Principles of Program Analysis:

Data Flow Analysis

Transparencies based on Chapter 2 of the book: Flemming Nielson,
Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis.

Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris
Hankin.

T heoretical Properties

e Structural Operational Semantics

e Correctness of Live Variables Analysis

The Semantics

A state is a mapping from variables to integers:

o € State = Var — Z
The semantics of arithmetic and boolean expressions

A AExp — (State — Z) (no errors allowed)
B: BExp — (State — T) (no errors allowed)
The transitions of the semantics are of the form

(S,0) — o’ and (S,o) — (S, o)

Transitions
([z := a]t, o) — o[z — Ala]lo]
([skip]e,a> — O

<S]_,O'> — <S/70/>
<Sl;3270-> — <S{|_;527O-,>

(S1,0) — o
(51;52,0) — (52,0%)

(if [b]¢ then Sy else Sp,0) — (S1,0) if B[[b]lo = true
(if [b]¢ then S else Sp,0) — (So,0) if B[[b]lc = false

(while [b]¢ do S,o) — ((S;while [b]¢ do S),0) if B[[b]lo = true
(while [b]f do S,0) — o if B[[b]lc = false

Example:
([y:=x]*; [z:=1]%; while [y>1]> do ([z:=z*y]*; [y:=y-1]°); [y:=0]°, 0300)

—

—

—

([z:=1]%; while [y>1]> do ([z:=z*y]*; [y:=y-1]°); [y:=0]°, o330)
(while [y>1]® do ([z:=z*y]*; [y:=y-1]°); [y:=0]°, 0331)

([z:=z*y]"; [y:=y-1]°;
while [y>1]> do ([z:=zxy]?; [y:=y-1]°); [y:=0]°, 0331)

— ([y:=y-1]°;while [y>1]> do ([z:=z*y]*; [y:=y-1]°); [y:=0]®, 0333)
— (while [y>1]3 do ([z:=zxy]?; [y:=y-1]°); [y:=0]°, 0'303)
— ([zi=zxy]*; [y:=y-1]°>;

Ll

while [y>1]3 do ([z:=zxy]*; [y:=y-1]°); [y:=0]°, 0323)
([y:=y-1]°;while [y>1]> do ([z:=zxy]*; [y:=y-1]°); [y:=0]°, 0326)
(while [y>1]° do ([z:=z*y]*; [y:=y-1]°); [y:=0]°, 0316)
([y:=0]°,0316)

0306

Live Variables Analysis

A variable is live at the exit from a label if there is a path from the label
to a use of the variable that does not re-define the variable.

The aim of the Live Variables Analysis is to determine

For each program point, which variables may be live at the exit
from the point.

Example:
point of interest

J
[x :=2]1; [y:=4]2; [X:=1]3; (if [y>X]4 then [z:=y]5 else [z:=y*y]6); [X:=z]7
The analysis enables a transformation into

[y:=4]%; [x:=1]3; (if [y>x]* then [z:=y]° else [z:=y*y]®); [x:=z]’

Live Variables Analysis

kill and gen functions

Kily([z := a]*) = {z}
killy([skip]t) = @
Killpy([b]°) = 0
geny([z 1= al®) = FW(a)
genyy([skip]?) = 0
genpy([b]) = FV(b)

data flow equations: LV—

(0 if £ ¢ (S%)
l—vemt(e) — { U{I—Ventry<£,) | (6/76) c (S*)} otherwise

I—Ventry(e) — (Lvexit(g)\Ki//LV(Be))UgenLV(BE)
where B e (S%)

Equations and Constraints

Equation system LV=(Sx):

| . 0 if ¢ € (Sy)
Weait(£) 1= { ULV cniry () | (£,8) € Flow(S,)} otherwise
Vet () = (Vi (O\Killy (BY)) U geny (BY)
where B ¢ (Sy)

Constraint system LVE(Sy):

| 0 if ¢/ € (Sy)
Lvexzt(e) D { U{I—Ventry(el) | (f/,f) c (S*)} otherwise

WV entry(8) D (LV it (O\Killy (BY)) U genyy (BY)
where Bt ¢ (Sy)

Each solution to the equation system LV=(S%) is also a solution to the
constraint system LVS(Sy).

Trivial.

The least solution to the equation system LV=(S«) is also the least
solution to the constraint system LVE(Sy).

Use Tarski's Theorem.

Proceed by contradiction. Suppose some LHS is strictly
greater than the RHS. Replace the LHS by the RHS in the solution.
Argue that you still have a solution. This establishes the desired con-
tradiction.

A solution /ive to the constraint system is preserved during computation

(S,01) — <S/70/1> — e = <S/T,O'/1/> —> (7’1”

= LV= = LV= = LV=

live live cee live

requires a lot of machinery — see the book.

Correctness Relation

g1~V 0o2

means that for all practical purposes the two states o1 and o5 are equal:
only the values of the live variables of V matters and here the two states
are equal.

Example:
Consider the statement [x:=y+z]¢
Let V1 = {y,z}. Then o1~y,00 means o1(y) = o2(y) Ao1(z) = 02(2)

Let Vo> = {x}. Then o1~y,00 means o1(x) = o2(x)

The relation “~" is invariant under computation: the live variables for
the initial configuration remain live throughout the computation.

(S,01) = (S, {f’1> — = (97 f{'1'> — o7
NV NV/ NV// NV///
(S, 09) — (S, 0’2> — e — (S”, 0’2’> — 0/2”
V = /iveentry((S)) V"= /iveentry((SU))
VI = //.Ve(gnmwy((Sl)) V= /iveefz;it((SH))
= //'vemt(é)

for some ¢ ¢ (S)

Interprocedural Analysis

e [he problem

e MVP: "Meet” over Valid Paths

e Making context explicit

e Context based on call-strings

e Context based on assumption sets

(A restricted treatment; see the book for a more general treatment.)

The Problem: match entries with exits

proc fib(val z, u; res v)

1

is
[z<3]? no
w -
call fib(x,0,v)]? v:=u+1]3 call fib(z-1,u,v)]?
Y7110 5

|

[call fib(z-2,v,v)]%

end8

Preliminaries

Syntax for procedures

Programs: P, = begin Dy Sx end
Declarations: D ::= D; D | proc p(val z;res y) is'" S end

Statements: S ::=---[[call p(a,z)]/

Example:

begin proc fib(val z, u; res v) is
if [2<3]2 then [v:=u+1]3
else ([call fib(z—l,u,v)]g; [call fib(z-2,v,v)]9)
end"”’;
[call £ib(x,0,¥)]9,
end

Flow graphs for procedure calls

([call p(a,2)]y?) = Lo
(lcall p(a, 2)]) = {4}

([call p(a,2)]) = {lcall p(a,2)]y}
(lcall p(a, 2)I) = {lc,tr}

([call p(a, 2)1;) = {(leiln), (La; £r)}

if proc p(val z;res y) is" S end is in Dy

o (Vc;¥y) is the flow corresponding to calling a procedure at ¢. and
entering the procedure body at ¢,, and

o (Vy:0,) is the flow corresponding to exiting a procedure body at /4,
and returning to the call at #,.

Flow graphs for procedure declarations

For each procedure declaration proc p(val z;res y) is" S end’” of Dy:

(p) = ¢

(p) = {4z}

(p) = {isgn, endgx} U (S)

(p) = {ln, Lz} U (S)

(p) = {{ln,init(S))} U (S) U{(l,la) | £ € (S)}

Flow graphs for programs

For the program P, = begin D, S« end:

— (S*)
(S%)

— U{ (p) | proc p(val x;res y) ist S end® is in Dy}
U (Sx)

= (J (p) | proc p(val z;res y) is'™ S end” is in Dy}
U (Sx)

= ([(p) | proc p(val x;res y) ist § end® is in Dy}
Urlow(Sy)

{(le, bn, Ly, br) | proc p(val x;res y) ist" S end® is in Dy
and [call p(a, Z)]Ei is in Sy}

Example:

begin proc fib(val z, u; res v) is
if [z<3]2 then [v:=u+1]3
else ([call fib(z-1,u,v)]g; [call fib(z-2,v,v)]%)
end"”’;
[call £ib(x,0,y)]9,
end

We have

= {(1,2),(2,3),(3,8),
(2,4),(4,1),(8,5),(5,6),(6,1),(8;7),(7,8),
(9;1),(8;10)}
— {(97 Y 710)7 (47 Y 75)7 (67 Y 77)}
and = 9 and = {10}.

A naive formulation

Treat the three kinds of flow in the same way:

flow treat as
(01,42) | (£1,42)
(gc; en) (ECaen)
(Ca; Or) | (Lg,lr)

Equation system:

Ae(€) = fo(Ac(£))
Ac(l) = | {Ae(&) | ({0) e For ({'0)c For () e Fug

But there is no matching between entries and exits.

MVP: “Meet” over Valid Paths
Complete Paths

We need to match procedure entries and exits:

A complete path from ¢4 to /5> in P, has proper nesting of procedure
entries and exits; and a procedure returns to the point where it was

called:

CPy, o, — {1 whenever £ = /5
CPy, o; — €1, CPyy 4, whenever (£1,05) €
CPyo— Le, CPy, 1., CPy. ¢ wWhenever P, contains [call p(a,)],

and proc p(val z;res y) is'" S end

More generally: whenever (4,7, 0., 0r) is an element of (or
for backward analyses); see the book.

Valid Paths

A valid path starts at the entry node of P, all the procedure exits
match the procedure entries but some procedures might be entered but
not yet exited:

VP — VPt 4 whenever ¢ € Lab,

VP o, — 41 whenever £1 = /5

VP, 05 — £1, VPy, 4, whenever (£1,45) €

VPy.o — e, CP , VP; ¢ whenever P, contains [call p(a, z)]ﬁj

and proc p(val z;res y) is'" S end

VPy. ¢ — e, VP, 4 whenever P, contains [call p(a, z)]&f
and proc p(val z;res y) is'" S end

The MVP solution
MVPs (&) = | [{fAt) | £ € vpath.(£)}

MVP(£) = | [{fA) | £ € vpathy(£)}

where
vpatho(£) = {[l1, - ,ln_1]|mn>1 ANy, =4LAN][l1,---,4p] is @ valid path}
vpathe(£) = {[l1, - -,én]l | m>1ANLly=4LAN][l1,---,4y] is @ valid path}

The MVP solution may be undecidable for lattices satisfying the As-
cending Chain Condition, just as was the case for the MOP solution.

Making Context Explicit

Starting point: an instance (L,F,F,FE, ¢, f.) of a Monotone Framework
e the analysis is forwards, i.e. F = and £ ={ 3
e the complete lattice is a powerset, i.e. L = P(D);
e the transfer functions in F are completely additive; and
e cach f,is given by f)(Y) = U{ ¢p(d) | d € Y} where ¢, : D — P(D).

(A restricted treatment; see the book for a more general treatment.)

An embellished monotone framework

e I/ =P(A x D):

e the transfer functions in F’ are completely additive; and

e cach f; is given by f)(Z) = U{- x ¢p(d) | (8, d) € Z}.

Ignoring procedures, the data flow equations will take the form:

Ae (ﬁ) — fé(Ao (6))

for all labels that do not label a procedure call

| [{Ae(&) | (£,€) € For (£;0) € F} U/,
for all labels (including those that label procedure calls)

Ao(£)

Example:

Detection of Signs Analysis as a Monotone Framework:

(Lsigna Fsigna F, E, Lsign f.sign) where Sign = {-,0,+} and

Lgign = P(Var, — Sign)

The transfer function fs'g” associated with the assignment [z := a]¢ is

5'%”(y) — U{ ¢S|gn sign) ‘ oSIgn c Y}
where Y C Var, — Sign and

B8 (0%8") = (08" [z — 5] | 5 € Agign[all (c¥8")}

Example (cont.):

Detection of Signs Analysis as an embellished monotone framework

S|gn — 7D(- X (Var* — Slgn))

The transfer function associated with [z := a]¢ will now be:

S|gn (2) = U{- v ¢S|gn sign) | (., O.Sign) € Z}

Transfer functions for procedure declarations

Procedure declarations

proc p(val x;res y) is" S end’

have two transfer functions, one for entry and one for exit:

fo., fo, P& x D) — P& x D)

For simplicity we take both to be the identity function (thus incorpo-
rating procedure entry as part of procedure call, and procedure exit as
part of procedure return).

Transfer functions for procedure calls
Procedure calls [call p(a,z)]z‘f have two transfer functions:

For the procedure call

fglc:P(-x D)— P& x D)

and it is used in the equation:

Ao(le) = fglc(Ao(éc)) for all procedure calls [call p(a,z)],

For the procedure return

f€2c,€'r: PIA x D)|xP(&A x D) - P& x D)

and it is used in the equation:

Ae(ly) = ffc,gr(Ao(le) |, Ac(€r)) for all procedure calls [call p(a, z)]&f
(Note that Ao(4,) will equal Ae(¥;) for the relevant procedure exit.)

Procedure calls and returns

proc p(val x;res y)

igln
: M
N
N

Z

[call p(a, z)]&f

Z -

endgw

f7.0.(2,2") J

Variation 1: ignore calling context upon return

proc p(val x;res y)

"

l ft e
[call p(a, 2)]f| |
[call p(a,2)]s | - |
| ngC,g,r i
| endeﬂ?
fiz2)y =N x i) | (6, d)eZ N =--G6---d---Z-}

fo.0(2,2") = f7.(2")

Variation 2: joining contexts upon return

l

[call p(a, z)]%

e by

[call p(a,2)]p | -

fi(Z2) =o'y x op.(d) | (6,d) € Z NG =---5---d--

|

f Le,ly

proc p(val x;res y)

isen

12022 = 24 (Z2)u 25 (2"

.E:..

‘)

Different Kinds of Context

e Call Strings — contexts based on control
— Call strings of unbounded length

— Call strings of bounded length

e Assumption Sets — contexts based on data
— Large assumption sets

— Small assumption sets

Call Strings of Unbounded Length
A = Lab*

Transfer functions for procedure call

L2 = {8} x ¢.() | (5,d) € Z A
6 = 1[0, 4]}

12.0,(2,2") = {0} x ¢4, (d,d) | (5,d) € Z A
0, dyez Ao =1[5¢l)

Example:

Recalling the statements:

proc p(val z;res y) is " S end [call p(a, 2)]/

Detection of Signs Analysis:

initialise formals
2" (0% = {o%" [w — slly — T | s € Aggalall (0°B"), " € {~,0,+}}

5182 (058", 055") = {038 [z > 035" (D)][y — 03B ()] [z — 035" (W)}

restore formals return result

Call Strings of Bounded Length
-=LabS

ransfer functions for procedure call

fi(2) = {0} x 67 (d) | (5 d)eZ A
= [0,£c])}

f6.0(2,2") = J{{0} x ¢ 4, (d,d) | (5,d) € Z A
(¢",d)yez' N & =1T64L}

A special case: call strings of length

A = {A}

Note: this is equivalent to having no context information!

Specialising the transfer functions:

() =U{¢o7.(d) | de Y}

foVY) =U{¢7.,(dd)|deY A deY'}

(We use that P(A x D) isomorphic to P(D).)

A special case: call strings of length

A = Lab U {A}

Specialising the transfer functions:

f1(Z) = J{{Lle} x of.(d) | (6,d) € Z}

f2.0.(2,2") =\ JUH{8} x 674, (d,d) | (6,d) € Z A (Le,d) € Z'}

Large Assumption Sets
Al = P(D)

Transfer functions for procedure call

A2 =} x 91 (d) | (6,d) € Z A
5 ={d' |, d") ez}

2.0,(2,2") =\ J{{8} x ¢7. 4 (d,d) | (5,d) € Z A
(5", dYe Z' Ao ={d"|(6,d") e Z}}

Small Assumption Sets
A =D

Transfer function for procedure call

fi(2) =J{{d} x ¢} (d) | (5, d) € Z}

f2.0.(2, 2" = JI{o} x ¢34 (d,d) | (8,d) € Z A
(d,d") e Z'}

