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m To sort A into B, both of length n Merging two sorted lists A and B into C

m If n < 1, nothing to be done m If A is empty, copy B into C

m Otherwise m If B is empty, copy A into C
m Sort A[:n//2] into L m Otherwise, compare first elements of A
m Sort A[n//2:] into R and B
m Merge L and R into B m Move the smaller of the two to C

m Repeat till all elements of A and B have
been moved
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Analysing merge

def merge(A,B):

m Merge A of length m, B of length n (m,n) = (len(A),len(B))
(C,i,j,k) = ([1,0,0,0)
while k < m+n:

if i == m:
C.extend(B[j:]1)
k = k + (n-j)
elif j == n:
C.extend(A[i:])
k =k + (n-1)
elif A[i] < B[jl:
C.append(A[i])
(i,k) = (i+1,k+1)
else:
C.append(B[j1)
(G,k) = (j+1,k+1)
return(C)
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Analysing merge

def merge(A,B):
m Merge A of length m, B of length n (m,n) = (len(A),len(B))
(C,i,j,k) = ([1,0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:]1)
k = k + (n-j)
elif j == n:
C.extend(A[i:])
k =k + (n-1)
elif A[i] < B[jl:
C.append(A[i])
(i,k) = (i+1,k+1)
else:
C.append(B[j1)
(G,k) = (j+1,k+1)
return(C)

m Output list C has length m + n
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Analysing merge

def merge(A,B):

m Merge A of length m, B of length n (m,n) = (len(A),len(B))
. (C,i,3,k) = ([1,0,0,0)
m Output list C has length m + n while k < mn:
if i == m:

m In each iteration we add (at least) one .
element to C C.extend(B[j:1)
k =k + (n—j)
elif j == n:
C.extend(A[i:])
k =k + (n-1)
elif A[i] < B[jl:
C.append(A[i])
(i,k) = (i+1,k+1)
else:
C.append(B[j])
(3,k) = (j+1,k+1)
return(C)
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Analysing merge

def merge(A,B):

m Merge A of length m, B of length n (m,n) = (len(A),len(B))
. (C,i,3,k) = ([1,0,0,0)
m Output list C has length m + n while k < mn:
if i == m:

m In each iteration we add (at least) one .
element to C C.extend(B[j:1)
k =k + (n—j)

m Hence merge takes time O(m + n) elif j == n:
C.extend(A[i:])

k =k + (n-1)
elif A[i] < B[jl:

C.append(A[i])

(i,k) = (i+1,k+1)
else:

C.append(B[j1)

(G,k) = (j+1,k+1)

return(C)
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Analysing merge

def merge(A,B):

m Merge A of length m, B of length n (m,n) = (len(A),len(B))
. (C,i,j,k) = (11,0,0,0)

m Output list C has length m + n while k < mn:

m In each iteration we add (at least) one =

C.extend(B[j:]1)

element to C k =k + (n-j)

m Hence merge takes time O(m + n) elif j == n:
C.extend(A[i:])
m Recall that m + n < 2(max(m, n)) k = k + (n-1)

elif A[i] < B[jl:
C.append(A[i])
(i,k) = (i+1,k+1)
else:
C.append(B[j1)
(G,k) = (j+1,k+1)
return(C)
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Analysing merge

def merge(A,B):
m Merge A of length m, B of length n (m,n) = (len(A),len(B))
(c,i,j,k) = (01,0,0,0)
while k < m+n:
if i == m:
C.extend(B[j:]1)
k = k + (n-j)

Output list C has length m+ n

In each iteration we add (at least) one
element to C

m Hence merge takes time O(m + n) elif j == n:
C.extend(A[i:])
m Recall that m + n < 2(max(m, n)) k = k + (n-1)

elif A[i] < B[jl:
C.append(A[i])
(i,k) = (i+1,k+1)
else:
C.append(B[j1)
(G,k) = (j+1,k+1)
return(C)

m If m~ n, merge take time O(n)
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Analysing mergesort

m Let 7(n) be the time taken for input of size n def mergesort(A):

m For simplicity, assume n = 2% for some k n = len(A)
if n <= 1:
return(4)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)
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Analysing mergesort

m Let 7(n) be the time taken for input of size n def mergesort(A):

m For simplicity, assume n = 2% for some k n = len(A)

m Recurrence ifpo<=1:
m7(0)=T(1)=1 return(A)
m T(n)=2T(n/2)+n

L = mergesort(A[:n//2])
m Solve two subproblems of size n/2 R = mergesort(A[n//2:1)

B Merge the solutions in time n/2 4 n/2 =n
B = merge(L,R)

return(B)
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Analysing mergesort

m Let 7(n) be the time taken for input of size n def mergesort(A):

m For simplicity, assume n = 2% for some k n = len(A)

m Recurrence ifpo<=1:
m7(0)=T(1)=1 return(A)
m T(n)=2T(n/2)+n

L = mergesort(A[:n//2])
m Solve two subproblems of size n/2 R = mergesort(A[n//2:1)

B Merge the solutions in time n/2 4 n/2 =n

. B = merge(L,R)
m Unwind the recurrence to solve &

return(B)
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Analysing mergesort

m Recurrence def mergesort(A):

m7(0)=T(1)=1 n = len(A)

m 7(n)=2T(n/2)+n e

return(A)

L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)
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Analysing mergesort

m Recurrence def mergesort(A):

m7(0)=T(1)=1 n = len(A)

m T(n)=2T(n/2)+n e

m T(n) =2T(n/2)+n return(A)
=227 (n/4) & n/3)+n L = mergesort(A[:n//2])

R = mergesort(A[n//2:])

B = merge(L,R)

return(B)
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Analysing mergesort

m Recurrence def mergesort(A):

m7(0)=T(1)=1 n = len(A)
m T(n)=2T(n/2)+n

if n <= 1:
m T(n) =2T(n/2)+n return(A)
=2[2T(n/4) +n/2] +n = @f(n/@ +@7 L = mergesort(A[:n//2])
R = mergesort(A[n//2:])

B = merge(L,R)

return(B)
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Analysing mergesort

m Recurrence def mergesort(A):

m7(0)=T(1)=1 n = len(A)

m T(n)=2T(n/2)+n e

m7(n) =2T(n/2)+n return(A)
_ _ 92 2
= 2[_2Mi) +n/2]+n=2°T(n/2%) + 2n L = mergesort (A[:n//2])
=22[2T(n/23) +n/2%| +2n = 23T (n/2%) + 3n R = mergesort(A[n//2:])

B = merge(L,R)

return(B)
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Analysing mergesort

m Recurrence def mergesort(A):

m7(0)=T(1)=1 n = len(A)
m T(n)=2T(n/2)+n

if n <= 1:
m7(n) =2T(n/2)+n return(A)
_ _ 2 2
=2[2T(n/4) +n/2]+n=2"T(n/2%) + 2n L = mergesort(A[:n//2])
=22[2T(n/23) + n/2?] +2n = 23T (n/23) + 3n R = mergesort(A[n//2:1)

:2kT(n/2k)+kn B = merge(L,R)

return(B)
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Analysing mergesort

m Recurrence def mergesort(A):

m7(0)=T(1)=1 n = len(A)
m T(n)=2T(n/2)+n

if n <= 1:
m7(n) =2T(n/2)+n return(A)
_ _ 92 2
=2[2T(n/4) 4 n/2] + n = 27T (n/2%) + 2n L = mergesort(A[:n//2])

=)
Il

=22[2T(n/23) + n/2?] +2n = 23T (n/23) + 3n mergesort(A[n//2:1)

:2kT(n/2k)+kn B = merge(L,R)

m When k = log n, T(n/2k) =T(1)=1 return(B)
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Analysing mergesort

m Recurrence def mergesort(A):

m7(0)=T(1)=1 n = len(A)
m T(n)=2T(n/2)+n

if n <= 1:
m7(n) =2T(n/2)+n return(A)
_ _ 2 2
=2[2T(n/4) +n/2]+n=2"T(n/2%) + 2n L = mergesort(A[:n//2])
=22[2T(n/23) + n/2?] +2n = 23T (n/23) + 3n R = mergesort(A[n//2:1)

:2kT(n/2k)+kn B = merge(L,R)

m When k = log n, T(n/2k) =T(1)=1 return(B)
m T(n)=2"°8"T(1) + (logn)n=n-+ nlogn
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Analysing mergesort

m Recurrence def mergesort(A):

m7(0)=T(1)=1 n = len(A)
m T(n)=2T(n/2)+n

if n <= 1:
m7(n) =2T(n/2)+n return(A)
_ _ 2 2
=2[2T(n/4) +n/2]+n=2"T(n/2%) + 2n L = mergesort(A[:n//2])
=22[2T(n/23) + n/2?] +2n = 23T (n/23) + 3n R = mergesort(A[n//2:1)

:2kT(n/2k)+kn B = merge(L,R)
m When k = log n, T(n/2k) =T(1)=1 return(B)

m T(n)=2"°8"T(1) + (logn)n=n-+ nlogn

m Hence T(n)is O(nlogn)
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Summary

m Merge sort takes time O(nlogn) so can be used effectively on large inputs
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m Merge sort takes time O(nlogn) so can be used effectively on large inputs

m Variations on merge are possible

m Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j
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m Merge sort takes time O(nlogn) so can be used effectively on large inputs

m Variations on merge are possible

m Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j
m Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise

discard the smaller of A[i], B[j]
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m Merge sort takes time O(nlogn) so can be used effectively on large inputs

m Variations on merge are possible

m Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

m Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

m List difference — elements in A but not in B Cam. RLu le JAM Mb\
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m Merge sort takes time O(nlogn) so can be used effectively on large inputs

m Variations on merge are possible

m Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

m Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

m List difference — elements in A but not in B

m Merge needs to create a new list to hold the merged elements
m No obvious way to efficiently merge two lists in place

m Extra storage can be costly
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m Merge sort takes time O(nlogn) so can be used effectively on large inputs

m Variations on merge are possible

m Union of two sorted lists — discard duplicates, if A[i] == B[j] move just one copy
to C and increment both i and j

m Intersection of two sorted lists — when A[i] == B[j], move one copy to C, otherwise
discard the smaller of A[i], B[j]

m List difference — elements in A but not in B

m Merge needs to create a new list to hold the merged elements
m No obvious way to efficiently merge two lists in place

m Extra storage can be costly

m Inherently recursive
m Recursive calls and returns are expensive
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Shortcomings of merge sort

m Merge needs to create a new list to hold the merged elements
m No obvious way to efficiently merge two lists in place

m Extra storage can be costly

m Inherently recursive

m Recursive calls and returns are expensive
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Shortcomings of merge sort

m Merge needs to create a new list to hold the merged elements
m No obvious way to efficiently merge two lists in place

m Extra storage can be costly

m Inherently recursive

m Recursive calls and returns are expensive

m Merging happens because elements in the left half need to move to the right half
and vice versa

m Consider an input of the form [0,2,4,6)1,3,5,9]
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Shortcomings of merge sort

m Merge needs to create a new list to hold the merged elements
m No obvious way to efficiently merge two lists in place

m Extra storage can be costly

m Inherently recursive
m Recursive calls and returns are expensive

m Merging happens because elements in the left half need to move to the right half
and vice versa

. . (|
m Consider an input of the form [0,2,4&3, 1 ,S,m

m Can we divide the list so that eveMe left is smaller than everything on
the right?

m No need to merge!
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Divide and conquer without merging

m Suppose the median of L. is m
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Divide and conquer without merging

m Suppose the median of L. is m

m Move all values < m to left half of L

m Right half has values > m

m Recurslvely sort left and right halves

m L is now sorted, no merge!
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Divide and conquer without merging

m Suppose the median of L. is m

m Move all values < m to left half of L

m Right half has values > m

m Recurslvely sort left and right halves

m L is now sorted, no merge!

m Recurrence: T(n) =2T(n/2)+n

m Rearrange in a single pass, time O(n)
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Divide and conquer without merging

m Suppose the median of L. is m

m Move all values < m to left half of L

m Right half has values > m

Recurslvely sort left and right halves

m L is now sorted, no merge!

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)

Madhavan Mukund Quicksort PDSP Lecture 16 3/11



Divide and conquer without merging

Suppose the median of L is m m How do we find the median?

m Move all values < m to left half of L

m Right half has values > m

Recurslvely sort left and right halves

m L is now sorted, no merge!

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)
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Divide and conquer without merging

m Suppose the median of L. is m m How do we find the median?

= Move all values < m to left half of L m Sort and pick up the middle element

m Right half has values > m

Recurslvely sort left and right halves

m L is now sorted, no merge!

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)
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Divide and conquer without merging

m Suppose the median of L. is m m How do we find the median?

= Move all values < m to left half of L m Sort and pick up the middle element

. 1 i ist!
u Right half has values > m m But our aim is to sort the list!

Recurslvely sort left and right halves

m L is now sorted, no merge!

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)
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Divide and conquer without merging

m Suppose the median of L. is m m How do we find the median?

= Move all values < m to left half of L m Sort and pick up the middle element

. 1 i ist!
u Right half has values > m m But our aim is to sort the list!

m Instead pick some value in . — pivot

Recurslvely sort left and right halves
m Split L with respect to the pivot

m L is now sorted, no merge!
element

Recurrence: T(n)=2T(n/2)+n

m Rearrange in a single pass, time O(n)

So T(n)is O(nlogn)
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Quicksort [C.A.R. Hoare]

m Choose a pivot element

m Typically the first element in
the array
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m Choose a pivot element
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the array

m Partition L into lower and upper
parts with respect to the pivot
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m Choose a pivot element

m Typically the first element in
the array

m Partition L into lower and upper
parts with respect to the pivot

m Move the pivot between the
lower and upper partition
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Quicksort [C.A.R. Hoare]

m Choose a pivot element

m Typically the first element in
the array

m Partition L into lower and upper
parts with respect to the pivot

m Move the pivot between the
lower and upper partition

m Recursively sort the two
partitions
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Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

14332227863 |57[91]13]

m Partition L into lower and upper
parts with respect to the pivot

m Move the pivot between the
lower and upper partition

m Recursively sort the two
partitions
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Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

143]32]22[78|63|57[91]13]

m Partition L into lower and upper

. ) m ldentify pivot
parts with respect to the pivot yp

m Move the pivot between the
lower and upper partition

m Recursively sort the two
partitions
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Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

[43]32]22[78]63]57[91]13]

m Partition L into lower and upper

. ) m ldentify pivot
parts with respect to the pivot yp

m Mark lower elements and upper elements
m Move the pivot between the
lower and upper partition

m Recursively sort the two
partitions
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Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

[43]32]22[78]63]57[91]13]

m Partition L into lower and upper

. ) m ldentify pivot
parts with respect to the pivot yp

m Mark lower elements and upper elements
m Move the pivot between the .
lower and upper partition m Rearrange the elements as lower—pivot—upper

[32]22]13[43]78]63][57]091]

m Recursively sort the two
partitions
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Quicksort [C.A.R. Hoare]

m Choose a pivot element High level view of quicksort
m Typically the first element in m Input list
the array

[43]32]22[78]63]57[91]13]

m Partition L into lower and upper

. ) m ldentify pivot
parts with respect to the pivot yp

m Mark lower elements and upper elements
m Move the pivot between the .
lower and upper partition m Rearrange the elements as lower—pivot—upper

[32]22]13[43]78]63][57]091]

m Recursively sort the two
partitions m Recursively sort the lower and upper partitions

(hpvJ’ bt s € lower = [x foe x 1 L0:T i} x=U0d
o g e Do for 8 U ol
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Partitioning

m Scan the list from left to right
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Partitioning

m Scan the list from left to right RVS\' WW—W yd hj’.“‘“‘h
NN YN

m Four segments: Pivot, Lower,
Upper, Unclassified h \

a
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Partitioning

m Scan the list from left to right

m Four segments: Pivot, Lower,
Upper, Unclassified

m Examine the first unclassified
element
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Partitioning

m Scan the list from left to right

AN

m Four segments: Pivot, Lower,
Upper, Unclassified . |

m Examine the first unclassified lﬂ LDUJ 'M a@

element ‘1
m If it is larger than the pivot,
extend Upper to include this
element
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Partitioning

m Scan the list from left to right

m Four segments: Pivot, Lower,
Upper, Unclassified

m Examine the first unclassified
element

m If it is larger than the pivot,
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.
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Partitioning

m Scan the list from left to right

[43]32[22[78[63[57 91 [13]

m Four segments: Pivot, Lower,
Upper, Unclassified

m Examine the first unclassified
element

m If it is larger than the pivot,
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.
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Partitioning

m Scan the list from left to right

[43(32)] 2278635791 13|

m Four segments: Pivot, Lower,
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the

m If it is larger than the pivot, Lower and Upper segments

extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.
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Partitioning

m Scan the list from left to right

_ 143[32]22|78]63]57[91]13]
m Four segments: Pivot, Lower, 77
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the

m If it is larger than the pivot, Lower and Upper segments

extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
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Partitioning

m Scan the list from left to right

m Four segments: Pivot, Lower,
Upper, Unclassified

m Examine the first unclassified
element

m If it is larger than the pivot,
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.
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[43[32]22]78]63[57[91]13]
N A

m Pivot is always the first element

m Maintain two indices to mark the end of the
Lower and Upper segments Uﬂd“ﬂ‘:u
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Partitioning
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Partitioning

m Scan the list from left to right

_ [13]32]22[43[78]63][57]91]
m Four segments: Pivot, Lower, 7 4
Upper, Unclassified

m Examine the first unclassified m Pivot is always the first element
element m Maintain two indices to mark the end of the
m If it is larger than the pivot, Lower and Upper segments
extend Upper to include this m After partitioning, exchange the pivot with the
element last element of the Lower segment

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.
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Quicksort code

m Scan the list from left to right

m Four segments: Pivot, Lower,
Upper, Unclassified

m Classify the first unclassified
element

m If it is larger than the pivot,
extend Upper to include this
element

m If it is less than or equal to the
pivot, exchange with the first
element in Upper. This
extends Lower and shifts
Upper by one position.
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def quicksort(L,l,r): # Sort L[l:r]

if (r -1 <= 1):
return(L)
(pivot,lower,upper) = (L[1],1+1,1+1)
for i in range(1l+1,r):
if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment
(L[i], L[lower]) = (L[lower], L[i])
# Shift both segments
(lower,upper) = (lower+l,upper+1)
# Move pivot between lower and upper
(L[1],L[lower-1]) = (L[lower-1],L[1])
lower = lower-1
# Recursive calls
quicksort(L,1l,lower)
quicksort(L,lower+1,upper)
return(L)
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m Partitioning with respect to the def quicksort(L,1,r): # Sort L[1:r]
pivot takes time,O(n) if (r-1<= 1 wt 1Lt
Vﬂ - L(L return(L) -~
?‘ (pivot,lower,upper) = (L[1],1+1,1+1)

for i in range(1l+1,r):
L . L[QH - (nwu] if L[i] > pivot: # Extend upper segment
upper = upper+1
else: # Exchange L[i] with start of upper segment

- . (L[i], L[lower]) = (L[lower], L[i])
Qv - L [(Wb‘ U"&'] # Shift both segments

(lower,upper) = (lower+l,upper+1)
# Move pivot between lower and upper
(L[1],L[1lower-1]) = (L[lower-1]1,L[1])
lower = lower-1
# Recursive calls
quicksort(L,1,lower)

LLM] \Vo m rvﬂn’ [ quicksort(L,lower+1,upper)

L R return(L)
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or minimum

m Partitions are of size 0, n — 1

mT(n)=T(n—1)+n
mT(n)=n+(n—-1)+---+1
m T(n)is O(n?)

m Already sorted array: worst case!
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m However, average case is

O(nlog n)
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we can compute this
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m Any fixed choice of pivot allows
us to construct worst case input
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randomly at each step
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Quicksort in practice

m Can be implemented iteratively

m Recursive calls — disjoint
segments, no recombination of
results required

m Explicitly track endpoints of
each segment to be sorted
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Quicksort in practice

m Can be implemented iteratively

m Recursive calls — disjoint
segments, no recombination of
results required

m Explicitly track endpoints of
each segment to be sorted

m In practice, quicksort is very fast

m Very often the default algorithm
used for in-built sort functions

m Sorting a column in a
spreadsheet

m Library sort function in a
programming language
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Summary

m The worst case complexity of quicksort is O(n?)
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m The worst case complexity of quicksort is O(n?)

m However, the average case is O(nlog n)

m Randomly choosing the pivot is a good strategy to beat worst case inputs
m Quicksort works in-place and can be implemented iteratively

m Very fast in practice, and often used for built-in sorting functions

m Good example of a situation when the worst case upper bound is pessimistic
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Sorting: Concluding Remarks
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Stable sorting

m Often list values are tuples
m Rows from a table, with multiple columns / attributes

m A list of students, each student entry has a roll number, name, marks, ...
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Stable sorting

m Often list values are tuples
m Rows from a table, with multiple columns / attributes

m A list of students, each student entry has a roll number, name, marks, ...
m Suppose students have already been sorted by roll number

m If we now sort by name, will all students with the same name remain in sorted order
with respect to roll number?

m Stability of sorting is crucial in many applications

m Sorting on column B should not disturb sorting on column A
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Stable sorting

m The quicksort implementation we described is not stable

m Swapping values while partitioning can disturb existing sorted order
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Stable sorting

m The quicksort implementation we described is not stable

m Swapping values while partitioning can disturb existing sorted order

m Merge sort is stable if we merge carefully
m Do not allow elements from the right to overtake elements on the left

m While merging, prefer the left list while breaking ties
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Other criteria

m Minimizing data movement
m Imagine each element is a heavy carton

m Reduce the effort of moving values around
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Best sorting algorithm?

m Quicksort is often the algorithm of choice, despite O(n?) worst case
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Best sorting algorithm?

m Quicksort is often the algorithm of choice, despite O(n?) worst case

m Merge sort is typically used for “external” sorting
m Database tables that are too large to store in memory all at once

m Retrieve in parts from the disk and write back
m Other O(nlog n) algorithms exist — heapsort

m Sometimes hybrid strategies are used
m Use divide and conquer for large n

m Switch to insertion sort when n becomes small (e.g., n < 16)
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