v Lecture 8, 18 Oct 2021

Dictionaries

v Accumulating values

» We have a list of pairs (name,marks) of marks in assignments of students in a course

* We want to report the total marks of each student

» Create a dictionary total whose keys are names and whose values are total marks for that name
e How would we do this?

1 marklist = [("abha",75), ("bunty",58), ("abha",86), ("chitra",77), ("bun
2

3 total = {}

4

5 for markpair in marklist:

6 name = markpair[0]

7 marks = markpair[1]

8 # add marks to total[name], only if tota[name] already exist, othe
9 if name in total.keys(): # check if a key exists already

10 total[name] = total[name] + marks
11 else:

12 total[name] = marks

13

14 print(total)

15

{'abha': 161, 'bunty': 150, 'chitra': 77}

v Representing sets

e Maintain a set X (from a universe U)
» Representing sets using functions

o Asubset X C U is the same as a function X : U — {True, False}
o Say, U =4{0,1,...,999}, P = primes in U
o P={2,3,5,7,...,997}
o P:{0,1,...,999} — {True, False}

« Create a dictionary whose keys are those values x for which P(z) = True
o primes = {}

True

o primes[2]

[e]

primes[3] True

primes[997] = True

(o]



* The set is implicitly the collection of keys of the dictionary
o Can also explicitly add primes[0] = False, primes[1l] = False, .., but this is redundant

« Exercise: If d1 and d2 both represent sets over U, how do we compute d1 U d2, d1 N d2, U\
d1 (complement of d1 wrt U)?

1 def factors(n):

2 fl = 1]

3 for i in range(1l,n+1):

4 if n%i == 0:

5 fl.append(1i)

6 return(fl)

7

8 def prime(n):

9 return(factors(n) == [1,n])
10

11 primes = {}

12 composites = {}

13 evens = {}

14 odds = {}

15

16 for i in range(50):
17 if prime(i):

18 primes[i] = True

19 else:

20 composites[i] = True
21  if 1%2-==-0:

22 evens[i] = True

23 else:

24 odds[1i] = True

1 composites
{0: True,
1: True,
4: True,
6: True,
8: True,
9: True,
10: True,
12: True,
14: True,
15: True,
16: True,
18: True,
20: True,
21: True,
22: True,
24: True,
25: True,
26: True,
27: True,
28: True,
30: True,



32: True,
33: True,
34: True,
35: True,
36: True,
38: True,
39: True,
40: True,
42: True,
44: True,
45: True,
46: True,
48: True,
49: True}

1 def setunion(sl,s2):
2 newset = {}

3 for k in sl.keys():
4 newset[k] = True
5 for k in s2.keys():
6 newset[k] = True
7 return(newset)

8

9

def setintersect(sl,s2):
10 newset = {}
11 for k in sl.keys():

12 if k in s2.keys(): # Does not involve scanning all of s2 for s.
13 # Different from "if y in 12"
14 newset[k] = True

15 return(newset)

1 print(setunion(primes, composites))

* Note that keys of newset are listed in the order they were added

1 print(setunion(composites,primes))

: True, 19: True, 23: True, 29: True, 31: True, 37: True, 41: True, 43: True, 47: True}

1 print(setintersect(odds,composites))

{1: True, 9: True, 15: True, 21: True, 25: True, 27: True, 33: True, 35: True, 39: True

>

e Mathematically, S; U Sg = Ss U S7 - set union is commutative

 In our dictionary representation, the internal structure differs

e However, if only use the dictionary in the context of set operations, there is no difference in the
functionality

» Separating the interface from the implementation - we will return to this idea often



v Compare with list intersection

e To compute elements common to two lists we wrote

commonlist = []
for x in 11:
if x in 12:

commonlist.append(x)

The check if x in 12 requires a linear scan through 12

» For dictionaries, the corresponding code to check intersection of keys is

commonkeys = []
for k in dl.keys():
if k in d2.keys():

commonkeys .append (k)

Superficially, these look similar, but the check if k in d2.keys() does notinvolve scanning a list of

kevs. As we shall see. we can auicklv combnute whether k is a kevin d? or not

v Deleting a key

¢ Use the function del()

1d = {}

2d["a"] = True

3d["b"] = True

4 print(d)

5# Now, remove the key "a"
6 del(d["a"])

7 print(d)
{'a': True, 'b': True}
{'b': True}

* More generally, del "unassigns" a value, makes a name undefined

1x =7

2y =8

3z = X+y
4 b

5 del(x)

6z = X+y



NameError Traceback (most recent call last)
<ipython-input-112-0bcl6f0ee904> in <module>()

4 print(x,y,z)

5 del(x)
---->6 Z = X+vV

What about lists?
del(l[i]) deletes the value at position i

This gap is filled by moving values beyond i to the left by 1
To delete a segment, reassing a sliceto []

11 = list(range(10))
2 print(l)ma
3del(l[5])

4 print(1)

51[2:5] =
6 print(l)

[]

[cNoNO]
e
oHE
Loy
e
*N
O
Q¢

(0, 1,
(0, 1,
[11’

SONN

Lists, arrays, dictionaries: implementation details

What are the salient differences?
How are they stored?
What is the impact on performance?

Arrays

Contiguous block of memory

Typically size is declared in advance, all values are uniform
al[0] points to first memory location in the allocated block
Locate a[i] in memory using index arithmetic

o Skip i blocks of memory, each block's size determined by value stored in array
Random access -- accessing the value at a[i] does not depend on i

Useful for procedures like sorting, where we need to swap out of order values a[i] and a[j]

o alil, aljl = aljl, alil
o Cost of such a swap is constant, independent of where the elements to be swapped are in the
array

Inserting or deleting a value is expensive
Need to shift elements right or left, respectively, depending on the location of the modification

Lists

Each location is a cell, consisiting of a value and a link to the next cell



o Think of a list as a train, made up of a linked sequence of cells

e The name of the list 1 gives us accessto 1[0], the first cell
e Toreachcell 1[i], we must traverse the links from 1[0] to 1[1] to 1[2] ...to 1[i-1]]to 1[i]

o Takes time proportional to i

e Cost of swapping 1[i] and 1[j] varies, depending on values i and j
* On the other hand, if we are already at 1[i] modifying the list is easy

o Insert - create a new cell and reroute the links
o Delete - bypass the deleted cell by rerouting the links

* Each insert/delete requires a fixed amount of local "plumbing", independent of where in the list it is
performed

Dictionaries

» Values are stored in a fixed block of size m

* Keys are mappedto {0,1,...,m — 1}

e Hash function h : K — S maps a large set of keys K to a small range S

« Simple hash function: interpret k € K as a bit sequence representing a number n, in binary, and
compute ny, mod m, where |S| =m

« Mismatch in sizes means that there will be collisions - k; # ko, but h(k1) = h(kz)

e A good hash function maps keys "randomly" to minimize collisions

e Hash can be used as a signature of authenticity

o Modifying k slightly will drastically alter h(k)

o No easy way to reverse engineer a k' to map to a given h(k)

o Use to check that large files have not been tampered with in transit, either due to network errors
or malicious intervention

e Dictionary uses a hash function to map key values to storage locations
« Lookup requires computing h (k) which takes roughly the same time for any k

o Compare with computing the offset a[i] for anyindex i in an array

* Collisions are inevitable, different mechanisms to manage this, which we will not discuss now
» Effectively, a dictionary combines flexibility with random access

Lists in Python

* Flexible size, allow inserting/deleting elements in between

* However, implementation is an array, rather than a list

* Initially allocate a block of storage to the list

e When storage runs out, double the allocation

e 1l.append(x) is efficient, moves the right end of the list one position forward within the array

e l.insert(0,x) inserts avalue at the start, expensive because it requires shifting all the elements by
1

e We will run experiments to validate these claims



v 0s completed at 2:29 PM



