Comparing orders of magnitude

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Orders of magnitude

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$

Orders of magnitude

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
- How do we compare functions with respect to orders of magnitude?

Upper bounds

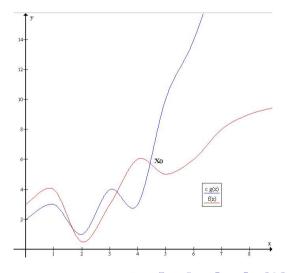
 f(x) is said to be O(g(x)) if we can find constants c and x₀ such that c ⋅ g(x) is an upper bound for f(x) for x beyond x₀

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

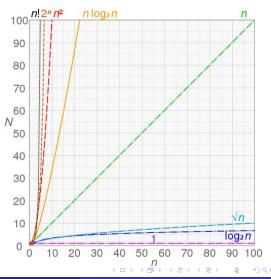
Upper bounds

- f(x) is said to be O(g(x)) if we can find constants c and x₀ such that c ⋅ g(x) is an upper bound for f(x) for x beyond x₀
- $f(x) \leq cg(x)$ for every $x \geq x_0$



Upper bounds

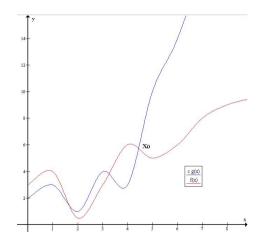
- f(x) is said to be O(g(x)) if we can find constants c and x₀ such that c ⋅ g(x) is an upper bound for f(x) for x beyond x₀
- $f(x) \leq cg(x)$ for every $x \geq x_0$
- Graphs of typical functions we have seen



Examples

■ 100n + 5 is $O(n^2)$

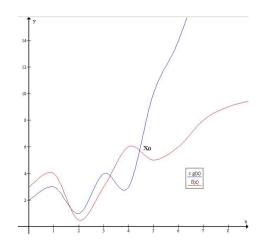
- $100n + 5 \le 100n + n = 101n$, for $n \ge 5$
- $101n \le 101n^2$
- Choose $n_0 = 5$, c = 101



Examples

■ 100n + 5 is $O(n^2)$

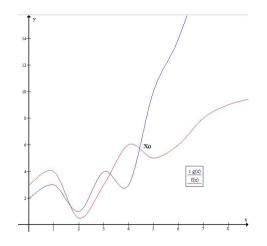
- $100n + 5 \le 100n + n = 101n$, for $n \ge 5$
- $101n \le 101n^2$
- Choose $n_0 = 5$, c = 101
- Alternatively
 - $100n + 5 \le 100n + 5n = 105n$, for $n \ge 1$
 - $105n \le 105n^2$
 - Choose $n_0 = 1$, c = 105



Examples

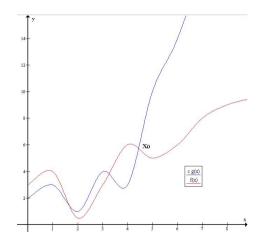
■ 100n + 5 is $O(n^2)$

- $100n + 5 \le 100n + n = 101n$, for $n \ge 5$
- $101n \le 101n^2$
- Choose $n_0 = 5$, c = 101
- Alternatively
 - $100n + 5 \le 100n + 5n = 105n$, for $n \ge 1$
 - $105n \le 105n^2$
 - Choose $n_0 = 1$, c = 105
- Choice of n_0 , c not unique

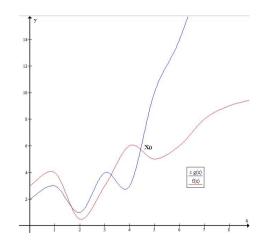


Examples . . .

- $100n^2 + 20n + 5$ is $O(n^2)$
 - $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
 - $100n^2 + 20n + 5 \le 125n^2$, for $n \ge 1$
 - Choose $n_0 = 1$, c = 125

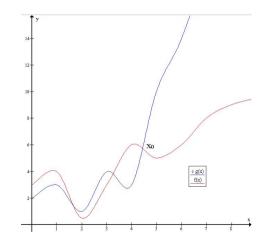


- $100n^2 + 20n + 5$ is $O(n^2)$
 - $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
 - $100n^2 + 20n + 5 \le 125n^2$, for $n \ge 1$
 - Choose $n_0 = 1$, c = 125
- What matters is the highest term
 - 20n + 5 is dominated by $100n^2$



■ $100n^2 + 20n + 5$ is $O(n^2)$

- $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
- $100n^2 + 20n + 5 \le 125n^2$, for $n \ge 1$
- Choose $n_0 = 1$, c = 125
- What matters is the highest term
 - 20n + 5 is dominated by $100n^2$
- n^3 is not $O(n^2)$
 - No matter what c we choose, cn² will be dominated by n³ for n ≥ c



• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

3

• • = • • = •

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1 g_1(n)$ for $n > n_1$
- $f_2(n) \le c_2 g_2(n)$ for $n > n_2$

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1 g_1(n)$ for $n > n_1$
- $f_2(n) \le c_2 g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$

4 E N 4 E

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1 g_1(n)$ for $n > n_1$
- $f_2(n) \le c_2 g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
- For $n \ge n_3$, $f_1(n) + f_2(n)$
 - $\leq c_1g_1(n)+c_2g_2(n)$

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1 g_1(n)$ for $n > n_1$
- $f_2(n) \le c_2 g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
- For $n \ge n_3$, $f_1(n) + f_2(n)$
 - $\leq c_1g_1(n)+c_2g_2(n)$
 - $\leq c_3(g_1(n)+g_2(n))$

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1 g_1(n)$ for $n > n_1$
- $f_2(n) \le c_2 g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
- For $n \ge n_3$, $f_1(n) + f_2(n)$
 - $\leq c_1g_1(n)+c_2g_2(n)$
 - $\leq c_3(g_1(n)+g_2(n))$
 - $\leq 2c_3(\max(g_1(n),g_2(n)))$

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1 g_1(n)$ for $n > n_1$
- $f_2(n) \le c_2 g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
- For $n \ge n_3$, $f_1(n) + f_2(n)$
 - $\leq c_1g_1(n)+c_2g_2(n)$
 - $\leq c_3(g_1(n)+g_2(n))$
 - $\leq 2c_3(\max(g_1(n),g_2(n)))$

- Algorithm has two phases
 - Phase A takes time $O(g_A(n))$
 - Phase B takes time $O(g_B(n))$

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1 g_1(n)$ for $n > n_1$
- $f_2(n) \le c_2 g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
- For $n \ge n_3$, $f_1(n) + f_2(n)$
 - $\leq c_1g_1(n)+c_2g_2(n)$
 - $\leq c_3(g_1(n)+g_2(n))$
 - $\leq 2c_3(\max(g_1(n),g_2(n)))$

- Algorithm has two phases
 - Phase A takes time $O(g_A(n))$
 - Phase B takes time $O(g_B(n))$
- Algorithm as a whole takes time max(O(g_A(n), g_B(n)))

• If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Proof

- $f_1(n) \le c_1 g_1(n)$ for $n > n_1$
- $f_2(n) \le c_2 g_2(n)$ for $n > n_2$
- Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
- For $n \ge n_3$, $f_1(n) + f_2(n)$
 - $\leq c_1g_1(n)+c_2g_2(n)$
 - $\leq c_3(g_1(n)+g_2(n))$
 - $\leq 2c_3(\max(g_1(n),g_2(n)))$

- Algorithm has two phases
 - Phase A takes time $O(g_A(n))$
 - Phase B takes time $O(g_B(n))$
- Algorithm as a whole takes time max(O(g_A(n), g_B(n)))
- Least efficient phase is the upper bound for the whole algorithm

Lower bounds

- f(x) is said to be Ω(g(x)) if we can find constants c and x₀ such that cg(x) is a lower bound for f(x) for x beyond x₀
 - $f(x) \ge cg(x)$ for every $x \ge x_0$

3

(4) E > (4) E > (4)

< 口 > < 向

Lower bounds

- f(x) is said to be Ω(g(x)) if we can find constants c and x₀ such that cg(x) is a lower bound for f(x) for x beyond x₀
 - $f(x) \ge cg(x)$ for every $x \ge x_0$
- n^3 is $\Omega(n^2)$
 - $n^3 > n^2$ for all *n*, so $n_0 = 1$, c = 1

4 E N 4 E N

Lower bounds

- f(x) is said to be Ω(g(x)) if we can find constants c and x₀ such that cg(x) is a lower bound for f(x) for x beyond x₀
 - $f(x) \ge cg(x)$ for every $x \ge x_0$
- n^3 is $\Omega(n^2)$
 - $n^3 > n^2$ for all *n*, so $n_0 = 1$, c = 1
- Typically we establish lower bounds for a problem rather than an individual algorithm
 - If we sort a list by comparing elements and swapping them, we require $\Omega(n \log n)$ comparisons
 - This is independent of the algorithm we use for sorting

化压力 化压力

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

3

• • = • • = •

< 口 > < 向

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

■ n(n-1)/2 is $\Theta(n^2)$

< 口 > < 向

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

■ n(n-1)/2 is $\Theta(n^2)$

Upper bound

■
$$n(n-1)/2 = n^2/2 - n/2 \le n^2/2$$
 for all $n \ge 0$

3

A B M A B M

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

■ n(n-1)/2 is $\Theta(n^2)$

- Upper bound
 - $n(n-1)/2 = n^2/2 n/2 \le n^2/2$ for all $n \ge 0$
- Lower bound

■
$$n(n-1)/2 = n^2/2 - n/2 \ge n^2/2 - (n/2 \times n/2) \ge n^2/4$$
 for $n \ge 2$

3

イモトノモト

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

■ n(n-1)/2 is $\Theta(n^2)$

- Upper bound
 - $n(n-1)/2 = n^2/2 n/2 \le n^2/2$ for all $n \ge 0$
- Lower bound

■
$$n(n-1)/2 = n^2/2 - n/2 \ge n^2/2 - (n/2 \times n/2) \ge n^2/4$$
 for $n \ge 2$

• Choose $n_0 = 2$, $c_1 = 1/4$, $c_2 = 1/2$

- 34

イモトイモト

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 合□

Summary

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time
- f(n) is $\Omega(g(n))$ means g(n) is a lower bound for f(n)
 - Typically used for a problem as a whole, rather than an individual algorihm

Summary

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time
- f(n) is $\Omega(g(n))$ means g(n) is a lower bound for f(n)
 - Typically used for a problem as a whole, rather than an individual algorihm
- f(n) is $\Theta(g(n))$: matching upper and lower bounds
 - We have found an optimal algorithm for a problem