Analysis of algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 2

https://www.cmi.ac.in/~madhavan

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 2/10

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

m Two main resources of interest
® Running time — how long the algorithm takes

m Space — memory requirement

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 2/10

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

m Two main resources of interest
® Running time — how long the algorithm takes

m Space — memory requirement

m Time depends on processing power
m Impossible to change for given hardware

m Enhancing hardware has only a limited impact at a practical level

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 2/10

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

m Two main resources of interest
® Running time — how long the algorithm takes

m Space — memory requirement

m Time depends on processing power
m Impossible to change for given hardware

m Enhancing hardware has only a limited impact at a practical level

m Storage is limited by available memory

m Easier to configure, augment

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 2/10

Measuring performance

m Example of validating SIM cards against Aadhaar data
m Naive approach takes thousands of years

m Smarter solution takes a few minutes

m Two main resources of interest
® Running time — how long the algorithm takes

m Space — memory requirement

m Time depends on processing power
m Impossible to change for given hardware

m Enhancing hardware has only a limited impact at a practical level

Storage is limited by available memory

m Easier to configure, augment

Typically, we focus on time rather than space

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2

Input size

m Running time depends on input size

m Larger arrays will take longer to sort

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3/10

Input size

m Running time depends on input size
m Larger arrays will take longer to sort
m Measure time efficiency as function of
input size
m Input size n

m Running time t(n)

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3/10

m Running time depends on input size
m Larger arrays will take longer to sort
m Measure time efficiency as function of
input size
m Input size n
m Running time t(n)
m Different inputs of size n may take

different amounts of time
m We will return to this point later

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3/10

= Running time depends on input size Example 1 SIM cards vs Aadhaar cards

. ~ 109 —
m Larger arrays will take longer to sort m n=10 number of cards

m Measure time efficiency as function of
input size
m Input size n
m Running time t(n)
m Different inputs of size n may take

different amounts of time
m We will return to this point later

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3/10

= Running time depends on input size Example 1 SIM cards vs Aadhaar cards
~ 9
m Larger arrays will take longer to sort = 1~ 10" — number of cards

. . . ; S ~ 2
m Measure time efficiency as function of = Naive algorithm: t(n) ~ n

input size
m Input size n
m Running time t(n)
m Different inputs of size n may take

different amounts of time
m We will return to this point later

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3/10

= Running time depends on input size Example 1 SIM cards vs Aadhaar cards

. ~ 109 —
m Larger arrays will take longer to sort m n=10 number of cards

. . . ; S ~ 2
m Measure time efficiency as function of = Naive algorithm: t(n) ~ n

Input size m Clever algorithm: t(n) ~ nlog, n

w Input size n m log, n — number of times you need

m Running time t(n) to divide n by 2 to reach 1

— _ ok
m Different inputs of size n may take m logy(n) = k = n=2

different amounts of time
m We will return to this point later

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3/10

Input size . ..

Example 2 Video game

m Several objects on screen

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4/10

Input size . ..

Example 2 Video game

m Several objects on screen

m Basic step: find closest pair of objects

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4/10

Input size . ..

Example 2 Video game

m Several objects on screen

m Basic step: find closest pair of objects

m 1 objects — naive algorithm is n?

m For each pair of objects, compute
their distance

m Report minimum distance across all
pairs

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4/10

Example 2 Video game

m Several objects on screen

m Basic step: find closest pair of objects

m 1 objects — naive algorithm is n?

m For each pair of objects, compute
their distance

m Report minimum distance across all
pairs

m There is a clever algorithm that takes
sime nlog, n

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4/10

Example 2 Video game

m Several objects on screen m High resolution gaming consle may
have 4000x2000 pixels

Basic step: find closest pair of object
m Basic step: find closest pair of objects m 8 % 10° points — 8 million

n objects — naive algorithm is n?

m For each pair of objects, compute
their distance

m Report minimum distance across all
pairs

m There is a clever algorithm that takes
sime nlog, n

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4/10

Example 2 Video game
m High resolution gaming consle may
have 4000x2000 pixels

m 8 x 10° points — 8 million

m Several objects on screen

m Basic step: find closest pair of objects

. _ . . . 2
m n objects — naive algorithm is n m Suppose we have 100,000 = 1 x 10°

m For each pair of objects, compute objects
their distance

m Report minimum distance across all
pairs

m There is a clever algorithm that takes
sime nlog, n

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4/10

Example 2 Video game
m High resolution gaming consle may
have 4000x2000 pixels

m 8 x 10° points — 8 million

m Several objects on screen

m Basic step: find closest pair of objects
m 1 objects — naive algorithm is n? 5
m Suppose we have 100,000 =1 x 10

m For each pair of objects, compute objects

their distance

. . 10
m Report minimum distance across all = Naive algorithm takes 107" steps

pairs m 1000 seconds, or 16.7 minutes in
. . Python
m There is a clever algorithm that takes

. i |
sime nlog, n m Unacceptable response time!

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4/10

Example 2 Video game
m High resolution gaming consle may
have 4000x2000 pixels

m 8 x 10° points — 8 million

m Several objects on screen

m Basic step: find closest pair of objects
m 1 objects — naive algorithm is n? 5
m Suppose we have 100,000 =1 x 10

m For each pair of objects, compute objects

their distance

. . 10
m Report minimum distance across all = Naive algorithm takes 107" steps

pairs m 1000 seconds, or 16.7 minutes in

. . Python
m There is a clever algorithm that takes

. i |
sime nlog, n m Unacceptable response time!

m log, 100,000 is under 20, so nlog, n
takes a fraction of a second

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4/10

Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 5/10

Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors

m f(n) = n® eventually grows faster than g(n) = 5000n°
m For small values of n, f(n) < g(n)
m After n = 5000, f(n) overtakes g(n)

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 5/10

Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors

m f(n) = n® eventually grows faster than g(n) = 5000n°
m For small values of n, f(n) < g(n)
m After n = 5000, f(n) overtakes g(n)

m Asymptotic complexity

m What happens in the limit, as n becomes large

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 5/10

Orders of magnitude

m When comparing t(n), focus on orders of magnitude

m Ignore constant factors

m f(n) = n® eventually grows faster than g(n) = 5000n°
m For small values of n, f(n) < g(n)
m After n = 5000, f(n) overtakes g(n)

m Asymptotic complexity

m What happens in the limit, as n becomes large

m Typical growth functions
m Is t(n) proportional to logn, ..., n?, n3, ..., 2"?
m Note: log n means log, n by default

m Logarithmic, polynomial, exponential, ...

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2

Input size Values of t(n)
log n n nlogn n? n3 2" n!

10 33 10 33 100 1000 1000 10°
100 6.6 100 66 104 106 1030 10157
1000 10 1000 10* 10® 10°

10% 13 10% 10° 108 10%?

10° 17 10° 106 1010

106 20 10° 107 10%2

107 23 107 108

108 27 108 10°

10° 30 10° 1010

1010 33 101 10!t

Madhavan Mukund

Analysis of algorithms

PDSA using Python Week 2

Orders of magnitude

6/10

Measuring running time

m Analysis should be independent of the underlying hardware
m Don’t use actual time

m Measure in terms of basic operations

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 7/10

Measuring running time

m Analysis should be independent of the underlying hardware
m Don’t use actual time

m Measure in terms of basic operations

m Typical basic operations
m Compare two values

m Assign a value to a variable

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 7/10

Measuring running time

m Analysis should be independent of the underlying hardware
m Don’t use actual time

m Measure in terms of basic operations

m Typical basic operations
m Compare two values

m Assign a value to a variable

m Exchange a pair of values?

(x,y) = (y,x) t =x
X=y
y =1t

m If we ignore constants, focus on orders of magnitude, both are within a factor of 3

m Need not be very precise about defining basic operations

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 7/10

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 8/10

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

m What about numeric problems? Is n a prime?

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

m What about numeric problems? Is n a prime?

m Magnitude of n is not the correct measure

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 8/10

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

m What about numeric problems? Is n a prime?
m Magnitude of n is not the correct measure
m Arithmetic operations are performed digit by digit

m Addition with carry, subtraction with borrow, multiplication, long division ...

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 8/10

What is the input size

m Typically a natural parameter
m Size of a list/array that we want to search or sort
m Number of objects we want to rearrange
m Number of vertices and number edges in a graph

m We shall see why these are separate parameters

m What about numeric problems? Is n a prime?
m Magnitude of n is not the correct measure
m Arithmetic operations are performed digit by digit
m Addition with carry, subtraction with borrow, multiplication, long division ...
m Number of digits is a natural measure of input size

m Same as log, n, when we write n in base b

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 9/10

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

m Ideally, want the “average” behaviour
m Difficult to compute
m Average over what? Are all inputs equally likely?

m Need a probability distribution over inputs

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 9/10

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

m Ideally, want the “average” behaviour
m Difficult to compute
m Average over what? Are all inputs equally likely?

m Need a probability distribution over inputs

m Instead, worst case input
m Input that forces algorithm to take longest possible time

m Search for a value that is not present in an unsorted list

m Must scan all elements

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 9/10

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

m Ideally, want the “average” behaviour
m Difficult to compute
m Average over what? Are all inputs equally likely?

m Need a probability distribution over inputs

m Instead, worst case input
m Input that forces algorithm to take longest possible time

m Search for a value that is not present in an unsorted list

m Must scan all elements

m Pessimistic — worst case may be rare

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2

Which inputs should we consider?

m Performance varies across input instances

m By luck, the value we are searching for is the first element we examine in an array

m Ideally, want the “average” behaviour
m Difficult to compute
m Average over what? Are all inputs equally likely?

m Need a probability distribution over inputs

m Instead, worst case input
m Input that forces algorithm to take longest possible time

m Search for a value that is not present in an unsorted list

m Must scan all elements
m Pessimistic — worst case may be rare

m Upper bound for worst case guarantees good performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2

Summary

m Two important parameters when measuring algorithm performance
m Running time, memory requirement (space)

m We mainly focus on time

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 10/ 10

m Two important parameters when measuring algorithm performance
m Running time, memory requirement (space)

m We mainly focus on time

m Running time t(n) is a function of input size n
m Interested in orders of magnitude

m Asymptotic complexity, as n becomes large

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2

m Two important parameters when measuring algorithm performance
m Running time, memory requirement (space)

m We mainly focus on time

m Running time t(n) is a function of input size n
m Interested in orders of magnitude

m Asymptotic complexity, as n becomes large

m From running time, we can estimate feasible input sizes

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2

Summary

m Two important parameters when measuring algorithm performance
m Running time, memory requirement (space)

m We mainly focus on time

m Running time t(n) is a function of input size n
m Interested in orders of magnitude

m Asymptotic complexity, as n becomes large
m From running time, we can estimate feasible input sizes

m We focus on worst case inputs
m Pessimistic, but easier to calculate than average case

m Upper bound on worst case gives us an overall guarantee on performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2

