
Comparing orders of magnitude

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python

Week 2

https://www.cmi.ac.in/~madhavan


Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n3 eventually grows faster than g(n) = 5000n2

How do we compare functions with respect to orders of magnitude?

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 2 / 9



Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n3 eventually grows faster than g(n) = 5000n2

How do we compare functions with respect to orders of magnitude?

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 2 / 9



Upper bounds

f (x) is said to be O(g(x)) if we can find
constants c and x0 such that c · g(x) is an
upper bound for f (x) for x beyond x0

f (x) ≤ cg(x) for every x ≥ x0

Graphs of typical functions we have seen

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 3 / 9



Upper bounds

f (x) is said to be O(g(x)) if we can find
constants c and x0 such that c · g(x) is an
upper bound for f (x) for x beyond x0

f (x) ≤ cg(x) for every x ≥ x0

Graphs of typical functions we have seen

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 3 / 9



Upper bounds

f (x) is said to be O(g(x)) if we can find
constants c and x0 such that c · g(x) is an
upper bound for f (x) for x beyond x0

f (x) ≤ cg(x) for every x ≥ x0

Graphs of typical functions we have seen

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 3 / 9



Examples

100n + 5 is O(n2)

100n + 5 ≤ 100n + n = 101n, for n ≥ 5

101n ≤ 101n2

Choose n0 = 5, c = 101

Alternatively

100n + 5 ≤ 100n + 5n = 105n, for n ≥ 1

105n ≤ 105n2

Choose n0 = 1, c = 105

Choice of n0, c not unique

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 4 / 9



Examples

100n + 5 is O(n2)

100n + 5 ≤ 100n + n = 101n, for n ≥ 5

101n ≤ 101n2

Choose n0 = 5, c = 101

Alternatively

100n + 5 ≤ 100n + 5n = 105n, for n ≥ 1

105n ≤ 105n2

Choose n0 = 1, c = 105

Choice of n0, c not unique

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 4 / 9



Examples

100n + 5 is O(n2)

100n + 5 ≤ 100n + n = 101n, for n ≥ 5

101n ≤ 101n2

Choose n0 = 5, c = 101

Alternatively

100n + 5 ≤ 100n + 5n = 105n, for n ≥ 1

105n ≤ 105n2

Choose n0 = 1, c = 105

Choice of n0, c not unique

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 4 / 9



Examples . . .

100n2 + 20n + 5 is O(n2)

100n2 + 20n + 5 ≤ 100n2 + 20n2 + 5n2, for
n ≥ 1

100n2 + 20n + 5 ≤ 125n2, for n ≥ 1

Choose n0 = 1, c = 125

What matters is the highest term

20n + 5 is dominated by 100n2

n3 is not O(n2)

No matter what c we choose, cn2 will be
dominated by n3 for n ≥ c

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 5 / 9



Examples . . .

100n2 + 20n + 5 is O(n2)

100n2 + 20n + 5 ≤ 100n2 + 20n2 + 5n2, for
n ≥ 1

100n2 + 20n + 5 ≤ 125n2, for n ≥ 1

Choose n0 = 1, c = 125

What matters is the highest term

20n + 5 is dominated by 100n2

n3 is not O(n2)

No matter what c we choose, cn2 will be
dominated by n3 for n ≥ c

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 5 / 9



Examples . . .

100n2 + 20n + 5 is O(n2)

100n2 + 20n + 5 ≤ 100n2 + 20n2 + 5n2, for
n ≥ 1

100n2 + 20n + 5 ≤ 125n2, for n ≥ 1

Choose n0 = 1, c = 125

What matters is the highest term

20n + 5 is dominated by 100n2

n3 is not O(n2)

No matter what c we choose, cn2 will be
dominated by n3 for n ≥ c

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 5 / 9



Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 6 / 9



Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 6 / 9



Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 6 / 9



Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 6 / 9



Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

≤ c3(g1(n) + g2(n))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 6 / 9



Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

≤ c3(g1(n) + g2(n))

≤ 2c3(max(g1(n), g2(n)))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 6 / 9



Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

≤ c3(g1(n) + g2(n))

≤ 2c3(max(g1(n), g2(n)))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 6 / 9



Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

≤ c3(g1(n) + g2(n))

≤ 2c3(max(g1(n), g2(n)))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 6 / 9



Useful properties

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then
f1(n) + f2(n) is O(max(g1(n), g2(n)))

Proof

f1(n) ≤ c1g1(n) for n > n1

f2(n) ≤ c2g2(n) for n > n2

Let c3 = max(c1, c2), n3 = max(n1, n2)

For n ≥ n3, f1(n) + f2(n)

≤ c1g1(n) + c2g2(n)

≤ c3(g1(n) + g2(n))

≤ 2c3(max(g1(n), g2(n)))

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))

Algorithm as a whole takes time
max(O(gA(n), gB(n)))

Least efficient phase is the upper
bound for the whole algorithm

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 6 / 9



Lower bounds

f (x) is said to be Ω(g(x)) if we can find constants c and x0 such that cg(x) is a
lower bound for f (x) for x beyond x0

f (x) ≥ cg(x) for every x ≥ x0

n3 is Ω(n2)

n3 > n2 for all n, so n0 = 1, c = 1

Typically we establish lower bounds for a problem rather than an individual algorithm

If we sort a list by comparing elements and swapping them, we require Ω(n log n)
comparisons

This is independent of the algorithm we use for sorting

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 7 / 9



Lower bounds

f (x) is said to be Ω(g(x)) if we can find constants c and x0 such that cg(x) is a
lower bound for f (x) for x beyond x0

f (x) ≥ cg(x) for every x ≥ x0

n3 is Ω(n2)

n3 > n2 for all n, so n0 = 1, c = 1

Typically we establish lower bounds for a problem rather than an individual algorithm

If we sort a list by comparing elements and swapping them, we require Ω(n log n)
comparisons

This is independent of the algorithm we use for sorting

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 7 / 9



Lower bounds

f (x) is said to be Ω(g(x)) if we can find constants c and x0 such that cg(x) is a
lower bound for f (x) for x beyond x0

f (x) ≥ cg(x) for every x ≥ x0

n3 is Ω(n2)

n3 > n2 for all n, so n0 = 1, c = 1

Typically we establish lower bounds for a problem rather than an individual algorithm

If we sort a list by comparing elements and swapping them, we require Ω(n log n)
comparisons

This is independent of the algorithm we use for sorting

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 7 / 9



Tight bounds

f (x) is said to be Θ(g(x)) if it is both O(g(x)) and Ω(g(x))

Find constants c1, c2, x0 such that c1g(x) ≤ f (x) ≤ c2g(x) for every x ≥ x0

n(n − 1)/2 is Θ(n2)

Upper bound

n(n − 1)/2 = n2/2− n/2 ≤ n2/2 for all n ≥ 0

Lower bound

n(n − 1)/2 = n2/2− n/2 ≥ n2/2− (n/2× n/2) ≥ n2/4 for n ≥ 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 8 / 9



Tight bounds

f (x) is said to be Θ(g(x)) if it is both O(g(x)) and Ω(g(x))

Find constants c1, c2, x0 such that c1g(x) ≤ f (x) ≤ c2g(x) for every x ≥ x0

n(n − 1)/2 is Θ(n2)

Upper bound

n(n − 1)/2 = n2/2− n/2 ≤ n2/2 for all n ≥ 0

Lower bound

n(n − 1)/2 = n2/2− n/2 ≥ n2/2− (n/2× n/2) ≥ n2/4 for n ≥ 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 8 / 9



Tight bounds

f (x) is said to be Θ(g(x)) if it is both O(g(x)) and Ω(g(x))

Find constants c1, c2, x0 such that c1g(x) ≤ f (x) ≤ c2g(x) for every x ≥ x0

n(n − 1)/2 is Θ(n2)

Upper bound

n(n − 1)/2 = n2/2− n/2 ≤ n2/2 for all n ≥ 0

Lower bound

n(n − 1)/2 = n2/2− n/2 ≥ n2/2− (n/2× n/2) ≥ n2/4 for n ≥ 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 8 / 9



Tight bounds

f (x) is said to be Θ(g(x)) if it is both O(g(x)) and Ω(g(x))

Find constants c1, c2, x0 such that c1g(x) ≤ f (x) ≤ c2g(x) for every x ≥ x0

n(n − 1)/2 is Θ(n2)

Upper bound

n(n − 1)/2 = n2/2− n/2 ≤ n2/2 for all n ≥ 0

Lower bound

n(n − 1)/2 = n2/2− n/2 ≥ n2/2− (n/2× n/2) ≥ n2/4 for n ≥ 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 8 / 9



Tight bounds

f (x) is said to be Θ(g(x)) if it is both O(g(x)) and Ω(g(x))

Find constants c1, c2, x0 such that c1g(x) ≤ f (x) ≤ c2g(x) for every x ≥ x0

n(n − 1)/2 is Θ(n2)

Upper bound

n(n − 1)/2 = n2/2− n/2 ≤ n2/2 for all n ≥ 0

Lower bound

n(n − 1)/2 = n2/2− n/2 ≥ n2/2− (n/2× n/2) ≥ n2/4 for n ≥ 2

Choose n0 = 2, c1 = 1/4, c2 = 1/2

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 8 / 9



Summary

f (n) is O(g(n)) means g(n) is an upper bound for f (n)

Useful to describe asymptotic worst case running time

f (n) is Ω(g(n)) means g(n) is a lower bound for f (n)

Typically used for a problem as a whole, rather than an individual algorihm

f (n) is Θ(g(n)): matching upper and lower bounds

We have found an optimal algorithm for a problem

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 9 / 9



Summary

f (n) is O(g(n)) means g(n) is an upper bound for f (n)

Useful to describe asymptotic worst case running time

f (n) is Ω(g(n)) means g(n) is a lower bound for f (n)

Typically used for a problem as a whole, rather than an individual algorihm

f (n) is Θ(g(n)): matching upper and lower bounds

We have found an optimal algorithm for a problem

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 9 / 9



Summary

f (n) is O(g(n)) means g(n) is an upper bound for f (n)

Useful to describe asymptotic worst case running time

f (n) is Ω(g(n)) means g(n) is a lower bound for f (n)

Typically used for a problem as a whole, rather than an individual algorihm

f (n) is Θ(g(n)): matching upper and lower bounds

We have found an optimal algorithm for a problem

Madhavan Mukund Comparing orders of magnitude PDSA using Python Week 2 9 / 9


