~ Lecture 7, 11 October 2021

v Mutable and immutable values

e Property of values, not names/variable

e Mutability - can the value being pointed to change in place?

e There is only "one copy" of every immutable value

e |f we update x from 3 to 4, x points to the one value of 4 instead of the one value of 3

1x =3
2y = X
3x is vy, =y

(True, True)

1x-=-3
2y =X
3x =4

4x is y, X ==y

(False, False)

e Evenin alist, you have to interpret mutability correctly

e If 1[i] points to an immutable value and you make another name x point to the same value,
updating 1[i] will not update x

e Only when one list is aliased to another will updating 1[i] in the first list also reflect in the same
position in the second list

11 =1[7,8]

212 =1

3x = 1[0] # 1[0] is now like an individual variable y
41[0] =9

5x is 1[0], x == 1[0], 1[0] is 12[0]

(False, False, True)

Dealing with immutability

* a,b = b,a exchanges the values of a and b
e Can we write a function swap(a,b) that exchanges the values of its (immutable) arguments?

e Can only do something like a,b = swap(a,b)

~ Dictionaries

e Alistis a collection indexed by position



A list can be thought of as a function f : {0,1,...,n — 1} — {w,v1,...,vp_1}

o A list maps positions to values

Generalize this to a function f : {xg, Z1,..., 251} — {vo,v1,...,Un_1}
o Instead of positions, index by an abstract key

 dictionary: maps keys, rather than positions, to values

Notation:

o d = {kl:vl, k2:v2}, enumerate a dictionary explicitly

o

d[k1], valuein dictionary d1 corresponding to key k1

o

{}, empty dictionary ([] for lists, () for tuples)

(o]

Keys must be immutable values

1 names = ["Abha", "Bunty"]
2 #bdays = {}
3 bdays = {"Abha":"03-05-2001", "Bunty":"17-10-1999"}

1 bdays["Bunty"]
'17-10-1999"

* Accessing a non-existent key results in KeyError
* Analogous to IndexError forinvalid position in a list

1 bdays["Chitra"]

KeyError Traceback (most recent call last)
<ipython-input-9-0ddd3b92360d> in <module>()
----> 1 bdays["Chitra"]

KeyError: 'Chitra’

SEARCH STACK OVERFLOW

11 =10,1,2]
21[3] =3
IndexError Traceback (most recent call last)
<ipython-input-10-dd0d4465d29b> in <module>()
11=1[0,1,2]
---->2 1[3] = 3

IndexError: list assignment index out of range

SEARCH STACK OVERFLOW

e Assigning to non-existent key creates a new key-value pair

o Unlike lists, where we cannot create a new position by assigning outside the current list



e d[k] = v creates k if it does not exist, updates the value at d[k] if it does exist

1 bdays["Chitra"] = "13-08-2000"
2 bdays

{'Abha': '03-05-2001', 'Bunty': '17-10-1999', 'Chitra': '13-08-2000'}
1 bdays["Chitra"] = "13-09-2000"
2 bdays

{'Abha': '03-05-2001', 'Bunty': '17-10-1999', 'Chitra': '13-09-2000'}

e Any immutable value can be a key
» No requirement that all keys (or values) have a uniform type

1 bdays[0] = 7
2 bdays

{0: 7, 'Abha': '03-05-2001', 'Bunty': '17-10-1999', 'Chitra': '13-09-2000'}

e Key must be an immutable value

o List cannot be used as a key

1 bdays[[1]] = 77b

TypeError Traceback (most recent call last)
<ipython-input-15-f76a5cf6ed76> in <module>()
----> 1 bdays[[1]] = 77

TypeError: unhashable type: 'list'

SEARCH STACK OVERFLOW

e Value at a key can be a list
e Use multiple subscripting to access inner components
e Similar to nested lists

1 bdays[1] = [77,88]
2 bdays, bdays[1][1]

({o0: 7,
1: [77, 88],
"Abha': '03-05-2001",
'Bunty': '17-10-1999',
"Chitra': '13-09-2000'},
88)

* Likewise, value can be a nested dictionary



1 brothers = {}
2 brothers["ahmed"] = {"first":"abdul", "second":"salman"}
3 brothers, brothers["ahmed"]["second"]

({'ahmed': {'first': 'abdul', 'second': 'salman'}}, 'salman')

v Operating on dictionaries

e How do we run through all entries in a dictionary - the equivalent of for x in 17?
e d.keys(), d.values() generate sequences corresponding to the keys and values of d, respectively
» Like range() these are not directly lists, use list(d.keys()) if you want a list

1 bdays.keys() # Not quite a list, a bit like range()

dict keys(['Abha', 'Bunty', 'Chitra', 0, 11)

1 for name in bdays.keys():
2 print(name)

Abha
Bunty
Chitra
0

1

1 namelist = list(bdays.keys())
2 namelist

['Abha', 'Bunty', 'Chitra‘', 0, 1]

1 list(bdays.values()) # The values in a dictionary

> ['63-05-2001', '17-10-1999', '13-09-2000', 7, [77, 88]]

In what order does d.keys() list the keys?

In theory, this order is arbitrary and you should not make any assumptions

In practice, from some recent version of Python (3.6?) keys are listed in the order added
If dictionary keys are of the same type, use sorted(d.keys()) to get them in sorted

1d = {}

2d['a'] =7
3d['c'] 9
4d['b'] = 8

1 list(d.keys()), sorted(d.keys())

(f*a*, 'c', 'b'I, ['a", 'b", 'c'])

1 for name in sorted(d.keys()):
2 print(d[name])



O 0

v Accumulating values

» We have a list of pairs (name,marks) of marks in assignments of students in a course
e We want to report the total marks of each student
» Create a dictionary total whose keys are names and whose values are total marks for that name

¢ How would we do this?

1 marklist = [("abha",75), ("bunty",58), ("abha",86), ("chitra",77), ("bun-
2 total = {}

3 for markpair in marklist:

4 name = markpair[0Q]

5 marks = markpair[1]

6 # add marks to total[name], only if tota[name] already exist, othel
7 if name in total.keys(): # check if a key exists already

8 total[name] = total[name] + marks

9 else:

10

11

12

13 total[name] = marks

14 print(total)

15

{'abha': 161, 'bunty': 150, 'chitra': 77}

Representing sets

¢ Maintain a set X (from a universe U)
» Digression on set theory as a foundation for mathematics
o 0is0,1is {0} = {0},2is{0,1} = {0,{0}},...n={1,2,...,n— 1}
o Build up arithmetic and all of mathematics from these foundations
o Is every collection a set?
o What about the set of all sets?
o Some sets contain other sets, some do not

= Forinstance, the powerset of X consists of a subsets of X

o Bertrand Russell: Let X be the set of all sets that do not contain themselves
o Does X contain X?

= |f X does not contain X, X must contain X by its definition
= Paradox!

o Similar to saying "l am a liar"

= Should you believe me?
= |f you do believe me, you should not!



o Russell's paradox tells us the collection of all sets is not a set
o Can only build sets from existing sets, not create arbitray collections and call them sets

Representing sets using functions

o Asubset X C U is the same as a function X : U — {True, False}
o Say, U ={0,1,...,999}, P = primesin U
o P={2,3,5,7,...,997}
o P:{0,1,...,999} — {True, False}
Create a dictionary whose keys are those values z for which P(x) = True

o primes = {}

o

primes[2] = True

(o]

primes[3] True

o e

o primes[997] = True
The set is implicitly the collection of keys of the dictionary
o Can also explicitly add primes[0] = False, primes[1l] = False, .., butthisis redundant

Exercise: If d1 and d2 both represent sets over U, how do we compute d1 U d2, d1 N d2, U\
d1 (complement of d1 wrt U)?

v 0s completed at 9:27 PM



