Programming and Data Structures with Python

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

6 December, 2021

Backtracking

* Systematically search for a solution
* Build the solution one step at a time
* |f we hit a dead-end

* Undo the last step

* Try the next option

E,ahwj 6 Mmaze

N

*

Heuriche

X

Eight queens

* Place 8 queens on a chess
board so that none of them
attack each other

* In chess, a queen can
move any number of
squares along a row
column or diagonal

Eight queens

* Place 8 queens on a chess
board so that none of them
attack each other

* In chess, a queen can
move any number of
squares along a row
column or diagonal

Eight queens

* Place 8 queens on a chess
board so that none of them
attack each other

* In chess, a queen can
move any number of
squares along a row
column or diagonal

Eight queens

* Place 8 queens on a chess
board so that none of them
attack each other

* In chess, a queen can
move any number of
squares along a row
column or diagonal

N queens

* Place N queens on an
N x N chess board so that
none attack each other

* N =2, 3 impossible

N queens

* Place N queens on an
N x N chess board so that
none attack each other

* N =2, 3 impossible

N queens

* Place N queens on an
N x N chess board so that
none attack each other

* N =2, 3 impossible

* N =4 is possible

N queens

* Place N queens on an
N x N chess board so that
none attack each other

* N =2, 3 impossible

* N =4 is possible

* And all bigger N as well

38 queens

* Clearly, exactly one queen
in each row, column

* Place queens row by row

* In each row, place a queen
in the first available column

38 queens

* Clearly, exactly one queen
in each row, column

* Place queens row by row

* In each row, place a queen
in the first available column

i

Q¥

38 queens

* Clearly, exactly one queen
in each row, column

* Place queens row by row

* In each row, place a queen
in the first available column

38 queens

* Clearly, exactly one queen
in each row, column

* Place queens row by row

* In each row, place a queen
in the first available column

Q¥

38 queens

* Clearly, exactly one queen
in each row, column

* Place queens row by row

* In each row, place a queen
in the first available column

0
B

i
it

Q¥

38 queens

* Clearly, exactly one queen
in each row, column

* Place queens row by row

* In each row, place a queen
in the first available column

Q¥

38 queens

* Clearly, exactly one queen
in each row, column

* Place queens row by row

* In each row, place a queen
in the first available column

0
B
1

i
it

Q¥

38 queens

* Clearly, exactly one queen
in each row, column

* Place queens row by row

* In each row, place a queen
in the first available column

0
B
1

i
it

Q¥

38 queens

* Clearly, exactly one queen
in each row, column

* Place queens row by row

* In each row, place a queen
in the first available column

* Can’t place a queen in the
8th row!

0
B
1
i
it

Q¥

38 queens

* Can’t place the a queen in
the 8th row!

Q¥

38 queens

* Can’t place the a queen in
the 8th row!

* Undo 7th queen, no other
choice

Q¥

38 queens

* Can’t place the a queen in
the 8th row!

* Undo 7th queen, no other
choice

* Undo 6th queen, no other
choice

0
B
il
it

Q¥

38 queens

* Can’t place the a queen in
the 8th row!

* Undo 7th queen, no other
choice

* Undo 6th queen, no other
choice

* Undo 5th queen, try next

0
B
il
it

Q¥

38 queens

* Can’t place the a queen in
the 8th row!

* Undo 7th queen, no other
choice

* Undo 6th queen, no other
choice

* Undo 5th queen, try next

0
B
1
i
it

Q¥

Backtracking

*

*

*

*

Keep trying to extend the next solution
If we cannot, undo previous move and try again
Exhaustively search through all possibilities

... but systematically!

Coding the solution
board [<

* n x n grid, number rows and columns from @ to n-1

* How do we represent the board?

f
* board[i][j] == 1 indicates queen at (i,j) V& ‘*
* board[i][j] == @ indicates no queen L@ME

* We know there is only one queen per row

* Single list board of length n with entries @ to n-1

* board[i] == j:queeninrow i, column j,i.e. (i,3)

p—

164

——

1)
==0

Lopnel
Overall str ?ure ke §y bl

def placequeen(i,board): # Trying row i [/ TV PR
for ‘each ¢ _such that (i,c) is available:
place queen at (i,c) and update board
i1
return(True) # Last queen has been placed
else: | !

extendsoln = placequeen(i+l,board)
if extendsoln:
return(True) # This solution extends fully
else:
undo this move and update board
e
ek.return(False) # Row i failed

jo 1|
peanpred

O A—d

Updating the board

* Our 1-D and 2-D representations keep track of the
queens

2V A
QLY
V ‘.

* Need an efficient way to compute which squares are

free to place th t
ree to place the next queen | |[Jij] “&'f‘ hach

* n xnattack grid 1 feons
* attack[i][j] == 1if (i,]j) is attacked by a queen
* attack[i][j] == @if (i, 3j) is currently available

* How do we undo the effect of placing a queen?

* Which attack[i][j] should be reset to 0?

Updating the board

* Queens are added row by row
* Number the queens 0 to n-1
* Record earliest queen that attacks each square

* attack[1][j] == kif (1,J) was first attacked by
queen k

* attack[i][j] == -1if (i,7) is free
* Remove queen k — reset attack[i][j] == kto -1

* All other squares still attacked by earlier queens

Updating the board

* attack requires n? space
* Each update only requires O(n) time
* Only need to scan row, column, two diagonals

* Can we improve our representation to use only
O(n) space?

A better representation

* How many queens attack row i?

* How many queens attack row j?

* An individual square (i,j) is attacked by upto 4
queens

* Queen on row i and on column j

* One queen on each diagonal through (i,))

Numbering diagonals

* Decreasing diagonal: 012 34567

c:olumn - rOV\)is invariant

c-r=2

Nooahkh,owbh =0

Numbering diagonals

* Decreasing diagonal:

e ; 012345 7
column - row is invariant

e

Nooakh,owbh =0

Numbering diagonals

* Decreasing diagonal: 0 ??')? Y

column - row is invariant
0 /

* Increasing diagonal:
column + row is invariant

N o o W\

I

Numbering diagonals

* Decreasing diagonal:
column - row is invariant

* |ncreasing diagonal:
column + row is invariant

Nooahkh,owbh =0

01234567

c+r=[12

Numbering diagonals

* Decreasing diagonal: 0 1.2 3 456 7

column - row is invariant

* |ncreasing diagonal:
column + row is invariant

) is attacked if

c+r=[12

column j is attacked
diagonal j-i is attacked

(i
* row i is attacked
*
*
*

diagonal j+i is attacked

O(n) representation
&

row[i] == 1 if rowiis attacked, @..N-1 o

*

*

col[i] == 1if columniis attacked, @. .N-1

*

NWtoSE[i] == 1 if NW to SE diagonal i is
attacked, -(N-1) to (N-1)

*

SWtoNW[i] == 1 if SW to NE diagonal i is
attacked, @ to 2(N-1)

» &
U

NWw N

+ e Updating the board w
wans
anh- Ofn) + i) is free i sW s
W.\fw. row[i]==col[j]==NWtoSE[j-i]==SWtoNE[j+i]==0

* Add queen at (i,3j)

b

FOWLL],c0rJ],NWtoSE[j-1],SWtoNE[j+i]) =
Q(,L) sl @5 ki
Wﬂ} * Remove queen at (i, j)
L board[i] =@
o) w (row[i],colYf],NWtoSE[-1], SWtoNE[§+i1) =

hw (0,0,0,0)

wC

(47

Implementation details

* Maintain board as nested dictionary

* board['queen'][i] = j : Queen located at (i,j)

*

board['row'][1] 1 : Row i attacked

*

board['col'][1] 1 : Column i attacked

*

board['nwtose'][1i]
attacked

1 : NWtoSW diagonal i

*

board['swtone'][1i]
attacked

1 : SWtoNE diagonal i

Overall structure

def placequeen(i,board): # Trying row i
for each c such that (i,c) is available:
place queen at (i,c) and update board

p Tk == ek
return(True) # Last queen has been placed
else:

extendsoln = placequeen(i+l,board)
if extendsoln:
return(True) # This solution extends fully
else:
undo this move and update board
else:
return(False) # Row i failed

All solutions?

def placequeen(i,board): # Try row i
for each:-c such that €1 ,¢c) 1s ovailable:
place queen at (i,c) and update board

it =i
record solution # Last queen placed
else:

extendsoln = placequeen(i+l,board)
undo this move and update board

Global variables

* Can we avoid passing board explicitly to each
function?

* Can we have a single global copy of board that all
functions can update?

Scope of name

* Scope of name is the portion of code where it is
available to read and update

* By default, in Python, scope is local to functions

* But actually, only if we update the name inside
the function

Two examples

def £C):

Y =X
print(y)
X = 7

fO
Fine!

Two examples

def f£C): def FC):
V. — X Vo=
print(y) printCy)
x — 27
X = 7
fO X =7
Fine! fO Error!

* |f x is not found in f(), Python looks at enclosing
function for global x

* If x is updated in f(), it becomes a local name!

Global variables

* Actually, this applies
only to immutable
values

* Global names that
point to mutable
values can be
updated within a
function

Global immmutable values

* What if we want a
global integer

* Count the number
of times a function
is called

* Declare a name to be
global

def)
global x
V=X
print(y)
x = 42

e — 7

fO
print(x)

Global immmutable values

* What if we want a
global integer

* Count the number
of times a function
is called

* Declare a name to be
global print(x) 22

Nest function definitions

* Can define local
“helper” functions

* g and h() are only
visible to f()

* Cannot be called
directly from outside

def fQ):
def g(a):
returnCa+1)

def h(b):
return(2*b)

global x

y = g0 + X))
printCy)

X = 22

<

a(z) %

Nest function definitions

* |f we look up x, y inside
g or h() it will first
look in f(), then outside

* Can also declare names
global inside g(), h()

* Intermediate scope
declaration: nonlocal

* See Python
documentation

def fQO):
def g(a):
return(a+1)

def h(b):
return(2*b)

global x

y = 9(x) + h(x)
print(y)

X = 27

X =7

fO

Generating permutations

* Often useful when we need to try out all possibilities

* Each potential columnwise placement of N
queens is a permutation of {0,1,...,N-1}

* Given a permutation, generate the next one

* For instance, what is the next sequence formed
from {a,b,..,m} , in dictionary order after

dchbogeglkonmj

{a,b,c)dg

O A

LMK,/\/’{

ab cd

decba

pow

1224

L3 2)

1(5) L
|

1y 23

Generating permutations

* Smallest permutation — all elements in ascending order
dbcdefaghijklmn

* Largest permutation — all elements in descending order
mliligihgtfedechba

* Next permutation — find shortest suffix that can be
incremented

* Or longest suffix that cannot be incremented

Next permutation

* Longest suffix that cannot be incremented

* Already in descending orde/\

dchbaeglC}onmjl

Next permutation

* Longest suffix that cannot be incremented

* Already in descending order

dchbaegllkonmii

* The suffix starting one position earlier can be
incremented

Next permutation

* Longest suffix that cannot be incremented
* Already in descending order

dchbaegdlikon 'i)

* The suffix starting one positl

incremented
* Replace k by next largest lefter Yo its right, m

* Rearrage k o n j 1 in asgendirgg order

dchbaeglm@

Implementation

* From the right, identify first decreasing position
gchbaeglikonmnmg:
* Swap that value with its next larger letter to its right
dchbaeglmonkii
* Finding next larger letter is similar to insert

* Reverse the increasing suffix

achbgedlmijhkno

