~ Lecture 9, 21 Oct 2021

Lists, arrays, dictionaries: implementation details

Arrays

e Contiguous block of memory, size is declared in advance, all values uniform

* Random access — accessing the value at a[i] does not depend on i

* Inserting or deleting a value is expensive
* Need to shift elements right or left, respectively, depending on the location of the modification

Lists

Each location is a cell, consisiting of a value and a link to the next cell

Toreach cell 1[1i], time proportional to i: traverse the links from 1[0] to 1[i]

On the other hand, if we are already at 1[i] modifying the list is easy

Each insert/delete requires a fixed amount of local "plumbing", independent of where in the list it is
performed

Dictionaries

Values are stored in a fixed block of size m

Keys are mapped by a hash function to {0, 1,...,m — 1}

Lookup requires computing h(k) which takes roughly the same time for any k

Collisions are inevitable, different mechanisms to manage this, which we will not discuss now
Effectively, a dictionary combines flexibility with random access

Why does Python insist that keys are immutable values?

v Lists in Python

Flexible size, allow inserting/deleting elements in between

However, implementation is an array, rather than a list

Initially allocate a block of storage to the list

When storage runs out, double the allocation

1.append(x) is efficient, moves the right end of the list one position forward within the array
1.insert(0,x) inserts a value at the start, expensive because it requires shifting all the elements by
1

We will run experiments to validate these claims

1 import time

2

3 class TimerError(Exception):

4 """A custom exception used to report errors in use of Timer clas:

5
6 class Timer:
7 def init (self):
8 self. start time = None
9 self. elapsed time = None
10
11 def start(self):
12 “""Start a new timer"""
13 if self. start time is not None:
14 raise TimerError("Timer is running. Use .stop()")
15 self. start time = time.perf counter()
16
17 def stop(self):
18 """Save the elapsed time and re-initialize timer"""
19 if self. start time is None:
20 raise TimerError(“Timer is not running. Use .start()")
21 self. elapsed time = time.perf counter() - self. start time
22 self. start time = None
23
24 def elapsed(self):
25 """Report elapsed time"""
26 if self. elapsed time is None:
27 raise TimerError(“Timer has not been run yet. Use .start(
28 return(self. elapsed time)
29
30 def str_ (self):
31 """print() prints elapsed time"""
32 return(str(self. elapsed time))
1t = Timer()
2 t.start()
31 =[]

4 for 1 in range(10000000):
5 l.append(1i)

6 t.stop()
7 print(t)

1.7382565920006527

1t = Timer()
2 t.start()

31 =[]

4 for 1 in range(300000):
5 l.insert(0,1)

6 t.stop()
7 print(t)

22.900079012999413

1t = Timer()

2 t.start()

3d = {}

4 for 1 in range(10000000,0,-1):
5 d[i] = 1

6 t.stop()

7 print(t)

1.9490711960006593

1 def createlist(): # Equivalent of L = [] is 1 = createlist()
2 return({})

3

4 def listappend(l,x):

5 if 1 == {}:

6 1["value"] = X

7 L["next"] = {}

8 return

9

10 node =1

11 while node["next"] '= {}:
12 node = node["next"]

13

14 node["next"]["value"] = x
15 node["next"]["next"] = {}
16 return

17

18 def listinsert(l,x):

19 if 1 == {}:

20 1["value"] = x

21 1["next"] = {}

22 return

23

24 newnode = {}

25 newnode["value"] = 1["value"]
26 newnode["next"] = 1["next"]
27 1["value"] = x

28 1["next"] = newnode

29 return

30

31

32 def printlist(l):

33 print("{",end="")

34

35 if 1 == {}:

36 print("}")

37 return
38 node =1
39

40 print(node["value"],end="")

41
42
43
44
45
46

while node["next"] !'= {}:
node = node["next"]
print(",",node["value"],end="")
print("}")
return

1t = Timer()

2 t.start()

31 = createlist()

4 for 1 in range(10000):

5

listappend(1l,1i)

6 t.stop()
7 print(t)

6.1525952339998184

1t = Timer()

2 t.start()

31 = createlist()

4 for 1 in range(1000000):

5

listinsert(1,1)

6 t.stop()
7 print(t)

1.630923595999775

