~ Lecture 5, 04 October 2021

v Operating on lists

Recall functions that operate on lists, using for

def sumlist(l):
sum = 0
for x in 1:
sum = sum + X
return(sum)

def average(l):
if L ==1[1]:
return
return(sumlist(l)/len(1l))

def aboveaverage(l):
if 1 ==1[1]:
return
avg = average(l)
aboveavglist = []
for x in 1:
if x >= avg:
aboveavglist.append(x)
return(aboveavglist)

aboveaverage requires a second pass over the list, sequence of loops

aboveaverage is an example of filtering a list

e extracting a sublist satisfying a certain property
Many useful functions on lists are built-in to Python

sum([1,2,3,4,5]),max([1,2,3,4,5]),min([1,2,3,4,5])

(15, 5, 1)

v Nested loops

¢ find all elements commonto 11 and 12

o foreach x in 11, checkif x isin 12
o foreach y in 12, checkif x ==

det Listcommon(LlL,LZ):
commonlist = []

for x in 11: # In set theoretic terms, 11 x 12
for y in 12: # Nested loop - takes len(ll1l)*len(1l2) steps
if x == y:

commonlist.append(x)
return(commonlist)

listcommon([2,4,3,4]1,13,4,71)

(4, 3, 4]

e Nested loops can be expensive
. 108 operations take about 10 seconds in Python

i=20
for x in range(10000):
for y in range(10000):
1= 1i+1
print(i)

100000000

e Can we use the same idea to check if | has duplicates?
e Nested loop over positions in the list rather than values of the list
» Be careful to generate each pair of positions (i,j) only once, inner loop starts from i+1

def checkduplicate(l):
for i in range(len(l)):
for j in range(i+1l,len(l)):
if 1[i] == 1[j]:
return(True)
return(False) # Nested loop exited, no duplicates found

Modify this to return a list of duplicates

e |f there are more than 2 copies, duplicates get flagged multiple times

def checkduplicate2(l):
duplist = []
for i in range(len(l)):
for j in range(i+1,len(l)):
if 1[i] == 1[j]:
duplist.append(l[i])
return(duplist)

checkduplicate2([3,2,3,2,3])

[3, 3, 2, 3]

e x in 1 returns True if x is an element of 1

* Note that this is implicitly a loop running over all elements in 1

def listcommon2(11,12):
commonlist = []

for x in 11: # In set theoretic terms, 11 x 12
if x in 12: # Membership check, implicitly a loop
commonlist.append(x)
return(commonlist)

Compare the behaviour of the listcommon and listcommon2 when there are duplicates in one or both
lists

listcommon([2,4,3,4]1,[3,4,7]), listcommon2([2,4,3,4]1,[3,4,7])

([4, 3, 41, [4, 3, 4])

listcommon([2,4,3]1,13,4,4,7]), listcommon2([2,4,3]1,[3,4,4,7])

(4, 4, 31, [4, 3])

listcommon([2,4,3,4]1,[3,4,4,7]1), listcommon2([2,4,3,4]1,[3,4,4,7])

(4, 4, 3, 4, 4], [4, 3, 4])

v if-elif-else

e sgn(x) = -1 if x is negative, 0 if x is 0, 1 if x is positive
e Nested if, indentation increases
e if, elif ... else

def sgn(x):
if x < 0:
return(-1)
else:
if x ==
return(0)
else:
return(l)

def sgn2(x):
if x < 0:
return(-1)
elif x ==
return(0)
elif x > 0:
return(l)

else:
return
sgn(-7),sgn(0),sgn(0.52),sgn2(3.5)

('11 Or 1r 1)

True and False

e Other values can also be interpreted as True / False
e Numeric O is interpreted as False

e Empty list [] is interpreted as False

e Anything that is not intepreted as False is True

Intended use is to simplify conditionals like if x == 0 or if 1 != []

def average2(1l):
if 1: # Does 1 evaluate to True, that is, is 1 != []?
return(sum(l)/len(1l))

print(average2(
print(average2(

[1,3,5,7]))
[1))

None

Behaviour can be unpredictable if non-booleans are used recklessly in boolean expressions

True + 7, 7 + True, 7 and 0, [] or 7, 7 or [], 8 and [3], [3] and 8

(8, 8, 0, 7, 7, [3], 8)

Slice of list

e sublist from position i to position j
e T[i:jlis [Vl[i],l[i+1],...,[j-11]
e If j <= i,resultis empty

mylist = list(range(100))

mylist[45:54] # Slice from mylist[45] to mylist[53]

[45, 46, 47, 48, 49, 50, 51, 52, 53]

Omitting an endpoint implicitly uses 0 or len(1l), as appropriate

mylist[:17], mylist[89:] # If you leave out an endpoint it is assumed

(fe, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
[89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])

e Upper bound beyond len(1) truncatesto len(1)
e Positions -1 to -n are mapped to their positive equivalents
e Lower bound below -n truncatesto 0

mylist[90:101] # Slice is more forgiving about positions out of range

[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

mylist[7:5], mylist[-5:5], mylist[-5] # mylist[-5:5] is same as mylist

(r1, 1, 95)

mylist[-101:10]

(e, 1, 2, 3, 4, 5,6, 7, 8, 9]
Omitting both endpoints gives a full slice

mylist[:]

41, o
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,

77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99]

Can provide a third parameter to a slice, like the step size in range()

mylist[0:100:15], mylist[:52:7], mylist[0::10]

(fe, 15, 30, 45, 60, 75, 90],
(e, 7, 14, 21, 28, 35, 42, 49],
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

Mutable and immutable values

X =7
y =X
X = X+1
What is the value of y after this?
(X,y)
(8, 7)
11 =1[1,2,3]
12 = 11

11[0] -=-4- # Reassign value at position 0 to 4
What are the values of 11 and 127

(11,12)

(4, 2, 31, [4, 2, 3])

e When we assign y = x, the value is copied - immutable value

e When we assign 12 = 11, both names point to the same value - mutable value

~ How can we "safely" copy a list?

e Make a copy of 11 in 12 that does not point to the same value

Any slice 1[i:j] creates a new list

Assign a full slice 1[:1]

L= [0111213141516171819]
1[:]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
11 =1[1,2,3]
12 = 11[:]

11[0] = 4 # Reassign value at position 0 to 4
What are the values of 11 and 127

(11,12)

(4, 2, 31, [1, 2, 3])

v Nested lists

A list can contain lists as elements
Use multiple subscripts to extract inner values

[[16,11], [12,13]]

=
Il

m[O],m[1]

([1e, 111, [12, 13])

m[O][0], m[O][1]

(10, 11)

m[{1][0]

12

~ Pitfalls with mutability and multiple references to same list value

zerolist = [0,0]
matrix = [zerolist,zerolist]

matrix

[[o, 0], [0, 0]]
matrix[0][0] = 7

matrix

(tz, o1, [7, 0]]

zerolist

(7, 0]

Difference between 1.append(x) and 1 = 1 + [x]

e 1l.append(x) modifies 1 in place
e 1 =1+ [x] createsanewlist 1

11 [1,2,3]
12 = 11
11.append(4)

(11,12)

(1, 2, 3, 41, [1, 2, 3, 4])

13 =11,2,3]
14 = 13

13 = 13+[4]
(13,14)

(r1, 2, 3, 41, [1, 2, 31)

14[0]=5

13,14
([1, 2, 3, 41, [5, 2, 3])

Depending on the need, it may be useful to modify a list in place or return a modified list without changing
the original

e l.sort() sortsalistin place
e sorted(1l) returns a sorted copy of the list, leaving the original unchanged

mylist = [7,3,1,5,6]

mylist.sort() # sorts in place

mylist

(1, 3, 5, 6, 7]

mylist = [7,3,1,5,6]
sorted(mylist) # Does not modify argument, returns sorted list

(1, 3, 5, 6, 7]

mylist

(7, 3, 1, 5, 6]

v 0s completed at 9:14 PM

