Searching in a List

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 15, 15 Nov 2021 How to quantity efficiency t(n) as n grows large tinput size - Asymptotic behaviour -- Worst case (us average) -0() norahm. $\exists c. \ \forall n > n_0$ $f(n) \leq cg(n)$ f(n) = O(g(n))Upper bond

Cost of brute force nested loops

■ Is value v present in list 1?

Madhavan Mukund Searching in a List PDSP Lecture 15

- Is value v present in list 1?
- Naive solution scans the list

```
def naivesearch(v,1):
   for x in 1:
     if v == x:
       return(True)
   return(False)
```

- Is value v present in list 1?
- Naive solution scans the list
- Input size n, the length of the list

```
def naivesearch(v,1):
   for x in 1:
      if v == x:
       return(True)
   return(False)
```

- Is value v present in list 1?
- Naive solution scans the list
- Input size n, the length of the list
- Worst case is when v is not present in 1

```
def naivesearch(v,1):
   for x in 1:
     if v == x:
       return(True)
   return(False)
```

2/6

- Is value v present in list 1?
- Naive solution scans the list
- Input size n, the length of the list
- Worst case is when v is not present in 1
- Worst case complexity is O(n)

```
def naivesearch(v,1):
   for x in 1:
     if v == x:
       return(True)
   return(False)
```

■ What if 1 is sorted in ascending order?

Madhavan Mukund Searching in a List PDSP Lecture 15

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1

Madhavan Mukund Searching in a List PDSP Lecture 15

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1
 - If midpoint is v, the value is found
 - If v less than midpoint, search the first half
 - If v greater than midpoint, search the second half
 - Stop when the interval to search becomes empty

```
def binarysearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1 [m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,1[m+1:]))
```

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1
 - If midpoint is v, the value is found
 - If v less than midpoint, search the first half
 - If v greater than midpoint, search the second half
 - Stop when the interval to search becomes empty
- Binary search

```
def binarysearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1 [m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,1[m+1:]))
```

Binary search

How long does this take?

```
def binarysearch(v,1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,l[m+1:]))
```

Binary search

- How long does this take?
 - Each call halves the interval to search
 - Stop when the interval become empty
- log *n* number of times to divide *n* by 2 to reach 1
 - 1//2 = 0, so next call reaches empty interval

```
def binarysearch(v,1):
    return(False)
                     len(\ell)=1
m=0
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,1[m+1:]))
```

Binary search

- How long does this take?
 - Each call halves the interval to search
 - Stop when the interval become empty
- log *n* number of times to divide *n* by 2 to reach 1
 - 1//2 = 0, so next call reaches empty interval
- $O(\log n)$ steps

```
def binarysearch(v.1):
  if 1 == []:
   return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,1[m+1:]))
```

- \blacksquare T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1

Any constant a is O(1)

c < c1

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1 \lceil m \rceil:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- \blacksquare T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1 \lceil m \rceil:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- \blacksquare T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"

```
def bsearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- \blacksquare T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n/2) + 1

```
def bsearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- \blacksquare T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n/2) + 1= (T(n/4) + 1) + 1

```
def bsearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- \blacksquare T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n//2) + 1= $(T(n//4) + 1) + 1 = T(n//2^2) + \underbrace{1+1}_{2}$

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"

■
$$T(n) = T(n/2) + 1$$

= $(T(n/4) + 1) + 1 = T(n/2^2) + \underbrace{1 + 1}_{2}$
= \cdots $T(n/2^3) + 3$
= $T(n/2^k) + \underbrace{1 + \cdots + 1}_{2}$

```
def bsearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"

■
$$T(n) = T(n/2) + 1$$

 $= (T(n/4) + 1) + 1 = T(n/2^2) + \underbrace{1 + 1}_{2}$
 $= \cdots$
 $= T(n/2^k) + \underbrace{1 + \cdots + 1}_{k}$
 $= T(1) + \underbrace{k}_{n}$ or $k = \log n$

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"

■
$$T(n) = T(n//2) + 1$$

 $= (T(n//4) + 1) + 1 = T(n//2^2) + \underbrace{1+1}_{2}$
 $= \cdots$
 $= T(n//2^k) + \underbrace{1+\cdots+1}_{k}$
 $= T(1) + k$, for $k = \log n$
 $= (T(0) + 1) + \log n = 2 + \log n$

```
def bsearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list

Madhavan Mukund Searching in a List PDSP Lecture 15

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list
- For a sorted list, binary search takes time $O(\log n)$
 - Halve the interval to search each time

6/6

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list
- For a sorted list, binary search takes time $O(\log n)$
 - Halve the interval to search each time

■ In a sorted list, we can determine that v is absent by examining just $\log n$ values!

Selection Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 15, 15 Nov 2021

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values

Madhavan Mukund Selection Sort PDSP Lecture 15

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?

Madhavan Mukund Selection Sort PDSP Lecture 15

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

 Scan the entire pile and find the paper with minimum marks

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

- Scan the entire pile and find the paper with minimum marks
- Move this paper to a new pile

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

- Scan the entire pile and find the paper with minimum marks
- Move this paper to a new pile
- Repeat with the remaining papers
 - Add the paper with next minimum marks to the second pile each time

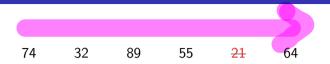
- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

- Scan the entire pile and find the paper with minimum marks
- Move this paper to a new pile
- Repeat with the remaining papers
 - Add the paper with next minimum marks to the second pile each time
- Eventually, the new pile is sorted in descending order

74 32 89 55 21 64

Madhavan Mukund Selection Sort PDSP Lecture 15



21

Madhavan Mukund Selection Sort PDSP Lecture 15

74 32 89 55 21 64

21 32

74 32 89 55 21 64

21 32 55

74 32 89 55 21 64

21 32 55 64

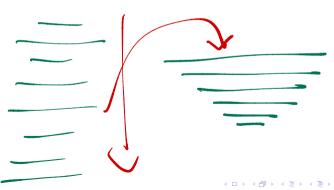
74 32 89 55 21 64

21 32 55 64 74

74 32 89 55 21 64

21 32 55 64 74 89

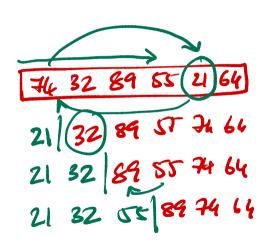
Select the next element in sorted order



- Select the next element in sorted order
- Append it to the final sorted list

- Select the next element in sorted order
- Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position
 -

- Select the next element in sorted order
- Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position
 -
- Eventually the list is rearranged in place in ascending order



- Select the next element in sorted order
- Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position
 - **.** . . .
- Eventually the list is rearranged in place in ascending order

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
        mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = i
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

relationship between values
that holds at the
chart of every iteration

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: n i steps to find minimum in L[i:]

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: *n* − *i* steps to find minimum in L[i:]
 - $T(n) = n + (n-1) + \cdots + 1$

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: n i steps to find minimum in L[i:]
 - $T(n) = n + (n-1) + \cdots + 1$
 - T(n) = n(n+1)/2

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: *n* − *i* steps to find minimum in L[i:]

$$T(n) = n + (n-1) + \cdots + 1$$

$$T(n) = n(n+1)/2$$

N2+1

T(n) is $O(n^2)$

```
def SelectionSort(L):
   n = len(I.)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
```

return(L)

```
<□ > < ∰ > < Ē > < Ē > Ē ✓ Q (°
```

Exchange L[mpos] and L[i]
(L[i],L[mpos]) = (L[mpos],L[i])

Now L[:i+1] is sorted

Summary

Selection sort is an intuitive algorithm to sort a list

Summary

- Selection sort is an intuitive algorithm to sort a list
- Repeatedly find the minimum (or maximum) and append to sorted list

Summary

- Selection sort is an intuitive algorithm to sort a list
- Repeatedly find the minimum (or maximum) and append to sorted list
- Worst case complexity is O(n²)
 Every input takes this much time

Not good!

■ No advantage even if list is arranged carefully before sorting

SIM-Aadhan N² sort 300 years N lugn cearch

6/6

Insertion Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 15, 15 Nov 2021

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

Move the first paper to a new pile

Madhavan Mukund Insertion Sort PDSP Lecture 15 2

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - Higher marks than first paper? Place above first paper in new pile

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - Higher marks than first paper? Place above first paper in new pile
- Third paper
 - Insert into correct position with respect to first two

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - Higher marks than first paper? Place above first paper in new pile
- Third paper
 - Insert into correct position with respect to first two
- Do this for the remaining papers
 - Insert each one into correct position in the second pile

2/7

74 32 89 55 21 64

74 32 89 55 21 64

74

74 32 89 55 21 64

32 74

74 32 89 55 21 64

32 74 89

74 32 89 55 21 64

32 55 74 89

74 32 89 55 21 64

21 32 55 74 89

74 32 89 55 21 64

21 32 55 64 74 89

Insertion sort

■ Start building a new sorted list

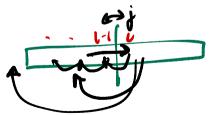
Insertion sort

- Start building a new sorted list
- Pick next element and insert it into the sorted list

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]



- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]



```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      while(j > 0 and L[j] < L[j-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

PDSP Lecture 15

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]
- A recursive formulation
 - Inductively sort L[:i]
 - Insert L[i] in L[:i]

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(j > 0 and L[j] < L[j-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume I.[:i] is sorted
 - Insert L[i] in L[:i]
- A recursive formulation
 - Inductively sort L[:i]

```
■ Insert L[i] in L[:i]
```

```
def Insert(L,v):
  n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
                              [LE-0]
   else:
     return(Insert(L[:-1],v)+L[-1:])
def ISort(L):
  n = len(L)
  if n < 1:
      return(L)
  L = Insert(ISort(L[:-1]), L[-1])
  return(L)
```

Correctness follows from the invariant

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
     return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      j = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      j = i
      while(L[i] < L[i-1]):
        (L[j],L[j-1]) = (L[j-1],L[j])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]
 - $T(n) = 0 + 1 + \cdots + (n-1)$

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]
 - $T(n) = 0 + 1 + \cdots + (n-1)$
 - T(n) = n(n-1)/2

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]
 - $T(n) = 0 + 1 + \cdots + (n-1)$
 - T(n) = n(n-1)/2
- T(n) is $O(n^2)$

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort
- First calculate *TI(n)* for Insert
 - TI(0) = 1
 - TI(n) = TI(n-1) + 1

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort
- First calculate *TI(n)* for Insert

$$TI(0) = 1$$

$$TI(n) = TI(n-1) + 1$$

■ Unwind to get TI(n) = n

$$T((n) = T((n-1) + 1)$$

$$= T((n-2) + 1 + 1$$

$$= T((0) + (+1 + 1) + 1$$

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort
- First calculate *TI(n)* for Insert
 - TI(0) = 1
 - TI(n) = TI(n-1) + 1
 - Unwind to get TI(n) = n
- Set up a recurrence for TS(n)
 - TS(0) = 1
 - TS(n) = TS(n-1) + TI(n-1)

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort
- First calculate *TI(n)* for Insert
 - TI(0) = 1
 - TI(n) = TI(n-1) + 1
 - Unwind to get TI(n) = n
- Set up a recurrence for TS(n)
 - TS(0) = 1
 - TS(n) = TS(n-1) + TI(n-1)
- Unwind to get $1+2+\cdots+n-1$

```
Ts(n) = Ts(n-1)+n-1
def Insert(L,v):
  n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
  n = len(L)
   if n < 1:
      return(L)
  L = Insert(ISort(L[:-1]), L[-1])
  return(L)
```

Summary

■ Insertion sort is another intuitive algorithm to sort a list

Madhavan Mukund Insertion Sort PDSP Lecture 15

Summary

- Insertion sort is another intuitive algorithm to sort a list
- Create a new sorted list
- Repeatedly insert elements into the sorted list

Madhavan Mukund Insertion Sort PDSP Lecture 15

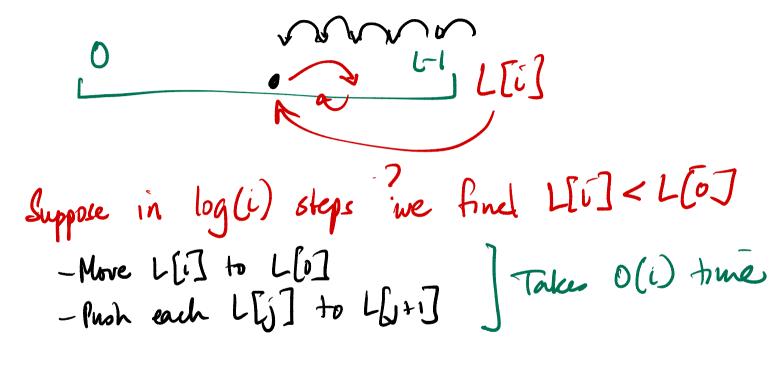
Summary

- Insertion sort is another intuitive algorithm to sort a list
- Create a new sorted list.
- Repeatedly insert elements into the sorted list
- Worst case complexity is $O(n^2)$
 - Unlike selection sort, not all cases take time n^2
 - If list is already sorted, Insert stops in 1 step
 - Overall time can be close to O(n)

Also Use binary search to insert

7/7

Madhavan Mukund Insertion Sort PDSP Lecture 15



Commen

Merge Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 15, 15 Nov 2021

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000
- How can we bring the complexity below $O(n^2)$?

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000
- How can we bring the complexity below $O(n^2)$?

Strategy 3

■ Divide the list into two halves

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000
- How can we bring the complexity below $O(n^2)$?

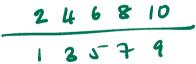
Strategy 3

- Divide the list into two halves
- Separately sort the left and right half

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000
- How can we bring the complexity below $O(n^2)$?

Strategy 3

- Divide the list into two halves
- Separately sort the left and right half
- Combine the two sorted halves to get a fully sorted list



Combine two sorted lists A and B into a single sorted list C

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 32 74 89
- 21 55 64

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 2 74 89
- 21 55 64

21

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 32 74 89
- 21 55 64

21 32

- Combine two sorted lists A and B into a single sorted list C
- 21 55 64

32 74

89

- Compare first elements of A and B
- Move the smaller of the two to C
- Repeat till you exhaust A and B

21 32 55

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 32 74 89
- 21 55 64

21 32 55 64

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 32 74 89
- 21 55 64

21 32 55 64 7

Combining two sorted lists

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 32 74 89
- 21 55 64

21 32 55 64 74 89

Combining two sorted lists

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B
- Merging A and B

- 32 74 89
- 21 55 64

21 32 55 64 74 89

■ Let n be the length of L

- Let n be the length of L
- Sort A[:n//2]

- Let n be the length of *L*
- Sort A[:n//2]
- Sort A[n//2:]

- Let n be the length of *L*
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

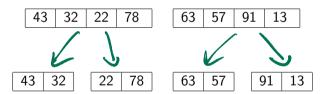
- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

43	32	22	78	63	57	91	13	

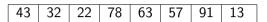
- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

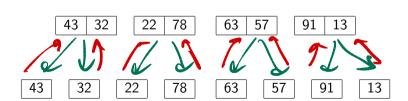
43 32 22 78 63 57 91 13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

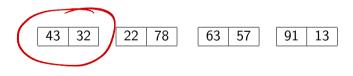


- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

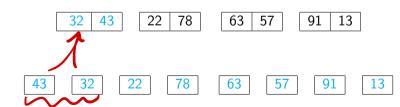




- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!



- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!



- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

```
43 | 32 | 22 | 78 | 63 | 57 | 91 | 13
```

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

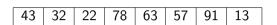
43 | 32 | 22 | 78 | 63 | 57 | 91 | 13

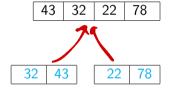
43 | 32 | 22 | 78 | | | | | | | 63 | | | | | 57 | | | 91 | | | 13 |

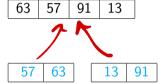
 32
 43
 22
 78
 57
 63
 91
 13

43 32 22 78 63 57 91 13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!







43

32

22

78

63

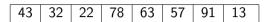
57

7

91

13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!



32 | 43 | 22 | 78 | 57 | 63 | 13 | 91

91

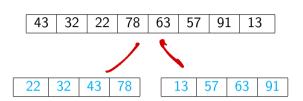
13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

22 32 43 78 63 57 91 13

32 | 43 | 22 | 78 | 57 | 63 | 13 | 91

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!



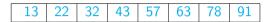
- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

						0.4	1.0
43	32	22	78	63	57	91	13

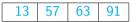
22 | 32 | 43 | 78

13 57 63 91

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!



22	32	43	78



- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

13	22	32	43	57	63	78	91
10		52	45	51	00	10	91

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

Divide and Conquer

- Break up the problem into disjoint parts
- Solve each part separately
- Combine the solutions efficiently

■ Combine two sorted lists A and B into C

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C
 - If B is empty, copy A into C

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C
 - If B is empty, copy A into C
 - Otherwise, compare first elements of A and B
 - Move the smaller of the two to C

6/8

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C
 - If B is empty, copy A into C
 - Otherwise, compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till all elements of A and B have been moved

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C
 - If B is empty, copy A into C
 - Otherwise, compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till all elements of A and B have been moved

```
A mi m

B mult n

c much mt
```

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (n-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (j,k) = (j+1,k+1)
  return(C)
```

■ To sort A into B, both of length n

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L
 - Sort A[n//2:] into R

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L
 - Sort A[n//2:] into R
 - Merge L and R into B

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L
 - Sort A[n//2:] into R
 - Merge L and R into B

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
  return(B)
```

Merge sort using divide and conquer to sort a list

- Merge sort using divide and conquer to sort a list
- Divide the list into two halves

- Merge sort using divide and conquer to sort a list
- Divide the list into two halves
- Sort each half

- Merge sort using divide and conquer to sort a list
- Divide the list into two halves
- Sort each half
- Merge the sorted halves

- Merge sort using divide and conquer to sort a list
- Divide the list into two halves
- Sort each half
- Merge the sorted halves
- Next, we have to check that the complexity is less than $O(n^2)$

8/8