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Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n3 eventually grows faster than g(n) = 5000n2

How do we compare functions with respect to orders of magnitude?
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Upper bounds

f (x) is said to be O(g(x)) if we can find
constants c and x0 such that c · g(x) is an
upper bound for f (x) for x beyond x0

f (x) ≤ cg(x) for every x ≥ x0

Graphs of typical functions we have seen
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Examples

100n + 5 is O(n2)

100n + 5 ≤ 100n + n = 101n, for n ≥ 5

101n ≤ 101n2

Choose n0 = 5, c = 101

Alternatively

100n + 5 ≤ 100n + 5n = 105n, for n ≥ 1

105n ≤ 105n2

Choose n0 = 1, c = 105

Choice of n0, c not unique
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Examples . . .

100n2 + 20n + 5 is O(n2)

100n2 + 20n + 5 ≤ 100n2 + 20n2 + 5n2, for
n ≥ 1

100n2 + 20n + 5 ≤ 125n2, for n ≥ 1

Choose n0 = 1, c = 125

What matters is the highest term

20n + 5 is dominated by 100n2

n3 is not O(n2)

No matter what c we choose, cn2 will be
dominated by n3 for n ≥ c
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Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm
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Lower bounds

f (x) is said to be Ω(g(x)) if we can find constants c and x0 such that cg(x) is a
lower bound for f (x) for x beyond x0

f (x) ≥ cg(x) for every x ≥ x0

n3 is Ω(n2)

n3 > n2 for all n, so n0 = 1, c = 1

Typically we establish lower bounds for a problem rather than an individual algorithm

If we sort a list by comparing elements and swapping them, we require Ω(n log n)
comparisons

This is independent of the algorithm we use for sorting
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Tight bounds

f (x) is said to be Θ(g(x)) if it is both O(g(x)) and Ω(g(x))

Find constants c1, c2, x0 such that c1g(x) ≤ f (x) ≤ c2g(x) for every x ≥ x0

n(n − 1)/2 is Θ(n2)

Upper bound

n(n − 1)/2 = n2/2− n/2 ≤ n2/2 for all n ≥ 0

Lower bound

n(n − 1)/2 = n2/2− n/2 ≥ n2/2− (n/2× n/2) ≥ n2/4 for n ≥ 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2
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Summary

f (n) is O(g(n)) means g(n) is an upper bound for f (n)

Useful to describe asymptotic worst case running time

f (n) is Ω(g(n)) means g(n) is a lower bound for f (n)

Typically used for a problem as a whole, rather than an individual algorihm

f (n) is Θ(g(n)): matching upper and lower bounds

We have found an optimal algorithm for a problem
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