Programming and Data Structures with Python (Sep-Dec 2021)
Lecture 1, 20 Sep 2021

What is programming?
Writing systematic procedures in precise notation

e Systematic procedure: algorithm
e Precise notation: programming language

Example: Prepare a classroom for a seminar by a guest speaker

 Various things to be done: arrange chairs, check projector/screen, check audio system, turn on a/c
early, ...

e Need to instruct support staff to do this task. Nature of instructions varies according to who is
doing the job.

— Outsouce to professionals: Know the process, just provide the time of the talk and the expected
audience size.

* Somewhat experienced staff: Provide a high-level checklist, but each step need not be
described explicitly

— Inexperienced staff: Each high-level step needs detailed instructions

x Arranging chairs: arrange m rows of chairs, k chairs per row, leave an aisle in between to
walk to the back, ...)

e In all cases, instructions are in terms of basic steps
— Basic steps can executed without further clarification

* Granularity of the explanation varies according to the nature of basic steps

Greatest Common Divisor
ged(m,n) : largest d that divides both m and n
o Also called hcf, highest common factor
e 1 divides any number, so there is at least one such d, always
How can we systematically compute ged(m,n)?
First look for a systematic procedure
e “Brute force” — need not be clever or efficient, but must always be correct
From the definition fo ged(m,n):
o Generate the set of factors/divisors of m
o Generate the set of factors/divisors of n

e Compare these sets and find the largest element common to both sets

Computing the factors of m
e Smallest factor of m is 1, largest factor is m
e Search for factors in the range 1,2,...,m
— For each number is in this range, check that i divides m

o Factors of 14



~1,2,3.4.5 6, 7,8 9 10, 11, 12,13, 14
x {1,2,7,14}, set of factors of 14
* [1,2,7,14], list of factors of 14

e Sets vs lists

— In a list, order matters
x [1,2,7,14] # [14,7,2,1], whereas {1,2,7,14} = {14,7,2,1}
— In a list, duplicates matter
x [1,2,7,14,14] # [1,2,7,14], whereas {1,2,7,14} = {1,2,7,14, 14}

o Compute ged(14,63)
— Factors of 14 are [1,2,7, 14]
Factors of 63 are [1,3,7,9,21,63]

— Find largest element common to both lists
x For each factor of 14, check if it is also in the list of factors 63
Check 1 (yes), 2 (no), 7 (yes), 14 (no)
— Common factors are [1, 7]

— Largest of these is 7, so ged(14,63) =7

Using names to store intermediate values

In a maths book you might see an equation labelled (*) or (3.7) so that later in the text the author can
refer to equation (*) or equation (3.7).

Likewise, we need to refer to intermediate values in our procedure

e Generate the list of factors of m

e Generate the list of factors of n

e Compare the first list with the second list

e Generate a third list of common factors of m and n

As the number of items to keep track of increases, we need to name them systematically

e fm, the list of factors of m
e fn, the list of factors of n
e cf, the list of common factors of m and n

Often, names are also referred to as variables
o Different from variables in mathematics
e In mathematics, a variable is typically an unknown, but fixed quantity

— I bought some apples and gave 3 to my sister. I now have 2 apples left. How many did I buy
initially?

— Let x be the number of apples I bought. I know that z —5 = 3. So x = 2.

— The value of x is not known till you resolve the constraints, but the value of x does not change
e In programming, intermediate values are periodically updated

— Initially, fm is the empty list [ ]

— Each factor i we discover is appended to fm

— Even i is a name, for the potential factor we are checking!




Our first look at Python

Here is Python code for the procedure we have described

def gcdi(m,n):
fm = []
for i in range(1l,m+1):
if (m¥%i) == 0:
fm.append (i)
fn = []
for j in range(1l,n+1):
if (n%j) == 0:
fn.append(j)
ct = [1
for £ in fm:
if £ in fn:
cf.append(f)
return(cf [-1])

Some explanations
Define a function to compute ged(m,n).
def gcdl(m,n):
o gcdl because this is the first of multiple versions that we will see
Go through each i from 1 tom
for i in range(1l,m+1):
e range(1,m+1) generates the list [1,2,...,m]
and update fm if i divides m

if (m%i) == 0:
fm.append (i)

o mji is the remainder of m divided by i, (m mod ¢, in mathematical notation)
o We use = for assigning a value, == to check equality
Checking for common factors

for £ in fm:
if £ in fn:
cf.append (£)

Factors are discovered in ascending order, so the largest common factor is the rightmost value in the list
cf. Lists are indexed forwards from 0 and backwards from -1. The function returns the rightmost value
in cf.

return(cf[-1])

Run the code and check that it works
gecd1(14,63)

gcd1(837,775)




Improving the brute force algorithm
Restricting the range to search for factors

e Factors of m are between 1 and m

e 21 and 63 are factors of 63 that cannot be factors of 14

o Enough to check for factors from 1 to min(m,n)
Overlapping the search

o Two scans from 1 to min(m,n) to generate fm and fn

e Instead, check and update both fm and fn in a single scan

def gcd2(m,n):
fm = []
fn = []
for i in range(1,min(m,n)+1):
if (m%i) == 0:
fm.append (i)
if (@m%i) == O:
fn.append (i)
ct = [1
for £ in fm:
if £ in fn:
cf.append (f)
return(cf[-1])

Still better
While scanning values from 1 to min(m,n) can directly identify common factors

e No need to separately generate fm and fn and then scan for common elements

def gcd3(m,n):
cf = [1
for i in range(l,min(m,n)+1):
if (m)i) == 0 and (n%i) == 0:
cf.append (i)
return(cf[-1])

Efficiency

Our solutions take time proportional to min(m,n) in the worst case. The worst case occurs when
ged(m,n) =1 — m and n are relatively prime — and we have to examine all factors from 1 to min(m,n)
whether we go forwards or backward. For instance ged (256 = 28,729 = 3%) = 1 and takes 256 steps, while
ged(1024 = 2102187 = 3%) = 1 and takes 1024 steps. Should the second computation take four times as
long as the first?

When we do normal arithmetic, going from 3 digits to 4 digits adds one unit of work. Think of addition
with carry, multiplication etc. Ideally, our effort should grow proportional to number of digits, not the
magnitude of the number.




Inductive solutions

One strategy is to reduce the problem at hand to a small one By repeatedly reducing the problem, we
reach a base case that we can solve easily. Working backwards, we inductively reconstruct a solution for
the original problem.

A familiar example is the factorial function, n! =n x (n — 1) x --- x 1. To define this inductively, we
observe that

e nl=nx(n-1)

The base case is when n = 1, and 1! = 1. (Actually, we can go down to 0 and define 0! = 1 as well, but it
is not very important.)

Here is an attempt to do the same for ged(m,n). Assume that m > n. Suppose d divides both m and n.
Then m = ad, n = bd for some a,b, so m —n = ad — bd = (a — b)d. This means that d divides m — n as
well. Since d divides both n and m — n, ged(m,n) < ged(n,m — n). If there is a larger d’ that divides
both n and m — n, then n =b'd’, m —n = c'd’, so m = (b' + ¢')d’ and d’ divides m as well. Therefore,
ged(m,n) = ged(n,m — n). The base case is m = n, in which case ged(m, m) = m.

This leads to a recursive implementation where the function suspends execution and invokes itself with
smaller arguments.

def gcd4(m,n):
if m == n:
return(m)
if m > n:
return(gcd4(m-n,n))
if m < n:
return(gcd4(n-m,m))

In this case, the value returned by the smaller arguments is the value for the current arguments, so
nothing further needs to be done. If we were computing factorial, we would take the value of the recursive
call and multiply it by the current argument.

def factorial(n): # n * (n-1) * (n-2) * ... * 1
if n ==
return(1)
else:
return(factorial(n-1) * n)

One warning: Python sets a default limit for pending recursive calls which is somewhere between 990 and
1000. This means that a recursive function that calls itself too many times will get aborted. Python sets
this limit to protect against “runaway’’ recursion where the base case is not set correctly and there is an
unbounded sequence of recursive calls. It is possible to manually change this recursion limit to a larger
value than the default.

Downloading and installing Python

e We will use Python 3
— Tle latest version is 3.9.x, but any recent version will do

¢ You can download Python from the official Python site
— Python Software Foundation (https://www.python.org/)

e The Anaconda distribution has a complete set of libraries to use Python for data science
— Anaconda Individual Edition (https://www.anaconda.com/products/individual)
— This will automatically install Jupyter notebook, which is being used to for classroom demos

* Jupyter notebook is very useful to write/update code and also include documentation


https://www.python.org/
https://www.anaconda.com/products/individual

e You can also use Google Colaboratory (https://colab.research.google.com)
— Colab uses a Jupyter notebook with a slightly different interface
* Colab currently seems to use Python 3.7.x
* Almost all packages that are needed for Data Science/ML are preloaded in Colab
* You can install additional packages as needed
— You can upload/download files, and save them on Google Drive

— Colab allows access to powerful hardware like GPUs on the cloud



https://colab.research.google.com
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