# Principles of Program Analysis:

## Data Flow Analysis

Transparencies based on Chapter 2 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis. Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris Hankin.

# Theoretical Properties

- Structural Operational Semantics
- Correctness of Live Variables Analysis

#### The Semantics

A *state* is a mapping from variables to integers:

$$\sigma \in \text{State} = \text{Var} \rightarrow \mathbf{Z}$$

The semantics of arithmetic and boolean expressions

$$\mathcal{B}:\ \mathbf{BExp} o (\mathbf{State} o \mathbf{T}) \quad (\mathsf{no}\ \mathsf{errors}\ \mathsf{allowed})$$

The transitions of the semantics are of the form

$$\langle S, \sigma \rangle \to \sigma'$$
 and  $\langle S, \sigma \rangle \to \langle S', \sigma' \rangle$ 

#### **Transitions**

$$\begin{split} &\langle [x := a]^\ell, \sigma \rangle \to \sigma[x \mapsto \mathcal{A}[\![a]\!] \sigma] \\ &\langle [\mathrm{skip}]^\ell, \sigma \rangle \to \sigma \\ &\frac{\langle S_1, \sigma \rangle \to \langle S_1', \sigma' \rangle}{\langle S_1; S_2, \sigma \rangle \to \langle S_1'; S_2, \sigma' \rangle} \\ &\frac{\langle S_1, \sigma \rangle \to \sigma'}{\langle S_1; S_2, \sigma \rangle \to \langle S_2, \sigma' \rangle} \\ &\langle \mathrm{if} \ [b]^\ell \ \mathrm{then} \ S_1 \ \mathrm{else} \ S_2, \sigma \rangle \to \langle S_1, \sigma \rangle \qquad \mathrm{if} \ \mathcal{B}[\![b]\!] \sigma = \mathit{true} \\ &\langle \mathrm{if} \ [b]^\ell \ \mathrm{then} \ S_1 \ \mathrm{else} \ S_2, \sigma \rangle \to \langle S_2, \sigma \rangle \qquad \mathrm{if} \ \mathcal{B}[\![b]\!] \sigma = \mathit{false} \\ &\langle \mathrm{while} \ [b]^\ell \ \mathrm{do} \ S, \sigma \rangle \to \langle (S; \mathrm{while} \ [b]^\ell \ \mathrm{do} \ S), \sigma \rangle \quad \mathrm{if} \ \mathcal{B}[\![b]\!] \sigma = \mathit{true} \\ &\langle \mathrm{while} \ [b]^\ell \ \mathrm{do} \ S, \sigma \rangle \to \sigma \qquad \qquad \mathrm{if} \ \mathcal{B}[\![b]\!] \sigma = \mathit{false} \end{split}$$

#### Example:

```
\langle [y:=x]^1; [z:=1]^2; \text{ while } [y>1]^3 \text{ do } ([z:=z*y]^4; [y:=y-1]^5); [y:=0]^6, \sigma_{300} \rangle
   \rightarrow \langle [z:=1]^2; \text{ while } [y>1]^3 \text{ do } ([z:=z*y]^4; [y:=y-1]^5); [y:=0]^6, \sigma_{330} \rangle
   \rightarrow \( \text{while } \[ \text{y} > 1 \] \] \( \text{do } \( \[ \text{z} = \text{z} \text{y} \]^4; \[ \[ \text{y} := \text{y} - 1 \] \] \( \text{y} := 0 \] \( \text{0} \)
   \rightarrow \langle [z:=z*y]^4; [y:=y-1]^5;
                 while [v>1]^3 do ([z:=z*v]^4; [v:=v-1]^5); [v:=0]^6, \sigma_{331})
   \rightarrow \langle [y:=y-1]^5; \text{ while } [y>1]^3 \text{ do } ([z:=z*y]^4; [y:=y-1]^5); [y:=0]^6, \sigma_{333} \rangle
   \rightarrow \( \text{while } \[ \text{y} > 1 \] \] \( \text{do } \( \[ \text{z} = \text{z} \text{y} \]^4; \[ \[ \text{y} := \text{y} - 1 \]^5 \); \[ \[ \text{y} := 0 \]^6, \( \sigma_{323} \) \\ \)
   \rightarrow \langle [z:=z*y]^4; [y:=y-1]^5;
                 while [y>1]^3 do ([z:=z*y]^4; [y:=y-1]^5); [y:=0]^6, \sigma_{323})
   \rightarrow \langle [y:=y-1]^5; \text{ while } [y>1]^3 \text{ do } ([z:=z*y]^4; [y:=y-1]^5); [y:=0]^6, \sigma_{326} \rangle
   \rightarrow \( \text{while } \[ \text{y} > 1 \]^3 \text{ do } \( [z := z * y]^4; [y := y - 1]^5 \); \[ [y := 0]^6, \sigma_{316} \)
   \rightarrow \langle [y:=0]^6, \sigma_{316} \rangle
    \rightarrow \sigma_{306}
```

### Live Variables Analysis

A variable is *live* at the exit from a label if there is a path from the label to a use of the variable that does not re-define the variable.

The aim of the *Live Variables Analysis* is to determine

For each program point, which variables may be live at the exit from the point.

#### Example:

point of interest

$$[x:=2]^1; [y:=4]^2; [x:=1]^3; (if [y>x]^4 then [z:=y]^5 else [z:=y*y]^6); [x:=z]^7$$

The analysis enables a transformation into

$$[y:=4]^2$$
;  $[x:=1]^3$ ; (if  $[y>x]^4$  then  $[z:=y]^5$  else  $[z:=y*y]^6$ );  $[x:=z]^7$ 

### Live Variables Analysis

#### kill and gen functions

$$\begin{array}{ll} \textit{kill}_{\text{LV}}([x := a]^{\ell}) &= \{x\} \\ \textit{kill}_{\text{LV}}([\mathtt{skip}]^{\ell}) &= \emptyset \\ \textit{kill}_{\text{LV}}([b]^{\ell}) &= \emptyset \\ \\ \textit{gen}_{\text{LV}}([x := a]^{\ell}) &= \textit{FV}(a) \\ \textit{gen}_{\text{LV}}([\mathtt{skip}]^{\ell}) &= \emptyset \\ \textit{gen}_{\text{LV}}([b]^{\ell}) &= \textit{FV}(b) \end{array}$$

data flow equations: LV=

$$\begin{split} \mathsf{LV}_{exit}(\ell) &= \begin{cases} \emptyset & \text{if } \ell \in \mathit{final}(S_\star) \\ \cup \{\mathsf{LV}_{entry}(\ell') \mid (\ell',\ell) \in \mathit{flow}^R(S_\star) \} \end{cases} \text{ otherwise} \\ \mathsf{LV}_{entry}(\ell) &= (\mathsf{LV}_{exit}(\ell) \backslash \mathit{kill}_{\mathsf{LV}}(B^\ell)) \cup \mathit{gen}_{\mathsf{LV}}(B^\ell) \\ & \text{where } B^\ell \in \mathit{blocks}(S_\star) \end{cases} \end{split}$$

### **Equations and Constraints**

Equation system  $LV^{=}(S_{\star})$ :

$$\mathsf{LV}_{exit}(\ell) \ \ = \ \begin{cases} \emptyset & \text{if } \ell \in \mathit{final}(S_\star) \\ \bigcup \{ \mathsf{LV}_{entry}(\ell') \mid (\ell',\ell) \in \mathit{flow}^R(S_\star) \} \end{cases} \text{ otherwise}$$
 
$$\mathsf{LV}_{entry}(\ell) \ \ = \ \ (\mathsf{LV}_{exit}(\ell) \backslash \mathit{kill}_{\mathsf{LV}}(B^\ell)) \cup \mathit{gen}_{\mathsf{LV}}(B^\ell)$$
 where  $B^\ell \in \mathit{blocks}(S_\star)$ 

Constraint system  $LV^{\subseteq}(S_{\star})$ :

#### Lemma

Each solution to the equation system  $LV^{=}(S_{\star})$  is also a solution to the constraint system  $LV^{\subseteq}(S_{\star})$ .

Proof: Trivial.

#### Lemma

The least solution to the equation system  $LV^{=}(S_{\star})$  is also the least solution to the constraint system  $LV^{\subseteq}(S_{\star})$ .

Proof: Use Tarski's Theorem.

Naive Proof: Proceed by contradiction. Suppose some LHS is strictly greater than the RHS. Replace the LHS by the RHS in the solution. Argue that you still have a solution. This establishes the desired contradiction.

#### Lemma

A solution live to the constraint system is preserved during computation



Proof: requires a lot of machinery — see the book.

#### Correctness Relation

$$\sigma_1 \sim_V \sigma_2$$

means that for all practical purposes the two states  $\sigma_1$  and  $\sigma_2$  are equal: only the values of the live variables of V matters and here the two states are equal.

#### Example:

Consider the statement  $[x:=y+z]^{\ell}$ 

Let  $V_1 = \{y, z\}$ . Then  $\sigma_1 \sim_{V_1} \sigma_2$  means  $\sigma_1(y) = \sigma_2(y) \wedge \sigma_1(z) = \sigma_2(z)$ 

Let  $V_2 = \{x\}$ . Then  $\sigma_1 \sim_{V_2} \sigma_2$  means  $\sigma_1(x) = \sigma_2(x)$ 

#### Correctness Theorem

The relation " $\sim$ " is *invariant* under computation: the live variables for the initial configuration remain live throughout the computation.

$$\langle S, \sigma_{1} \rangle \rightarrow \langle S', \sigma'_{1} \rangle \rightarrow \cdots \rightarrow \langle S'', \sigma''_{1} \rangle \rightarrow \sigma'''_{1}$$

$$\downarrow \sim_{V} \qquad \qquad \downarrow \sim_{V''} \qquad \qquad \downarrow \sim_{V'''} \qquad \qquad \downarrow \sim_{V'''} \qquad \downarrow \sim_{V''} \qquad \downarrow$$

## Interprocedural Analysis

- The problem
- MVP: "Meet" over Valid Paths
- Making context explicit
- Context based on call-strings
- Context based on assumption sets

(A restricted treatment; see the book for a more general treatment.)

#### The Problem: match entries with exits

proc fib(val z, u; res v)



#### **Preliminaries**

### Syntax for procedures

```
Programs: P_{\star} = \text{begin } D_{\star} \ S_{\star} \text{ end}

Declarations: D ::= D; D \mid \text{proc } p(\text{val } x; \text{res } y) \text{ is }^{\ell_n} \ S \text{ end}^{\ell_x}

Statements: S ::= \cdots \mid [\text{call } p(a,z)]_{\ell_r}^{\ell_c}
```

#### Example:

### Flow graphs for procedure calls

```
\begin{array}{ll} \mbox{\it init}([{\rm call}\ p(a,z)]_{\ell_r}^{\ell_c}) \ = \ \ell_c \\ \mbox{\it final}([{\rm call}\ p(a,z)]_{\ell_r}^{\ell_c}) \ = \ \{\ell_r\} \\ \mbox{\it blocks}([{\rm call}\ p(a,z)]_{\ell_r}^{\ell_c}) \ = \ \{[{\rm call}\ p(a,z)]_{\ell_r}^{\ell_c}\} \\ \mbox{\it labels}([{\rm call}\ p(a,z)]_{\ell_r}^{\ell_c}) \ = \ \{\ell_c,\ell_r\} \\ \mbox{\it flow}([{\rm call}\ p(a,z)]_{\ell_r}^{\ell_c}) \ = \ \{(\ell_c;\ell_n),(\ell_x;\ell_r)\} \\ \mbox{\it if} \ \ {\rm proc}\ p({\rm val}\ x;{\rm res}\ y) \ {\rm is}^{\ell_n}\ S \ {\rm end}^{\ell_x} \ {\rm is}\ {\rm in}\ D_{\star} \end{array}
```

- $(\ell_c; \ell_n)$  is the flow corresponding to *calling* a procedure at  $\ell_c$  and entering the procedure body at  $\ell_n$ , and
- $(\ell_x; \ell_r)$  is the flow corresponding to exiting a procedure body at  $\ell_x$  and *returning* to the call at  $\ell_r$ .

### Flow graphs for procedure declarations

For each procedure declaration proc  $p(\text{val }x; \text{res }y) \text{ is }^{\ell_n} S \text{ end }^{\ell_x} \text{ of } D_{\star}$ :

```
init(p) = \ell_n

final(p) = \{\ell_x\}

blocks(p) = \{is^{\ell_n}, end^{\ell_x}\} \cup blocks(S)

labels(p) = \{\ell_n, \ell_x\} \cup labels(S)

flow(p) = \{(\ell_n, init(S))\} \cup flow(S) \cup \{(\ell, \ell_x) \mid \ell \in final(S)\}
```

#### Flow graphs for programs

For the program  $P_{\star} = \text{begin } D_{\star} S_{\star} \text{ end}$ :

```
init_{\star} = init(S_{\star})
        final_{\star} = final(S_{\star})
    blocks_{\star} = \bigcup \{blocks(p) \mid proc p(val x; res y) is^{\ell_n} S end^{\ell_x} is in D_{\star}\}
                          \cupblocks(S_{\star})
     labels_{\star} = \bigcup \{ labels(p) \mid proc p(val x; res y) is^{\ell_n} S end^{\ell_x} is in D_{\star} \}
                          \cup labels(S_{\star})
        flow_{\star} = \bigcup \{flow(p) \mid proc \ p(val \ x; res \ y) \ is^{\ell_n} \ S \ end^{\ell_x} \ is \ in \ D_{\star}\}
                          \cup flow(S_{\star})
interflow_{\star} = \{(\ell_c, \ell_n, \ell_x, \ell_r) \mid proc \ p(val \ x; res \ y) \ is^{\ell_n} \ S \ end^{\ell_x} \ is \ in \ D_{\star} \}
                                                     and [call p(a,z)]_{\ell_n}^{\ell_c} is in S_{\star}}
```

#### Example:

We have

```
flow_{\star} = \{(1,2), (2,3), (3,8), \\ (2,4), (4;1), (8;5), (5,6), (6;1), (8;7), (7,8), \\ (9;1), (8;10)\} interflow_{\star} = \{(9,1,8,10), (4,1,8,5), (6,1,8,7)\} and init_{\star} = 9 and final_{\star} = \{10\}.
```

#### A naive formulation

Treat the three kinds of flow in the same way:

| flow              | treat as                   |
|-------------------|----------------------------|
| $(\ell_1,\ell_2)$ | $(\ell_1,\ell_2)$          |
| $(\ell_c;\ell_n)$ | $\mid$ $(\ell_c,\!\ell_n)$ |
| $(\ell_x;\ell_r)$ | $(\ell_x, \ell_r)$         |

#### Equation system:

$$\begin{array}{ll} A_{\bullet}(\ell) &=& f_{\ell}(A_{\circ}(\ell)) \\ \\ A_{\circ}(\ell) &=& \bigsqcup \{A_{\bullet}(\ell') \mid (\ell',\ell) \in F \text{ or } (\ell',\ell) \in F \text{ or } (\ell',\ell) \in F\} \sqcup \iota_{E}^{\ell} \end{array}$$

But there is no matching between entries and exits.

#### MVP: "Meet" over Valid Paths

### Complete Paths

We need to match procedure entries and exits:

A *complete path* from  $\ell_1$  to  $\ell_2$  in  $P_{\star}$  has proper nesting of procedure entries and exits; and a procedure returns to the point where it was called:

$$\begin{array}{ll} \mathit{CP}_{\ell_1,\ell_2} \longrightarrow \ell_1 & \text{whenever } \ell_1 = \ell_2 \\ \mathit{CP}_{\ell_1,\ell_3} \longrightarrow \ell_1, \mathit{CP}_{\ell_2,\ell_3} & \text{whenever } (\ell_1,\ell_2) \in \mathit{flow}_\star \\ \mathit{CP}_{\ell_c,\ell} \longrightarrow \ell_c, \mathit{CP}_{\ell_n,\ell_x}, \mathit{CP}_{\ell_r,\ell} & \text{whenever } P_\star \text{ contains } [\mathsf{call} \ p(a,z)]_{\ell_r}^{\ell_c} \\ & \text{and proc } p(\mathsf{val} \ x; \mathsf{res} \ y) \ \mathsf{is}^{\ell_n} \ \mathit{S} \ \mathsf{end}^{\ell_x} \end{array}$$

More generally: whenever  $(\ell_c, \ell_n, \ell_x, \ell_r)$  is an element of  $interflow_{\star}^R$  (or  $interflow_{\star}^R$  for backward analyses); see the book.

#### Valid Paths

A *valid path* starts at the entry node  $init_{\star}$  of  $P_{\star}$ , all the procedure exits match the procedure entries but some procedures might be entered but not yet exited:

$$\begin{array}{lll} \textit{VP}_{\star} &\longrightarrow \textit{VP}_{\textit{init}_{\star},\ell} & \text{whenever } \ell \in \mathbf{Lab}_{\star} \\ \textit{VP}_{\ell_{1},\ell_{2}} &\longrightarrow \ell_{1} & \text{whenever } \ell_{1} = \ell_{2} \\ \textit{VP}_{\ell_{1},\ell_{3}} &\longrightarrow \ell_{1}, \textit{VP}_{\ell_{2},\ell_{3}} & \text{whenever } (\ell_{1},\ell_{2}) \in \textit{flow}_{\star} \\ \textit{VP}_{\ell_{c},\ell} &\longrightarrow \ell_{c}, \textit{CP}_{\ell_{n},\ell_{x}}, \textit{VP}_{\ell_{r},\ell} & \text{whenever } P_{\star} \text{ contains } [\text{call } p(a,z)]_{\ell_{r}}^{\ell_{c}} \\ \textit{VP}_{\ell_{c},\ell} &\longrightarrow \ell_{c}, \textit{VP}_{\ell_{n},\ell} & \text{whenever } P_{\star} \text{ contains } [\text{call } p(a,z)]_{\ell_{r}}^{\ell_{c}} \\ \textit{VP}_{\ell_{c},\ell} &\longrightarrow \ell_{c}, \textit{VP}_{\ell_{n},\ell} & \text{whenever } P_{\star} \text{ contains } [\text{call } p(a,z)]_{\ell_{r}}^{\ell_{c}} \\ \textit{and proc } p(\text{val } x; \text{res } y) \text{ is }^{\ell_{n}} S \text{ end}^{\ell_{x}} \end{array}$$

91

#### The MVP solution

$$MVP_{\circ}(\ell) = \bigsqcup \{ f_{\vec{\ell}}(\iota) \mid \vec{\ell} \in vpath_{\circ}(\ell) \}$$

$$MVP_{\bullet}(\ell) = \bigsqcup \{ f_{\vec{\ell}}(\iota) \mid \vec{\ell} \in vpath_{\bullet}(\ell) \}$$

where

$$\begin{aligned} \textit{vpath}_{\circ}(\ell) &= \{ [\ell_1, \cdots, \ell_{n-1}] \mid n \geq 1 \land \ell_n = \ell \land [\ell_1, \cdots, \ell_n] \text{ is a valid path} \} \\ \textit{vpath}_{\bullet}(\ell) &= \{ [\ell_1, \cdots, \ell_n] \mid n \geq 1 \land \ell_n = \ell \land [\ell_1, \cdots, \ell_n] \text{ is a valid path} \} \end{aligned}$$

The MVP solution may be undecidable for lattices satisfying the Ascending Chain Condition, just as was the case for the MOP solution.

### Making Context Explicit

Starting point: an instance  $(L, \mathcal{F}, F, E, \iota, f)$  of a Monotone Framework

- the analysis is forwards, i.e.  $F = flow_{\star}$  and  $E = \{init_{\star}\}$ ;
- the complete lattice is a powerset, i.e.  $L = \mathcal{P}(D)$ ;
- ullet the transfer functions in  ${\mathcal F}$  are completely additive; and
- each  $f_{\ell}$  is given by  $f_{\ell}(Y) = \bigcup \{ \phi_{\ell}(d) \mid d \in Y \}$  where  $\phi_{\ell} : D \to \mathcal{P}(D)$ .

(A restricted treatment; see the book for a more general treatment.)

#### An embellished monotone framework

• 
$$L' = \mathcal{P}(\Delta \times D);$$

- ullet the transfer functions in  $\mathcal{F}'$  are completely additive; and
- each  $f'_{\ell}$  is given by  $f'_{\ell}(Z) = \bigcup \{ \{ \delta \} \times \frac{\phi_{\ell}(d)}{\ell} \mid (\delta, \frac{d}{\ell}) \in Z \}.$

Ignoring procedures, the data flow equations will take the form:

$$A_{ullet}(\ell) = f'_{\ell}(A_{ullet}(\ell))$$
 for all labels that do not label a procedure call

$$A_{\circ}(\ell) = \bigsqcup \{A_{\bullet}(\ell') \mid (\ell', \ell) \in F \text{ or } (\ell'; \ell) \in F\} \sqcup \iota_E'^{\ell}$$
 for all labels (including those that label procedure calls)

#### Example:

Detection of Signs Analysis as a Monotone Framework:

$$(L_{\text{sign}}, \mathcal{F}_{\text{sign}}, F, E, \iota_{\text{sign}}, f^{\text{sign}})$$
 where  $\mathbf{Sign} = \{-, 0, +\}$  and 
$$L_{\text{sign}} = \mathcal{P}(\mathbf{Var}_{\star} \to \mathbf{Sign})$$

The transfer function  $f_\ell^{\mathrm{sign}}$  associated with the assignment  $[x:=a]^\ell$  is

$$f_{\ell}^{\operatorname{sign}}(Y) = \bigcup \{ \frac{\phi_{\ell}^{\operatorname{sign}}(\sigma^{\operatorname{sign}})}{\ell} \mid \sigma^{\operatorname{sign}} \in Y \}$$

where  $Y \subseteq \mathbf{Var}_{\star} \to \mathbf{Sign}$  and

$$\phi_{\ell}^{\mathsf{sign}}(\sigma^{\mathsf{sign}}) = \{\sigma^{\mathsf{sign}}[x \mapsto s] \mid s \in \mathcal{A}_{\mathsf{sign}}[a](\sigma^{\mathsf{sign}})\}$$

### Example (cont.):

Detection of Signs Analysis as an embellished monotone framework

$$L'_{\mathsf{sign}} = \mathcal{P}(\Delta \times (\mathbf{Var}_{\star} \to \mathbf{Sign}))$$

The transfer function associated with  $[x := a]^{\ell}$  will now be:

$$f_{\ell}^{\mathsf{sign}'}(Z) = \bigcup \{ \{ \delta \} \times \phi_{\ell}^{\mathsf{sign}}(\sigma^{\mathsf{sign}}) \mid (\delta, \sigma^{\mathsf{sign}}) \in Z \}$$

#### Transfer functions for procedure declarations

Procedure declarations

proc 
$$p(\text{val } x; \text{res } y) \text{ is }^{\ell_n} S \text{ end}^{\ell_x}$$

have two transfer functions, one for entry and one for exit:

$$f_{\ell_n}, f_{\ell_x}: \mathcal{P}(\Delta \times D) \to \mathcal{P}(\Delta \times D)$$

For simplicity we take both to be the identity function (thus incorporating procedure entry as part of procedure call, and procedure exit as part of procedure return).

### Transfer functions for procedure calls

Procedure calls  $[\operatorname{call} p(a,z)]_{\ell_r}^{\ell_c}$  have two transfer functions:

For the procedure call

$$f_{\ell_c}^1: \mathcal{P}(oldsymbol{\Delta} imes D) 
ightarrow \mathcal{P}(oldsymbol{\Delta} imes D)$$

and it is used in the equation:

$$A_{\bullet}(\ell_c) = f_{\ell_c}^1(A_{\circ}(\ell_c))$$
 for all procedure calls [call  $p(a,z)$ ] $_{\ell_r}^{\ell_c}$ 

For the *procedure return* 

$$f_{\ell_c,\ell_r}^2: \left|\mathcal{P}(\Delta \times D)\right| \times \mathcal{P}(\Delta \times D) o \mathcal{P}(\Delta \times D)$$

and it is used in the equation:

 $A_{\bullet}(\ell_r) = f_{\ell_c,\ell_r}^2(A_{\circ}(\ell_c),A_{\circ}(\ell_r))$  for all procedure calls [call p(a,z)] $_{\ell_r}^{\ell_c}$  (Note that  $A_{\circ}(\ell_r)$  will equal  $A_{\bullet}(\ell_x)$  for the relevant procedure exit.)

#### Procedure calls and returns



### Variation 1: ignore calling context upon return



$$f_{\ell_c}^1(Z) = \bigcup \{ \{ \delta' \} \times \phi_{\ell_c}^1(d) \mid (\delta, d) \in Z \land \delta' = \cdots \delta \cdots d \cdots Z \cdots \}$$
$$f_{\ell_c, \ell_r}^2(Z, Z') = f_{\ell_r}^2(Z')$$

#### Variation 2: joining contexts upon return



$$f_{\ell_c}^1(Z) = \bigcup \{ \{ \delta' \} \times \phi_{\ell_c}^1(d) \mid (\delta, d) \in Z \land \delta' = \cdots \delta \cdots d \cdots Z \cdots \}$$
$$f_{\ell_c, \ell_r}^2(Z, Z') = f_{\ell_c, \ell_r}^{2A}(Z) \coprod f_{\ell_c, \ell_r}^{2B}(Z')$$

#### Different Kinds of Context

- Call Strings contexts based on control
  - Call strings of unbounded length
  - Call strings of bounded length (k)
- Assumption Sets contexts based on data
  - Large assumption sets (k = 1)
  - Small assumption sets (k = 1)

### Call Strings of Unbounded Length

$$\Delta = Lab^*$$

#### Transfer functions for procedure call

$$f_{\ell_c}^1(Z) = \bigcup \{ \{ \delta' \} \times \phi_{\ell_c}^1(d) \mid (\delta, d) \in Z \land \delta' = [\delta, \ell_c] \}$$

$$f_{\ell_c,\ell_r}^2(Z,Z') = \bigcup \{ \{ \delta \} \times \phi_{\ell_c,\ell_r}^2(d,d') \mid (\delta,d) \in Z \land (\delta',d') \in Z' \land \delta' = [\delta,\ell_c] \}$$

#### Example:

Recalling the statements:

proc 
$$p(\text{val } x; \text{res } y) \text{ is }^{\ell_n} S \text{ end}^{\ell_x}$$
  $[\text{call } p(a,z)]_{\ell_r}^{\ell_c}$ 

Detection of Signs Analysis:

$$\phi_{\ell_c}^{\text{sign1}}(\sigma^{\text{sign}}) = \{\sigma^{\text{sign}} \underbrace{[x \mapsto s][y \mapsto s']} \mid s \in \mathcal{A}_{\text{sign}}[a](\sigma^{\text{sign}}), s' \in \{-, 0, +\}\}$$

$$\phi_{\ell_c,\ell_r}^{\mathrm{sign2}}(\sigma_1^{\mathrm{sign}},\sigma_2^{\mathrm{sign}}) = \{\sigma_2^{\mathrm{sign}}[\underbrace{x\mapsto\sigma_1^{\mathrm{sign}}(x)][y\mapsto\sigma_1^{\mathrm{sign}}(y)]}_{\mathrm{restore\ formals}}]\underbrace{[z\mapsto\sigma_2^{\mathrm{sign}}(y)]}_{\mathrm{return\ result}}\}$$

### Call Strings of Bounded Length

$$\triangle$$
 = Lab $\leq k$ 

### Transfer functions for procedure call

$$f_{\ell_c}^1(Z) = \bigcup \{ \{ \delta' \} \times \phi_{\ell_c}^1(d) \mid (\delta, d) \in Z \land \delta' = [\delta, \ell_c]_k \}$$

$$f_{\ell_c,\ell_r}^2(Z,Z') = \bigcup \{ \{ \delta \} \times \phi_{\ell_c,\ell_r}^2(d,d') \mid (\delta,d) \in Z \land (\delta',d') \in Z' \land \delta' = [\delta,\ell_c]_k \}$$

### A special case: call strings of length k=0

$$\Delta = \{\Lambda\}$$

Note: this is equivalent to having no context information!

Specialising the transfer functions:

$$f_{\ell_c}^1(Y) = \bigcup \{\phi_{\ell_c}^1(d) \mid d \in Y\}$$

$$f_{\ell_c,\ell_r}^2(Y,Y') = \bigcup \{\phi_{\ell_c,\ell_r}^2(d,d') \mid d \in Y \land d' \in Y'\}$$

(We use that  $\mathcal{P}(\Delta \times D)$  isomorphic to  $\mathcal{P}(D)$ .)

## A special case: call strings of length k=1

$$\Delta = \operatorname{Lab} \cup \{\Lambda\}$$

Specialising the transfer functions:

$$f_{\ell_c}^1(Z) = \bigcup \{ \{ \ell_c \} \times \phi_{\ell_c}^1(d) \mid (\delta, d) \in Z \}$$

$$f_{\ell_c,\ell_r}^2(Z,Z') = \bigcup \{ \{ \delta \} \times \phi_{\ell_c,\ell_r}^2(d,d') \mid (\delta,d) \in Z \land (\ell_c,d') \in Z' \}$$

### Large Assumption Sets (k = 1)

$$\Delta = \mathcal{P}(D)$$

### Transfer functions for procedure call

$$f_{\ell_c}^1(Z) = \bigcup \{ \{ \delta' \} \times \phi_{\ell_c}^1(d) \mid (\delta, d) \in Z \land \delta' = \{ d'' \mid (\delta, d'') \in Z \} \}$$

$$f_{\ell_c,\ell_r}^2(Z,Z') = \bigcup \{ \{ \delta \} \times \phi_{\ell_c,\ell_r}^2(d,d') \mid (\delta,d) \in Z \land (\delta',d') \in Z' \land \delta' = \{ d'' \mid (\delta,d'') \in Z \} \}$$

## Small Assumption Sets (k = 1)

$$\Delta = D$$

### Transfer function for procedure call

$$f_{\ell_c}^1(Z) = \bigcup \{ \{ \frac{d}{\ell} \} \times \phi_{\ell_c}^1(d) \mid (\delta, \frac{d}{\ell}) \in Z \}$$

$$f_{\ell_c,\ell_r}^2(Z,Z') = \bigcup \{ \{ \delta \} \times \phi_{\ell_c,\ell_r}^2(d,d') \mid (\delta,d) \in Z \land (d,d') \in Z' \}$$