while(L[j] < L[j-1]):

(L[j],L[j-1]) = (L[j-1],L[j])

j = j-1

Now L[:i+1] is sorted

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 5 / 7

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n − 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n − 1) + TI (n − 1)

Unwind to get 1 + 2 + · · · + n − 1

def Insert(L,v):

n = len(L)

if n == 0:

return([v])

if v >= L[-1]:

return(L+[v])

else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):

n = len(L)

if n < 1:

return(L)

L = Insert(ISort(L[:-1]),L[-1])

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 6 / 7

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n − 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n − 1) + TI (n − 1)

Unwind to get 1 + 2 + · · · + n − 1

def Insert(L,v):

n = len(L)

if n == 0:

return([v])

if v >= L[-1]:

return(L+[v])

else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):

n = len(L)

if n < 1:

return(L)

L = Insert(ISort(L[:-1]),L[-1])

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 6 / 7

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n − 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n − 1) + TI (n − 1)

Unwind to get 1 + 2 + · · · + n − 1

def Insert(L,v):

n = len(L)

if n == 0:

return([v])

if v >= L[-1]:

return(L+[v])

else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):

n = len(L)

if n < 1:

return(L)

L = Insert(ISort(L[:-1]),L[-1])

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 6 / 7

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n − 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n − 1) + TI (n − 1)

Unwind to get 1 + 2 + · · · + n − 1

def Insert(L,v):

n = len(L)

if n == 0:

return([v])

if v >= L[-1]:

return(L+[v])

else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):

n = len(L)

if n < 1:

return(L)

L = Insert(ISort(L[:-1]),L[-1])

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 6 / 7

Analysis of recursive insertion sort

For input of size n, let

TI (n) be the time taken by Insert

TS(n) be the time taken by ISort

First calculate TI (n) for Insert

TI (0) = 1

TI (n) = TI (n − 1) + 1

Unwind to get TI (n) = n

Set up a recurrence for TS(n)

TS(0) = 1

TS(n) = TS(n − 1) + TI (n − 1)

Unwind to get 1 + 2 + · · · + n − 1

def Insert(L,v):

n = len(L)

if n == 0:

return([v])

if v >= L[-1]:

return(L+[v])

else

return(Insert(L[:-1],v)+l[-1:])

def ISort(L):

n = len(L)

if n < 1:

return(L)

L = Insert(ISort(L[:-1]),L[-1])

return(L)

Madhavan Mukund Insertion Sort PDSP Lecture 15 6 / 7

Summary

Insertion sort is another intuitive algorithm to sort a list

Create a new sorted list

Repeatedly insert elements into the sorted list

Worst case complexity is O(n2)

Unlike selection sort, not all cases take time n2

If list is already sorted, Insert stops in 1 step

Overall time can be close to O(n)

Madhavan Mukund Insertion Sort PDSP Lecture 15 7 / 7

Summary

Insertion sort is another intuitive algorithm to sort a list

Create a new sorted list

Repeatedly insert elements into the sorted list

Worst case complexity is O(n2)

Unlike selection sort, not all cases take time n2

If list is already sorted, Insert stops in 1 step

Overall time can be close to O(n)

Madhavan Mukund Insertion Sort PDSP Lecture 15 7 / 7

Summary

Insertion sort is another intuitive algorithm to sort a list

Create a new sorted list

Repeatedly insert elements into the sorted list

Worst case complexity is O(n2)

Unlike selection sort, not all cases take time n2

If list is already sorted, Insert stops in 1 step

Overall time can be close to O(n)

Madhavan Mukund Insertion Sort PDSP Lecture 15 7 / 7

Merge Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 15, 15 Nov 2021

https://www.cmi.ac.in/~madhavan

Beating the O(n2) barrier

Both selection sort and insertion sort take time O(n2)

This is infeasible for n > 10000

How can we bring the complexity below O(n2)?

Divide the list into two halves

Separately sort the left and right half

Combine the two sorted halves to get a fully sorted list

Madhavan Mukund Merge Sort PDSP Lecture 15 2 / 8

Beating the O(n2) barrier

Both selection sort and insertion sort take time O(n2)

This is infeasible for n > 10000

How can we bring the complexity below O(n2)?

Divide the list into two halves

Separately sort the left and right half

Combine the two sorted halves to get a fully sorted list

Madhavan Mukund Merge Sort PDSP Lecture 15 2 / 8

Beating the O(n2) barrier

Both selection sort and insertion sort take time O(n2)

This is infeasible for n > 10000

How can we bring the complexity below O(n2)?

Strategy 3

Divide the list into two halves

Separately sort the left and right half

Combine the two sorted halves to get a fully sorted list

Madhavan Mukund Merge Sort PDSP Lecture 15 2 / 8

Beating the O(n2) barrier

Both selection sort and insertion sort take time O(n2)

This is infeasible for n > 10000

How can we bring the complexity below O(n2)?

Strategy 3

Divide the list into two halves

Separately sort the left and right half

Combine the two sorted halves to get a fully sorted list

Madhavan Mukund Merge Sort PDSP Lecture 15 2 / 8

Beating the O(n2) barrier

Both selection sort and insertion sort take time O(n2)

This is infeasible for n > 10000

How can we bring the complexity below O(n2)?

Strategy 3

Divide the list into two halves

Separately sort the left and right half

Combine the two sorted halves to get a fully sorted list

Madhavan Mukund Merge Sort PDSP Lecture 15 2 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55 64

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55 64 74

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55 64 74 89

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Combining two sorted lists

Combine two sorted lists A and B into a
single sorted list C

Compare first elements of A and B

Move the smaller of the two to C

Repeat till you exhaust A and B

Merging A and B

32 74 89

21 55 64

21 32 55 64 74 89

Madhavan Mukund Merge Sort PDSP Lecture 15 3 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 91 13

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

43 32 22 78 63 57 91 13

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

22 32 43 78 63 57 91 13

32 43 22 78 57 63 13 91

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

22 32 43 78 13 57 63 91

32 43 22 78 57 63 13 91

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

43 32 22 78 63 57 91 13

22 32 43 78 13 57 63 91

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

13 22 32 43 57 63 78 91

22 32 43 78 13 57 63 91

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted
halves into B

How do we sort
A[:n//2] and
A[n//2:]?

Recursively, same
strategy!

13 22 32 43 57 63 78 91

Madhavan Mukund Merge Sort PDSP Lecture 15 4 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted halves into B

How do we sort A[:n//2] and
A[n//2:]?

Recursively, same strategy!

Madhavan Mukund Merge Sort PDSP Lecture 15 5 / 8

Merge sort

Let n be the length of L

Sort A[:n//2]

Sort A[n//2:]

Merge the sorted halves into B

How do we sort A[:n//2] and
A[n//2:]?

Recursively, same strategy!

Divide and Conquer

Break up the problem into disjoint parts

Solve each part separately

Combine the solutions efficiently

Madhavan Mukund Merge Sort PDSP Lecture 15 5 / 8

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B

have been moved

Madhavan Mukund Merge Sort PDSP Lecture 15 6 / 8

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B

have been moved

Madhavan Mukund Merge Sort PDSP Lecture 15 6 / 8

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B

have been moved

Madhavan Mukund Merge Sort PDSP Lecture 15 6 / 8

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B

have been moved

Madhavan Mukund Merge Sort PDSP Lecture 15 6 / 8

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B

have been moved

Madhavan Mukund Merge Sort PDSP Lecture 15 6 / 8

Merging sorted lists

Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of
A and B

Move the smaller of the two to C

Repeat till all elements of A and B

have been moved

def merge(A,B):

(m,n) = (len(A),len(B))

(C,i,j,k) = ([],0,0,0)

while k < m+n:

if i == m:

C.extend(B[j:])

k = k + (n-j)

elif j == n:

C.extend(A[i:])

k = k + (n-i)

elif A[i] < B[j]:

C.append(A[i])

(i,k) = (i+1,k+1)

else:

C.append(B[j])

(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Merge Sort PDSP Lecture 15 6 / 8

Merge sort

To sort A into B, both of length n

If n ≤ 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 15 7 / 8

Merge sort

To sort A into B, both of length n

If n ≤ 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 15 7 / 8

Merge sort

To sort A into B, both of length n

If n ≤ 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 15 7 / 8

Merge sort

To sort A into B, both of length n

If n ≤ 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 15 7 / 8

Merge sort

To sort A into B, both of length n

If n ≤ 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 15 7 / 8

Merge sort

To sort A into B, both of length n

If n ≤ 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Madhavan Mukund Merge Sort PDSP Lecture 15 7 / 8

Merge sort

To sort A into B, both of length n

If n ≤ 1, nothing to be done

Otherwise

Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

def mergesort(A):

n = len(A)

if n <= 1:

return(A)

L = mergesort(A[:n//2])

R = mergesort(A[n//2:])

B = merge(L,R)

return(B)

Madhavan Mukund Merge Sort PDSP Lecture 15 7 / 8

Summary

Merge sort using divide and conquer to sort a list

Divide the list into two halves

Sort each half

Merge the sorted halves

Next, we have to check that the complexity is less than O(n2)

Madhavan Mukund Merge Sort PDSP Lecture 15 8 / 8

Summary

Merge sort using divide and conquer to sort a list

Divide the list into two halves

Sort each half

Merge the sorted halves

Next, we have to check that the complexity is less than O(n2)

Madhavan Mukund Merge Sort PDSP Lecture 15 8 / 8

Summary

Merge sort using divide and conquer to sort a list

Divide the list into two halves

Sort each half

Merge the sorted halves

Next, we have to check that the complexity is less than O(n2)

Madhavan Mukund Merge Sort PDSP Lecture 15 8 / 8

Summary

Merge sort using divide and conquer to sort a list

Divide the list into two halves

Sort each half

Merge the sorted halves

Next, we have to check that the complexity is less than O(n2)

Madhavan Mukund Merge Sort PDSP Lecture 15 8 / 8

Summary

Merge sort using divide and conquer to sort a list

Divide the list into two halves

Sort each half

Merge the sorted halves

Next, we have to check that the complexity is less than O(n2)

Madhavan Mukund Merge Sort PDSP Lecture 15 8 / 8

