
Analysis of algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python

Week 2

https://www.cmi.ac.in/~madhavan


Measuring performance

Example of validating SIM cards against Aadhaar data

Naive approach takes thousands of years

Smarter solution takes a few minutes

Two main resources of interest

Running time — how long the algorithm takes

Space — memory requirement

Time depends on processing power

Impossible to change for given hardware

Enhancing hardware has only a limited impact at a practical level

Storage is limited by available memory

Easier to configure, augment

Typically, we focus on time rather than space

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 2 / 10



Measuring performance

Example of validating SIM cards against Aadhaar data

Naive approach takes thousands of years

Smarter solution takes a few minutes

Two main resources of interest

Running time — how long the algorithm takes

Space — memory requirement

Time depends on processing power

Impossible to change for given hardware

Enhancing hardware has only a limited impact at a practical level

Storage is limited by available memory

Easier to configure, augment

Typically, we focus on time rather than space

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 2 / 10



Measuring performance

Example of validating SIM cards against Aadhaar data

Naive approach takes thousands of years

Smarter solution takes a few minutes

Two main resources of interest

Running time — how long the algorithm takes

Space — memory requirement

Time depends on processing power

Impossible to change for given hardware

Enhancing hardware has only a limited impact at a practical level

Storage is limited by available memory

Easier to configure, augment

Typically, we focus on time rather than space

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 2 / 10



Measuring performance

Example of validating SIM cards against Aadhaar data

Naive approach takes thousands of years

Smarter solution takes a few minutes

Two main resources of interest

Running time — how long the algorithm takes

Space — memory requirement

Time depends on processing power

Impossible to change for given hardware

Enhancing hardware has only a limited impact at a practical level

Storage is limited by available memory

Easier to configure, augment

Typically, we focus on time rather than space

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 2 / 10



Measuring performance

Example of validating SIM cards against Aadhaar data

Naive approach takes thousands of years

Smarter solution takes a few minutes

Two main resources of interest

Running time — how long the algorithm takes

Space — memory requirement

Time depends on processing power

Impossible to change for given hardware

Enhancing hardware has only a limited impact at a practical level

Storage is limited by available memory

Easier to configure, augment

Typically, we focus on time rather than space

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 2 / 10



Input size

Running time depends on input size

Larger arrays will take longer to sort

Measure time efficiency as function of
input size

Input size n

Running time t(n)

Different inputs of size n may take
different amounts of time

We will return to this point later

n ≈ 109 — number of cards

Naive algorithm: t(n) ≈ n2

Clever algorithm: t(n) ≈ n log2 n

log2 n — number of times you need
to divide n by 2 to reach 1

log2(n) = k ⇒ n = 2k

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3 / 10



Input size

Running time depends on input size

Larger arrays will take longer to sort

Measure time efficiency as function of
input size

Input size n

Running time t(n)

Different inputs of size n may take
different amounts of time

We will return to this point later

n ≈ 109 — number of cards

Naive algorithm: t(n) ≈ n2

Clever algorithm: t(n) ≈ n log2 n

log2 n — number of times you need
to divide n by 2 to reach 1

log2(n) = k ⇒ n = 2k

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3 / 10



Input size

Running time depends on input size

Larger arrays will take longer to sort

Measure time efficiency as function of
input size

Input size n

Running time t(n)

Different inputs of size n may take
different amounts of time

We will return to this point later

n ≈ 109 — number of cards

Naive algorithm: t(n) ≈ n2

Clever algorithm: t(n) ≈ n log2 n

log2 n — number of times you need
to divide n by 2 to reach 1

log2(n) = k ⇒ n = 2k

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3 / 10



Input size

Running time depends on input size

Larger arrays will take longer to sort

Measure time efficiency as function of
input size

Input size n

Running time t(n)

Different inputs of size n may take
different amounts of time

We will return to this point later

Example 1 SIM cards vs Aadhaar cards

n ≈ 109 — number of cards

Naive algorithm: t(n) ≈ n2

Clever algorithm: t(n) ≈ n log2 n

log2 n — number of times you need
to divide n by 2 to reach 1

log2(n) = k ⇒ n = 2k

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3 / 10



Input size

Running time depends on input size

Larger arrays will take longer to sort

Measure time efficiency as function of
input size

Input size n

Running time t(n)

Different inputs of size n may take
different amounts of time

We will return to this point later

Example 1 SIM cards vs Aadhaar cards

n ≈ 109 — number of cards

Naive algorithm: t(n) ≈ n2

Clever algorithm: t(n) ≈ n log2 n

log2 n — number of times you need
to divide n by 2 to reach 1

log2(n) = k ⇒ n = 2k

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3 / 10



Input size

Running time depends on input size

Larger arrays will take longer to sort

Measure time efficiency as function of
input size

Input size n

Running time t(n)

Different inputs of size n may take
different amounts of time

We will return to this point later

Example 1 SIM cards vs Aadhaar cards

n ≈ 109 — number of cards

Naive algorithm: t(n) ≈ n2

Clever algorithm: t(n) ≈ n log2 n

log2 n — number of times you need
to divide n by 2 to reach 1

log2(n) = k ⇒ n = 2k

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 3 / 10



Input size . . .

Example 2 Video game

Several objects on screen

Basic step: find closest pair of objects

n objects — naive algorithm is n2

For each pair of objects, compute
their distance

Report minimum distance across all
pairs

There is a clever algorithm that takes
sime n log2 n

High resolution gaming consle may
have 4000x2000 pixels

8 × 106 points — 8 million

Suppose we have 100, 000 = 1 × 105

objects

Naive algorithm takes 1010 steps

1000 seconds, or 16.7 minutes in
Python

Unacceptable response time!

log2 100, 000 is under 20, so n log2 n
takes a fraction of a second

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4 / 10



Input size . . .

Example 2 Video game

Several objects on screen

Basic step: find closest pair of objects

n objects — naive algorithm is n2

For each pair of objects, compute
their distance

Report minimum distance across all
pairs

There is a clever algorithm that takes
sime n log2 n

High resolution gaming consle may
have 4000x2000 pixels

8 × 106 points — 8 million

Suppose we have 100, 000 = 1 × 105

objects

Naive algorithm takes 1010 steps

1000 seconds, or 16.7 minutes in
Python

Unacceptable response time!

log2 100, 000 is under 20, so n log2 n
takes a fraction of a second

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4 / 10



Input size . . .

Example 2 Video game

Several objects on screen

Basic step: find closest pair of objects

n objects — naive algorithm is n2

For each pair of objects, compute
their distance

Report minimum distance across all
pairs

There is a clever algorithm that takes
sime n log2 n

High resolution gaming consle may
have 4000x2000 pixels

8 × 106 points — 8 million

Suppose we have 100, 000 = 1 × 105

objects

Naive algorithm takes 1010 steps

1000 seconds, or 16.7 minutes in
Python

Unacceptable response time!

log2 100, 000 is under 20, so n log2 n
takes a fraction of a second

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4 / 10



Input size . . .

Example 2 Video game

Several objects on screen

Basic step: find closest pair of objects

n objects — naive algorithm is n2

For each pair of objects, compute
their distance

Report minimum distance across all
pairs

There is a clever algorithm that takes
sime n log2 n

High resolution gaming consle may
have 4000x2000 pixels

8 × 106 points — 8 million

Suppose we have 100, 000 = 1 × 105

objects

Naive algorithm takes 1010 steps

1000 seconds, or 16.7 minutes in
Python

Unacceptable response time!

log2 100, 000 is under 20, so n log2 n
takes a fraction of a second

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4 / 10



Input size . . .

Example 2 Video game

Several objects on screen

Basic step: find closest pair of objects

n objects — naive algorithm is n2

For each pair of objects, compute
their distance

Report minimum distance across all
pairs

There is a clever algorithm that takes
sime n log2 n

High resolution gaming consle may
have 4000x2000 pixels

8 × 106 points — 8 million

Suppose we have 100, 000 = 1 × 105

objects

Naive algorithm takes 1010 steps

1000 seconds, or 16.7 minutes in
Python

Unacceptable response time!

log2 100, 000 is under 20, so n log2 n
takes a fraction of a second

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4 / 10



Input size . . .

Example 2 Video game

Several objects on screen

Basic step: find closest pair of objects

n objects — naive algorithm is n2

For each pair of objects, compute
their distance

Report minimum distance across all
pairs

There is a clever algorithm that takes
sime n log2 n

High resolution gaming consle may
have 4000x2000 pixels

8 × 106 points — 8 million

Suppose we have 100, 000 = 1 × 105

objects

Naive algorithm takes 1010 steps

1000 seconds, or 16.7 minutes in
Python

Unacceptable response time!

log2 100, 000 is under 20, so n log2 n
takes a fraction of a second

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4 / 10



Input size . . .

Example 2 Video game

Several objects on screen

Basic step: find closest pair of objects

n objects — naive algorithm is n2

For each pair of objects, compute
their distance

Report minimum distance across all
pairs

There is a clever algorithm that takes
sime n log2 n

High resolution gaming consle may
have 4000x2000 pixels

8 × 106 points — 8 million

Suppose we have 100, 000 = 1 × 105

objects

Naive algorithm takes 1010 steps

1000 seconds, or 16.7 minutes in
Python

Unacceptable response time!

log2 100, 000 is under 20, so n log2 n
takes a fraction of a second

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4 / 10



Input size . . .

Example 2 Video game

Several objects on screen

Basic step: find closest pair of objects

n objects — naive algorithm is n2

For each pair of objects, compute
their distance

Report minimum distance across all
pairs

There is a clever algorithm that takes
sime n log2 n

High resolution gaming consle may
have 4000x2000 pixels

8 × 106 points — 8 million

Suppose we have 100, 000 = 1 × 105

objects

Naive algorithm takes 1010 steps

1000 seconds, or 16.7 minutes in
Python

Unacceptable response time!

log2 100, 000 is under 20, so n log2 n
takes a fraction of a second

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 4 / 10



Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n3 eventually grows faster than g(n) = 5000n2

For small values of n, f (n) < g(n)

After n = 5000, f (n) overtakes g(n)

Asymptotic complexity

What happens in the limit, as n becomes large

Typical growth functions

Is t(n) proportional to log n, . . . , n2, n3, . . . , 2n?

Note: log n means log2 n by default

Logarithmic, polynomial, exponential, . . .

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 5 / 10



Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n3 eventually grows faster than g(n) = 5000n2

For small values of n, f (n) < g(n)

After n = 5000, f (n) overtakes g(n)

Asymptotic complexity

What happens in the limit, as n becomes large

Typical growth functions

Is t(n) proportional to log n, . . . , n2, n3, . . . , 2n?

Note: log n means log2 n by default

Logarithmic, polynomial, exponential, . . .

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 5 / 10



Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n3 eventually grows faster than g(n) = 5000n2

For small values of n, f (n) < g(n)

After n = 5000, f (n) overtakes g(n)

Asymptotic complexity

What happens in the limit, as n becomes large

Typical growth functions

Is t(n) proportional to log n, . . . , n2, n3, . . . , 2n?

Note: log n means log2 n by default

Logarithmic, polynomial, exponential, . . .

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 5 / 10



Orders of magnitude

When comparing t(n), focus on orders of magnitude

Ignore constant factors

f (n) = n3 eventually grows faster than g(n) = 5000n2

For small values of n, f (n) < g(n)

After n = 5000, f (n) overtakes g(n)

Asymptotic complexity

What happens in the limit, as n becomes large

Typical growth functions

Is t(n) proportional to log n, . . . , n2, n3, . . . , 2n?

Note: log n means log2 n by default

Logarithmic, polynomial, exponential, . . .

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 5 / 10



Orders of magnitude

Input size Values of t(n)
log n n n log n n2 n3 2n n!

10 3.3 10 33 100 1000 1000 106

100 6.6 100 66 104 106 1030 10157

1000 10 1000 104 106 109

104 13 104 105 108 1012

105 17 105 106 1010

106 20 106 107 1012

107 23 107 108

108 27 108 109

109 30 109 1010

1010 33 1010 1011

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 6 / 10



Measuring running time

Analysis should be independent of the underlying hardware

Don’t use actual time

Measure in terms of basic operations

Typical basic operations

Compare two values

Assign a value to a variable

Exchange a pair of values?

If we ignore constants, focus on orders of magnitude, both are within a factor of 3

Need not be very precise about defining basic operations

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 7 / 10



Measuring running time

Analysis should be independent of the underlying hardware

Don’t use actual time

Measure in terms of basic operations

Typical basic operations

Compare two values

Assign a value to a variable

Exchange a pair of values?

If we ignore constants, focus on orders of magnitude, both are within a factor of 3

Need not be very precise about defining basic operations

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 7 / 10



Measuring running time

Analysis should be independent of the underlying hardware

Don’t use actual time

Measure in terms of basic operations

Typical basic operations

Compare two values

Assign a value to a variable

Exchange a pair of values?

(x,y) = (y,x) t = x

x = y

y = t

If we ignore constants, focus on orders of magnitude, both are within a factor of 3

Need not be very precise about defining basic operations

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 7 / 10



What is the input size

Typically a natural parameter

Size of a list/array that we want to search or sort

Number of objects we want to rearrange

Number of vertices and number edges in a graph

We shall see why these are separate parameters

What about numeric problems? Is n a prime?

Magnitude of n is not the correct measure

Arithmetic operations are performed digit by digit

Addition with carry, subtraction with borrow, multiplication, long division . . .

Number of digits is a natural measure of input size

Same as logb n, when we write n in base b

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 8 / 10



What is the input size

Typically a natural parameter

Size of a list/array that we want to search or sort

Number of objects we want to rearrange

Number of vertices and number edges in a graph

We shall see why these are separate parameters

What about numeric problems? Is n a prime?

Magnitude of n is not the correct measure

Arithmetic operations are performed digit by digit

Addition with carry, subtraction with borrow, multiplication, long division . . .

Number of digits is a natural measure of input size

Same as logb n, when we write n in base b

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 8 / 10



What is the input size

Typically a natural parameter

Size of a list/array that we want to search or sort

Number of objects we want to rearrange

Number of vertices and number edges in a graph

We shall see why these are separate parameters

What about numeric problems? Is n a prime?

Magnitude of n is not the correct measure

Arithmetic operations are performed digit by digit

Addition with carry, subtraction with borrow, multiplication, long division . . .

Number of digits is a natural measure of input size

Same as logb n, when we write n in base b

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 8 / 10



What is the input size

Typically a natural parameter

Size of a list/array that we want to search or sort

Number of objects we want to rearrange

Number of vertices and number edges in a graph

We shall see why these are separate parameters

What about numeric problems? Is n a prime?

Magnitude of n is not the correct measure

Arithmetic operations are performed digit by digit

Addition with carry, subtraction with borrow, multiplication, long division . . .

Number of digits is a natural measure of input size

Same as logb n, when we write n in base b

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 8 / 10



What is the input size

Typically a natural parameter

Size of a list/array that we want to search or sort

Number of objects we want to rearrange

Number of vertices and number edges in a graph

We shall see why these are separate parameters

What about numeric problems? Is n a prime?

Magnitude of n is not the correct measure

Arithmetic operations are performed digit by digit

Addition with carry, subtraction with borrow, multiplication, long division . . .

Number of digits is a natural measure of input size

Same as logb n, when we write n in base b

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 8 / 10



Which inputs should we consider?

Performance varies across input instances

By luck, the value we are searching for is the first element we examine in an array

Ideally, want the “average” behaviour

Difficult to compute

Average over what? Are all inputs equally likely?

Need a probability distribution over inputs

Instead, worst case input

Input that forces algorithm to take longest possible time

Search for a value that is not present in an unsorted list

Must scan all elements

Pessimistic — worst case may be rare

Upper bound for worst case guarantees good performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 9 / 10



Which inputs should we consider?

Performance varies across input instances

By luck, the value we are searching for is the first element we examine in an array

Ideally, want the “average” behaviour

Difficult to compute

Average over what? Are all inputs equally likely?

Need a probability distribution over inputs

Instead, worst case input

Input that forces algorithm to take longest possible time

Search for a value that is not present in an unsorted list

Must scan all elements

Pessimistic — worst case may be rare

Upper bound for worst case guarantees good performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 9 / 10



Which inputs should we consider?

Performance varies across input instances

By luck, the value we are searching for is the first element we examine in an array

Ideally, want the “average” behaviour

Difficult to compute

Average over what? Are all inputs equally likely?

Need a probability distribution over inputs

Instead, worst case input

Input that forces algorithm to take longest possible time

Search for a value that is not present in an unsorted list

Must scan all elements

Pessimistic — worst case may be rare

Upper bound for worst case guarantees good performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 9 / 10



Which inputs should we consider?

Performance varies across input instances

By luck, the value we are searching for is the first element we examine in an array

Ideally, want the “average” behaviour

Difficult to compute

Average over what? Are all inputs equally likely?

Need a probability distribution over inputs

Instead, worst case input

Input that forces algorithm to take longest possible time

Search for a value that is not present in an unsorted list

Must scan all elements

Pessimistic — worst case may be rare

Upper bound for worst case guarantees good performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 9 / 10



Which inputs should we consider?

Performance varies across input instances

By luck, the value we are searching for is the first element we examine in an array

Ideally, want the “average” behaviour

Difficult to compute

Average over what? Are all inputs equally likely?

Need a probability distribution over inputs

Instead, worst case input

Input that forces algorithm to take longest possible time

Search for a value that is not present in an unsorted list

Must scan all elements

Pessimistic — worst case may be rare

Upper bound for worst case guarantees good performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 9 / 10



Summary

Two important parameters when measuring algorithm performance

Running time, memory requirement (space)

We mainly focus on time

Running time t(n) is a function of input size n

Interested in orders of magnitude

Asymptotic complexity, as n becomes large

From running time, we can estimate feasible input sizes

We focus on worst case inputs

Pessimistic, but easier to calculate than average case

Upper bound on worst case gives us an overall guarantee on performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 10 / 10



Summary

Two important parameters when measuring algorithm performance

Running time, memory requirement (space)

We mainly focus on time

Running time t(n) is a function of input size n

Interested in orders of magnitude

Asymptotic complexity, as n becomes large

From running time, we can estimate feasible input sizes

We focus on worst case inputs

Pessimistic, but easier to calculate than average case

Upper bound on worst case gives us an overall guarantee on performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 10 / 10



Summary

Two important parameters when measuring algorithm performance

Running time, memory requirement (space)

We mainly focus on time

Running time t(n) is a function of input size n

Interested in orders of magnitude

Asymptotic complexity, as n becomes large

From running time, we can estimate feasible input sizes

We focus on worst case inputs

Pessimistic, but easier to calculate than average case

Upper bound on worst case gives us an overall guarantee on performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 10 / 10



Summary

Two important parameters when measuring algorithm performance

Running time, memory requirement (space)

We mainly focus on time

Running time t(n) is a function of input size n

Interested in orders of magnitude

Asymptotic complexity, as n becomes large

From running time, we can estimate feasible input sizes

We focus on worst case inputs

Pessimistic, but easier to calculate than average case

Upper bound on worst case gives us an overall guarantee on performance

Madhavan Mukund Analysis of algorithms PDSA using Python Week 2 10 / 10


