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Merge sort

To sort A into B, both of length n

If n  1, nothing to be done

Otherwise
Sort A[:n//2] into L

Sort A[n//2:] into R

Merge L and R into B

Merging two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first elements of A
and B

Move the smaller of the two to C

Repeat till all elements of A and B have
been moved
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Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n  2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Analysis of Merge Sort PDSP Lecture 16 3 / 6



Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n  2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Analysis of Merge Sort PDSP Lecture 16 3 / 6



Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n  2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Analysis of Merge Sort PDSP Lecture 16 3 / 6



Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n  2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Analysis of Merge Sort PDSP Lecture 16 3 / 6



Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n  2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Analysis of Merge Sort PDSP Lecture 16 3 / 6



Analysing merge

Merge A of length m, B of length n

Output list C has length m + n

In each iteration we add (at least) one
element to C

Hence merge takes time O(m + n)

Recall that m + n  2(max(m, n))

If m ⇡ n, merge take time O(n)

def merge(A,B):
(m,n) = (len(A),len(B))
(C,i,j,k) = ([],0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:])
k = k + (n-j)

elif j == n:
C.extend(A[i:])
k = k + (n-i)

elif A[i] < B[j]:
C.append(A[i])
(i,k) = (i+1,k+1)

else:
C.append(B[j])
(j,k) = (j+1,k+1)

return(C)

Madhavan Mukund Analysis of Merge Sort PDSP Lecture 16 3 / 6



Analysing mergesort

Let T (n) be the time taken for input of size n

For simplicity, assume n = 2k for some k

Recurrence

T (0) = T (1) = 1

T (n) = 2T (n/2) + n

Solve two subproblems of size n/2

Merge the solutions in time n/2 + n/2 = n

Unwind the recurrence to solve

def mergesort(A):
n = len(A)

if n <= 1:
return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)
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Summary

Merge sort takes time O(n log n) so can be used e↵ectively on large inputs

Variations on merge are possible

Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

List di↵erence — elements in A but not in B

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive
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Shortcomings of merge sort

Merge needs to create a new list to hold the merged elements

No obvious way to e�ciently merge two lists in place

Extra storage can be costly

Inherently recursive

Recursive calls and returns are expensive

Merging happens because elements in the left half need to move to the right half

and vice versa

Consider an input of the form [0,2,4,6,1,3,5,9]

Can we divide the list so that everything on the left is smaller than everything on

the right?

No need to merge!
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Divide and conquer without merging

Suppose the median of L is m

Move all values  m to left half of L

Right half has values > m

Recurslvely sort left and right halves

L is now sorted, no merge!

Recurrence: T (n) = 2T (n/2) + n

Rearrange in a single pass, time O(n)

So T (n) is O(n log n)

How do we find the median?

Sort and pick up the middle element

But our aim is to sort the list!

Instead pick some value in L — pivot

Split L with respect to the pivot

element
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Quicksort [C.A.R. Hoare]

Choose a pivot element

Typically the first element in

the array

Partition L into lower and upper

parts with respect to the pivot

Move the pivot between the

lower and upper partition

Recursively sort the two

partitions
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43 32 22 78 63 57 91 13
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Partitioning

Scan the list from left to right

Four segments: Pivot, Lower,

Upper, Unclassified

Examine the first unclassified

element

If it is larger than the pivot,

extend Upper to include this

element

If it is less than or equal to the

pivot, exchange with the first

element in Upper. This

extends Lower and shifts

Upper by one position.
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Pivot is always the first element

Maintain two indices to mark the end of the

Lower and Upper segments
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last element of the Lower segment
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Partitioning
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Examine the first unclassified
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If it is larger than the pivot,

extend Upper to include this

element

If it is less than or equal to the

pivot, exchange with the first

element in Upper. This

extends Lower and shifts

Upper by one position.

13 32 22 43 78 63 57 91

" "

Pivot is always the first element
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last element of the Lower segment
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Quicksort code

Scan the list from left to right

Four segments: Pivot, Lower,

Upper, Unclassified

Classify the first unclassified

element

If it is larger than the pivot,

extend Upper to include this

element

If it is less than or equal to the

pivot, exchange with the first

element in Upper. This

extends Lower and shifts

Upper by one position.

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+1,upper+1)

# Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
# Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 16 6 / 11

.



Analysis

Partitioning with respect to the

pivot takes time O(n)

If the pivot is the median

T (n) = 2T (n/2) + n

T (n) is O(n log n)

Worst case? Pivot is maximum

or minimum

Partitions are of size 0, n � 1

T (n) = T (n � 1) + n

T (n) = n + (n � 1) + · · ·+ 1

T (n) is O(n
2
)

Already sorted array: worst case!

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+1,upper+1)

# Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
# Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 16 7 / 11

-
not 1 but e-

pivot =L

Li. Klett : lower]
D= L flower supper]

leftover] is thepunt [
& is chided



Analysis

Partitioning with respect to the

pivot takes time O(n)

If the pivot is the median

T (n) = 2T (n/2) + n

T (n) is O(n log n)

Worst case? Pivot is maximum

or minimum

Partitions are of size 0, n � 1

T (n) = T (n � 1) + n

T (n) = n + (n � 1) + · · ·+ 1

T (n) is O(n
2
)

Already sorted array: worst case!

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+1,upper+1)

# Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
# Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 16 7 / 11

ow!
[
-



Analysis

Partitioning with respect to the

pivot takes time O(n)

If the pivot is the median

T (n) = 2T (n/2) + n

T (n) is O(n log n)

Worst case? Pivot is maximum

or minimum

Partitions are of size 0, n � 1

T (n) = T (n � 1) + n

T (n) = n + (n � 1) + · · ·+ 1

T (n) is O(n
2
)

Already sorted array: worst case!

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+1,upper+1)

# Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
# Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 16 7 / 11



Analysis

Partitioning with respect to the

pivot takes time O(n)

If the pivot is the median

T (n) = 2T (n/2) + n

T (n) is O(n log n)

Worst case? Pivot is maximum

or minimum

Partitions are of size 0, n � 1

T (n) = T (n � 1) + n

T (n) = n + (n � 1) + · · ·+ 1

T (n) is O(n
2
)

Already sorted array: worst case!

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+1,upper+1)

# Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
# Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 16 7 / 11



Analysis . . .

However, average case is

O(n log n)

Sorting is a rare situation where

we can compute this

Values don’t matter, only

relative order is important

Analyze behaviour over

permutations of {1, 2, . . . , n}
Each input permutation

equally likely

Expected running time is

O(n log n)
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Randomization

Any fixed choice of pivot allows

us to construct worst case input

Instead, choose pivot position

randomly at each step

Expected running time is again

O(n log n)

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+1,upper+1)

# Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
# Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 16 9 / 11



Randomization

Any fixed choice of pivot allows

us to construct worst case input

Instead, choose pivot position

randomly at each step

Expected running time is again

O(n log n)

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+1,upper+1)

# Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
# Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 16 9 / 11



Randomization

Any fixed choice of pivot allows

us to construct worst case input

Instead, choose pivot position

randomly at each step

Expected running time is again

O(n log n)

def quicksort(L,l,r): # Sort L[l:r]
if (r - l <= 1):
return(L)

(pivot,lower,upper) = (L[l],l+1,l+1)
for i in range(l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+1,upper+1)

# Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
# Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)

Madhavan Mukund Quicksort PDSP Lecture 16 9 / 11



Quicksort in practice

Can be implemented iteratively

Recursive calls — disjoint

segments, no recombination of

results required

Explicitly track endpoints of

each segment to be sorted

In practice, quicksort is very fast

Very often the default algorithm

used for in-built sort functions

Sorting a column in a

spreadsheet

Library sort function in a

programming language

def quicksort(L,l,r): # Sort L[l:r]
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return(L)
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if L[i] > pivot: # Extend upper segment
upper = upper+1

else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+1,upper+1)

# Move pivot between lower and upper
(L[l],L[lower-1]) = (L[lower-1],L[l])
lower = lower-1
# Recursive calls
quicksort(L,l,lower)
quicksort(L,lower+1,upper)
return(L)
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Summary

The worst case complexity of quicksort is O(n
2
)

However, the average case is O(n log n)

Randomly choosing the pivot is a good strategy to beat worst case inputs

Quicksort works in-place and can be implemented iteratively

Very fast in practice, and often used for built-in sorting functions

Good example of a situation when the worst case upper bound is pessimistic
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Stable sorting

Often list values are tuples

Rows from a table, with multiple columns / attributes

A list of students, each student entry has a roll number, name, marks, . . .

Suppose students have already been sorted by roll number

If we now sort by name, will all students with the same name remain in sorted order

with respect to roll number?

Stability of sorting is crucial in many applications

Sorting on column B should not disturb sorting on column A
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Stable sorting

The quicksort implementation we described is not stable

Swapping values while partitioning can disturb existing sorted order

Merge sort is stable if we merge carefully

Do not allow elements from the right to overtake elements on the left

While merging, prefer the left list while breaking ties
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Other criteria

Minimizing data movement

Imagine each element is a heavy carton

Reduce the e↵ort of moving values around
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Best sorting algorithm?

Quicksort is often the algorithm of choice, despite O(n
2
) worst case

Merge sort is typically used for “external” sorting

Database tables that are too large to store in memory all at once

Retrieve in parts from the disk and write back

Other O(n log n) algorithms exist — heapsort

Sometimes hybrid strategies are used

Use divide and conquer for large n

Switch to insertion sort when n becomes small (e.g., n < 16)
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