
Introduction to Programming, Aug-Dec 2008

Lecture 1, Monday 4 Aug 2008

Administrative matters

Resource material

Textbooks and other resource material for the course:

• The Craft of Functional Programming by Simon Thompson

• Introduction to Functional Programming using Haskell by Richard Bird

• Programming in Haskell by Graham Hutton

• Introduction to Functional Programming by Richard Bird and Philip Wadler

• Instructor’s lecture notes, to be made available as the course progresses

• Online archive at http://www.haskell.org

Evaluation

• Approximately 8–10 assignments, 50%

• Midsemester examination, 20%

• Final examination, 30%

Introduction to Haskell

Programs in Haskell are functions that transform inputs to outputs. Viewed externally, a
function is a black box:

x f f(x)

The internal description of the function f has two parts:

1

1. The types of inputs and outputs

2. The rule for computing the output from the input

In mathematics, the type of a function is often implicit: Consider sqr(x) = x2 which
maps each input to its square. We could have sqr : Z → Z or sqr : R → R or sqr : C → C,
depending on the context.

Here is a corresponding definition in Haskell.

sqr :: Int -> Int

sqr x = x^2

The first line gives the type of sqr: it says that sqr reads an Int as input and produces
an Int as output. In general, a function that takes inputs of type A and produces outputs of
type B has the type A -> B. The second line gives the rule: it says that sqr x is x^2, where
^ is the symbol for exponentiation.

Basic types in Haskell

Int is a type that Haskell understands and roughly corresponds to the set of integers Z

in mathematics. “Roughly”, because every integer in Haskell is represented in a fixed and
bounded amount of space, so there is a limit on the magnitude of the integers that Haskell
can manipulate (think of what would happen if you had to do arithmetic with pencil and
paper but could not write a number that was longer than one line on the page).

Here are (some of) the types that Haskell understands by default:

Int Integers. Integers are represented internally in binary. Typically, one binary digit (or
bit) needs to be used to denote the sign (+/-) of the integer, and the remaining bits
denote its magnitude. The exact representation is not important, but we should realize
that the size of the representation is fixed (that is, how many binary digits are used to
represent an Int), so the magnitude is bounded.

Float “Real” numbers. The word Float is derived from floating point, a reference to the fact
that when writing down a real number in decimal notation, the position of the decimal
point is not “fixed”, but “floating”. Internally, a Float is represented in scientific

notation (for example, 1.987x1023) using two binary quantities: the mantissa and the
exponent. For each of these, we reserve one bit for the sign and use the rest for the
magnitude. Thus, we can represent numbers that are both very large and very small
in magnitude: for instance, 1.987x1023 and 1.987x10−23.

Once again, the exact representation is not important but we should realize that Float
is only an approximation of the set of real numbers, just as Int is only an approximation
of the integers. In fact, the approximation in Float has two dimensions—there is a
limit on magnitude and precision. Thus, real numbers are dense (between any two real
numbers we can find a third) but floating point numbers are not.

2

Char Used to represent text characters. These are the symbols that we can type on the
keyboard. A value of this type is written in single quotes: for instance, ’z’ is the
character representing the letter z, ’&’ is the character representing ampersand etc.

A significant amount of computation involves manipulating characters (think of word
processers) so this is an important type for programming.

Bool This type has two values, True and False. As we shall see, these are used frequently
in programming.

Compilers vs interpreters

The languages that we use to program computers are typically “high level”. These have
to be converted into a “low level” set of instructions that can be directly executed by the
electronic hardware inside the computer.

Normally, each program we write is translated into a corresponding low level program by
a compiler.

Another option is to write a program that directly “understands” the high level program-
ming language and executes it. Such a program is called an interpreter.

For much of the course, we will run Haskell programs through an interpreter, which
is invoked by the command hugs or ghci. Within hugs/ghci you can type the following
commands:

:load filename — Loads a Haskell file

:type expression — Print the type of a Haskell expression

:quit — exit from hugs

:? — Print ”help” about more hugs commands

Functions with multiple inputs

One feature of function definitions that we have not emphasized is the the number of inputs.
For instance, the function sqr that we saw earlier has only one input. On the other hand,
we could write a function on two inputs, such as the mathematical function plus , below

plus(m, n) = m + n

Mathematically, the type of plus would be Z×Z → Z (or R×R → R). This means that,
in addition to the types of the input and the rule for computation, we also need to include
information about the arity of the function, or how many inputs it takes.

This complication can be avoided by taking the somewhat drastic step of assuming that
all functions take only one argument. How then can we define a function such as plus that
needs to operate on two arguments? We say that plus first picks up the argument m and

3

becomes a new function plus m, that adds the number m to its argument n. Thus, we break
up a function on two arguments into a sequence of functions of one argument.

m plus

plus m

n

m+n

What is the type of plus? It takes in an integer m and yields a new function plus m that
is like sqr above: it reads an integer and generates an output of the same type, so its type
is Z → Z or, in Haskell notation, (Int -> Int). Thus, in Haskell notation, plus reads an
Int and generates a function of type (Int -> Int), so the type of plus is Int -> (Int ->

Int). Here is a complete definition of plus in Haskell:

plus :: Int -> (Int -> Int)

plus m n = m + n

Notice that we write plus m n and not plus(m,n)—there are no parentheses around the
arguments to a function. In fact, the correct bracketing for plus m n is (plus m) n. This
tells us to first feed m to plus to get a function (plus m) to which we then feed the argument
n.

What if we had a function of three arguments, such as plus3(m,n,p) = m+n+p? Once
again, we assume that plus3 consumes its arguments one at a time. Having read m, plus3
becomes a function like plus that we defined earlier, except it adds on m to the sum of its
two arguments. Since the type of plus was Int -> (Int -> Int), this is the output type
of plus3. The input to plus3 is an Int, so the overall type of plus3 is Int -> (Int ->

(Int -> Int)).
Here is a complete definition of plus3 in Haskell:

plus3 :: Int -> (Int -> (Int -> Int))

plus m n p = m + n + p

Once again, note the lack of brackets in plus m n p, which is implicitly bracketed ((plus

m) n) p.
In general, suppose we have a function f that reads n inputs x_1, x_2,. . . , x_n of types

t_1,t_2,. . . ,t_n and produces an output y of type t. The notation :: introduced earlier to
denote the type of a function is read as “is of type” and we can use here as well to write
x_1::t_1, x_2::t_2, . . . , y::t to denote that x_1 is of type t_1, x_2 is of type t_2, . . . , y
is of type t.

We can define the type of f by induction on n.
The base case is when n is 1, so f reads one input x_1::t_1 and produces the output

y::t. In this case, f :: t_1 -> t, as we have discussed earlier.

4

For the inductive step, we have a function that reads its first input x_1::t_1 and then
transforms itself into another function g that reads inputs x_2::t_2,x_3::t_3,. . . ,x_n::t_n
and produces an output y::t. Let the type of g be T. Then, f : :t_1 -> T. If we unravel
the structure of T inductively, we find that

f::t_1 -> (t_2 -> (... -> (t_n -> t)...))

In this expression, the brackets are introduced uniformly from the right, so we can omit
the brackets and unambiguously write

f::t_1 -> t_2 -> ... -> t_n -> t

More on defining functions

The simplest form of definition is the one we have seen in sqr, plus and plus3, where we
just write a defining equation using an arithmetic expression involving the arguments to the
function.

The arithmetic operators that we can use in writing such an expression are +,-,*,/

signifying addition, subtraction, multiplication and division. As usual, we can also use -

in front of an expression to negate its value, as in -(x+y). In addition, the function div

and mod signify integer division and remainder, respectively. So div 3 2 is 1, div 7 3 is
2, . . . while mod 10 6 is 4, mod 17 12 is 5, . . . Note that div and mod are functions, so they
are written before their arguments rather than between them: it is div 3 2 and mod 17 12,
not 3 div 2 and 17 mod 12.

We can also write expressions involving other types. For instance, for values of type
Bool, the operator && denotes the and operation, which returns True precisely when both
its arguments are True. Dually, the operator ||, pronounced or, returns True when at least
one of its arguments is True (or, equivalently, || returns False precisely when both its
arguments are False). The unary operator not inverts its argument. For instance, here is
a definition of the function xor which returns True provided exactly one of its arguments is
True.

xor :: Bool -> Bool -> Bool

xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

We can also use operators to compare quantities. The result of such an operation is of
type Bool. Here is a function that determines if the middle of its three arguments is larger
than the other two arguments.

middle :: Int -> Int -> Int -> Bool

middle x y z = (x <= y) && (z <= y)

The comparison operators are == (equal to), /= (not equal to), < (less than), <= (less
than or equal to), > (greater than), >= (greater than or equal to).

5

