
Principles of Program Analysis:

Data Flow Analysis

Transparencies based on Chapter 2 of the book: Flemming Nielson,
Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis.
Springer Verlag 2005. c�Flemming Nielson & Hanne Riis Nielson & Chris
Hankin.
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Intraprocedural Analysis
Classical analyses:

• Available Expressions Analysis

• Reaching Definitions Analysis

• Very Busy Expressions Analysis

• Live Variables Analysis

Derived analysis:

• Use-Definition and Definition-Use Analysis
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Available Expressions Analysis

The aim of the Available Expressions Analysis is to determine

For each program point, which expressions must have already
been computed, and not later modified, on all paths to the pro-
gram point.

Example: point of interest
+

[x:= a+b ]1; [y:=a*b]2; while [y> a+b ]3 do ([a:=a+1]4; [x:= a+b ]5)

The analysis enables a transformation into

[x:= a+b]1; [y:=a*b]2; while [y> x ]3 do ([a:=a+1]4; [x:= a+b]5)
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Reaching Definitions Analysis

The aim of the Reaching Definitions Analysis is to determine

For each program point, which assignments may have been made
and not overwritten, when program execution reaches this point
along some path.

Example: point of interest
+

[x:=5]1; [y:=1]2; while [x>1]3 do ([y:=x*y]4; [x:=x-1]5)

useful for definition-use chains and use-definition chains

PPA Section 2.1 c� F.Nielson & H.Riis Nielson & C.Hankin (May 2005) 17



Very Busy Expressions Analysis

An expression is very busy at the exit from a label if, no matter what
path is taken from the label, the expression is always used before any of
the variables occurring in it are redefined.

The aim of the Very Busy Expressions Analysis is to determine

For each program point, which expressions must be very busy at
the exit from the point.

Example:
point of interest
+
if [a>b]1 then ([x:= b-a ]2; [y:= a-b ]3) else ([y:= b-a ]4; [x:= a-b ]5)

The analysis enables a transformation into

[t1:= b-a ]A; [t2:= b-a ]B;
if [a>b]1 then ([x:=t1]2; [y:=t2]3) else ([y:=t1]4; [x:=t2]5)
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Live Variables Analysis

A variable is live at the exit from a label if there is a path from the label
to a use of the variable that does not re-define the variable.

The aim of the Live Variables Analysis is to determine

For each program point, which variables may be live at the exit
from the point.

Example:
point of interest
+

[ x :=2]1; [y:=4]2; [x:=1]3; (if [y>x]4 then [z:=y]5 else [z:=y*y]6); [x:=z]7

The analysis enables a transformation into

[y:=4]2; [x:=1]3; (if [y>x]4 then [z:=y]5 else [z:=y*y]6); [x:=z]7
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Derived Data Flow Information

• Use-Definition chains or ud chains:

each use of a variable is linked to all assignments that reach it

[x:=0]1; [x:=3]2; (if [z=x]3 then [z:=0]4 else [z:=x]5); [y:= x ]6; [x:=y+z]7

6

• Definition-Use chains or du chains:

each assignment to a variable is linked to all uses of it

[x:=0]1; [ x :=3]2; (if [z=x]3 then [z:=0]4 else [z:=x]5); [y:=x]6; [x:=y+z]7

6 6 6
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ud chains
ud : Var? ⇥ Lab? ! P(Lab?)

given by

ud(x, `0) = {` | def(x, `) ^ 9`00 : (`, `00) 2 flow(S?) ^ clear(x, `00, `0)}
[ {? | clear(x, init(S?), `0)}

where

[x:= · · ·]` - - · · · - - [· · · :=x]`0
| {z }

no x:=· · ·

• def(x, `) means that the block ` assigns a value to x

• clear(x, `, `0) means that none of the blocks on a path from ` to `0
contains an assignments to x but that the block `0 uses x (in a test
or on the right hand side of an assignment)
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ud chains - an alternative definition

UD : Var? ⇥ Lab? ! P(Lab?)

is defined by:

UD(x, `) =

(
{`0 | (x, `0) 2 RD

entry

(`)} if x 2 gen
LV

(B`)
; otherwise

One can show that:

ud(x, `) = UD(x, `)
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du chains
du : Var? ⇥ Lab? ! P(Lab?)

given by

du(x, `) =

8
>>><

>>>:

{`0 | def(x, `) ^ 9`00 : (`, `00) 2 flow(S?) ^ clear(x, `00, `0)}
if ` 6= ?

{`0 | clear(x, init(S?), `0)}
if ` = ?

[x:= · · ·]` - - · · · - - [· · · :=x]`0
| {z }

no x:=· · ·

One can show that:

du(x, `) = {`0 | ` 2 ud(x, `0)}

PPA Section 2.1 c� F.Nielson & H.Riis Nielson & C.Hankin (May 2005) 41



Example:

[x:=0]1; [x:=3]2; (if [z=x]3 then [z:=0]4 else [z:=x]5); [y:=x]6; [x:=y+z]7

ud(x, `) x y z

1 ; ; ;
2 ; ; ;
3 {2} ; {?}
4 ; ; ;
5 {2} ; ;
6 {2} ; ;
7 ; {6} {4,5}

du(x, `) x y z

1 ; ; ;
2 {3,5,6} ; ;
3 ; ; ;
4 ; ; {7}
5 ; ; {7}
6 ; {7} ;
7 ; ; ;
? ; ; {3}
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The Overall Pattern

Each of the four classical analyses take the form

Analysis�(`) =

(
◆ if ` 2 EF{Analysis•(`0) | (`0, `) 2 F} otherwise

Analysis•(`) = f`(Analysis�(`))

where

–
F

is
T

or
S

(and t is [ or \),

– F is either flow(S?) or flowR(S?),

– E is {init(S?)} or final(S?),

– ◆ specifies the initial or final analysis information, and

– f` is the transfer function associated with B` 2 blocks(S?).

PPA Section 2.3 c� F.Nielson & H.Riis Nielson & C.Hankin (May 2005) 53



The Principle: forward versus backward

• The forward analyses have F to be flow(S?) and then Analysis�
concerns entry conditions and Analysis• concerns exit conditions;
the equation system presupposes that S? has isolated entries.

• The backward analyses have F to be flowR(S?) and then Analysis�
concerns exit conditions and Analysis• concerns entry conditions; the
equation system presupposes that S? has isolated exits.
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The Principle: union versus intersecton

• When
F

is
T

we require the greatest sets that solve the equations
and we are able to detect properties satisfied by all execution paths

reaching (or leaving) the entry (or exit) of a label; the analysis is
called a must-analysis.

• When
F

is
S

we require the smallest sets that solve the equations and
we are able to detect properties satisfied by at least one execution

path to (or from) the entry (or exit) of a label; the analysis is called
a may-analysis.
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Frameworks

A Monotone Framework consists of:

• a complete lattice, L, that satisfies the Ascending Chain Condition;
we write

F
for the least upper bound operator

• a set F of monotone functions from L to L that contains the identity
function and that is closed under function composition

A Distributive Framework is a Monotone Framework where additionally
all functions f in F are required to be distributive:

f(l1 t l2) = f(l1) t f(l2)
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Instances

An instance of a Framework consists of:

– the complete lattice, L, of the framework

– the space of functions, F, of the framework

– a finite flow, F (typically flow(S?) or flowR(S?))

– a finite set of extremal labels, E (typically {init(S?)} or final(S?))

– an extremal value, ◆ 2 L, for the extremal labels

– a mapping, f·, from the labels Lab? to transfer functions in F
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Bit Vector Frameworks

A Bit Vector Framework has

• L = P(D) for D finite

• F = {f | 9lk, lg : f(l) = (l \ lk) [ lg}

Examples:

• Available Expressions

• Live Variables

• Reaching Definitions

• Very Busy Expressions
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Lemma: Bit Vector Frameworks are always Distributive Frameworks

Proof

f(l1 t l2) =

(
f(l1 [ l2)
f(l1 \ l2)

=

(
((l1 [ l2) \ lk) [ lg
((l1 \ l2) \ lk) [ lg

=

(
((l1 \ lk) [ (l2 \ lk)) [ lg
((l1 \ lk) \ (l2 \ lk)) [ lg

=

(
((l1 \ lk) [ lg) [ ((l2 \ lk) [ lg)
((l1 \ lk) [ lg) \ ((l2 \ lk) [ lg)

=

(
f(l1) [ f(l2)
f(l1) \ f(l2)

= f(l1) t f(l2)

• id(l) = (l \ ;) [ ;
• f2(f1(l)) = (((l \ l1k) [ l1g) \ l2k) [ l2g = (l \ (l1k [ l2k)) [ ((l1g \ l2k) [ l2g)

• monotonicity follows from distributivity

• P(D) satisfies the Ascending Chain Condition because D is finite
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The Constant Propagation Framework

An example of a Monotone Framework that is not a Distributive Frame-
work

The aim of the Constant Propagation Analysis is to determine

For each program point, whether or not a variable has a constant
value whenever execution reaches that point.

Example:
[x:=6]1; [y:=3]2; while [x > y ]3 do ([x:=x� 1]4; [z:= y ⇤ y ]6)

The analysis enables a transformation into

[x:=6]1; [y:=3]2; while [x > 3]3 do ([x:=x� 1]4; [z:=9]6)
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Elements of L

dState
CP

= ((Var? ! Z>)?,v)

Idea:

• ? is the least element: no information is available

• b� 2 Var? ! Z> specifies for each variable whether it is constant:

– b�(x) 2 Z: x is constant and the value is b�(x)

– b�(x) = >: x might not be constant
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Partial Ordering on L

The partial ordering v on (Var? ! Z>)? is defined by

8b� 2 (Var? ! Z>)? : ? v b�

8b�1, b�2 2 Var? ! Z> : b�1 v b�2 i↵ 8x : b�1(x) v b�2(x)

where Z> = Z [ {>} is partially ordered as follows:

8z 2 Z> : z v >
8z1, z2 2 Z : (z1 v z2) , (z1 = z2)
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Transfer Functions in F

F
CP

= {f | f is a monotone function on dState
CP

}

Lemma

Constant Propagation as defined by dState
CP

and F
CP

is a Monotone
Framework
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Instances

Constant Propagation is a forward analysis, so for the program S?:

• the flow, F , is flow(S?),

• the extremal labels, E, is {init(S?)},

• the extremal value, ◆
CP

, is �x.>, and

• the mapping, fCP· , of labels to transfer functions is as shown next
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Constant Propagation Analysis

A
CP

: AExp ! ( dState
CP

! Z>?)

A
CP

[[x]]b� =

(
? if b� = ?
b�(x) otherwise

A
CP

[[n]]b� =

(
? if b� = ?
n otherwise

A
CP

[[a1 opa a2]]b� = A
CP

[[a1]]b� c
opa A

CP

[[a2]]b�

transfer functions: fCP

`

[x := a]` : fCP

` (b�) =

(
? if b� = ?
b�[x 7! A

CP

[[a]]b�] otherwise

[skip]` : fCP

` (b�) = b�

[b]` : fCP

` (b�) = b�
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Lemma

Constant Propagation is not a Distributive Framework

Proof
Consider the transfer function fCP

` for [y:=x*x]`

Let b�1 and b�2 be such that b�1(x) = 1 and b�2(x) = �1

Then b�1 t b�2 maps x to > — fCP

` (b�1 t b�2) maps y to >

Both fCP

` (b�1) and fCP

` (b�2) map y to 1 — fCP

` (b�1)t fCP

` (b�2) maps y to 1
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Equation Solving

• The MFP solution — “Maximum” (actually least) Fixed Point

– Worklist algorithm for Monotone Frameworks

• The MOP solution — “Meet” (actually join) Over all Paths
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The MFP Solution

– Idea: iterate until stabilisation.

Worklist Algorithm

Input: An instance (L,F , F, E, ◆, f·) of a Monotone Framework

Output: The MFP Solution: MFP�,MFP•

Data structures:

• Analysis: the current analysis result for block entries (or exits)

• The worklist W: a list of pairs (`, `0) indicating that the current
analysis result has changed at the entry (or exit) to the block ` and
hence the entry (or exit) information must be recomputed for `0
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Worklist Algorithm

Step 1 Initialisation (of W and Analysis)
W := nil;
for all (`, `0) in F do W := cons((`, `0),W);
for all ` in F or E do

if ` 2 E then Analysis[`] := ◆ else Analysis[`] := ?L;

Step 2 Iteration (updating W and Analysis)
while W 6= nil do

` := fst(head(W)); `0 = snd(head(W)); W := tail(W);
if f`(Analysis[`]) 6v Analysis[`0] then
Analysis[`0] := Analysis[`0] t f`(Analysis[`]);
for all `00 with (`0, `00) in F do W := cons((`0, `00),W);

Step 3 Presenting the result (MFP� and MFP•)
for all ` in F or E do

MFP�(`) := Analysis[`];
MFP•(`) := f`(Analysis[`])
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Correctness

The worklist algorithm always terminates and it computes the least (or
MFP) solution to the instance given as input.

Complexity

Suppose that E and F contain at most b � 1 distinct labels, that F

contains at most e � b pairs, and that L has finite height at most h � 1.

Count as basic operations the applications of f`, applications of t, or
updates of Analysis.

Then there will be at most O(e · h) basic operations.

Example: Reaching Definitions (assuming unique labels):

O(b2) where b is size of program: O(h) = O(b) and O(e) = O(b).
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The MOP Solution

– Idea: propagate analysis information along paths.

Paths

The paths up to but not including `:

path�(`) = {[`1, · · · , `n�1] | n � 1^ 8i < n : (`i, `i+1) 2 F ^ `n = `^ `1 2 E}

The paths up to and including `:

path•(`) = {[`1, · · · , `n] | n � 1 ^ 8i < n : (`i, `i+1) 2 F ^ `n = ` ^ `1 2 E}

Transfer functions for a path ~̀ = [`1, · · · , `n]:

f~̀ = f`n � · · · � f`1 � id

PPA Section 2.4 c� F.Nielson & H.Riis Nielson & C.Hankin (May 2005) 77



The MOP Solution

The solution up to but not including `:

MOP�(`) =
G{f~̀(◆) | ~̀2 path�(`)}

The solution up to and including `:

MOP•(`) =
G{f~̀(◆) | ~̀2 path•(`)}

Precision of the MOP versus MFP solutions

The MFP solution safely approximates the MOP solution: MFP w MOP

(“because” f(x t y) w f(x) t f(y) when f is monotone).

For Distributive Frameworks the MFP and MOP solutions are equal:
MFP = MOP (“because” f(xt y) = f(x)t f(y) when f is distributive).
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Lemma

Consider the MFP and MOP solutions to an instance (L,F, F, B, ◆, f·)
of a Monotone Framework; then:

MFP� w MOP� and MFP• w MOP•

If the framework is distributive and if path�(`) 6= ; for all ` in E and F

then:

MFP� = MOP� and MFP• = MOP•
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Decidability of MOP and MFP

The MFP solution is always computable (meaning that it is decidable)
because of the Ascending Chain Condition.

The MOP solution is often uncomputable (meaning that it is undecid-
able): the existence of a general algorithm for the MOP solution would
imply the decidability of the Modified Post Correspondence Problem,
which is known to be undecidable.
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Lemma

The MOP solution for Constant Propagation is undecidable.

Proof: Let u1, · · · , un and v1, · · · , vn be strings over the alphabet {1,· · ·,9};
let | u | denote the length of u; let [[u]] be the natural number denoted.

The Modified Post Correspondence Problem is to determine whether or
not ui1 · · ·uim = vi1 · · · vin for some sequence i1, · · · , im with i1 = 1.

x:=[[u1]]; y:=[[v1]];
while [· · ·] do

(if [· · ·] then x:=x * 10

|u1|
+ [[u1]]; y:=y * 10

|v1|
+ [[v1]] else

...
if [· · ·] then x:=x * 10

|un|
+ [[un]]; y:=y * 10

|vn|
+ [[vn]] else skip)

[z:=abs((x-y)*(x-y))]`

Then MOP•(`) will map z to 1 if and only if the Modified Post Corre-
spondence Problem has no solution. This is undecidable.
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MOP vs. Fixpoint Solution I

Example 7.1 (Constant Propagation)

c := if [z > 0]1 then

[x := 2;]2

[y := 3;]3

else

[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions
(for � = (�(x), �(y), �(z)) 2 D):
'
1

(a, b, c) = (a, b, c)
'
2

(a, b, c) = (2, b, c)
'
3

(a, b, c) = (a, 3, c)
'
4

(a, b, c) = (3, b, c)
'
5

(a, b, c) = (a, 2, c)
'
6

(a, b, c) = (a, b, a+ b)

1 Fixpoint solution:
CP

1

= ◆ = (>,>,>)
CP

2

= '
1

(CP
1

) = (>,>,>)
CP

3

= '
2

(CP
2

) = (2,>,>)
CP

4

= '
1

(CP
1

) = (>,>,>)
CP

5

= '
4

(CP
4

) = (3,>,>)
CP

6

= '
3

(CP
3

) t '
5

(CP
5

)
= (2, 3,>) t (3, 2,>) = (>,>,>)

CP
7

= '
6

(CP
6

) = (>,>,>)

2 MOP solution:
mop(7) = '

[1,2,3,6](>,>,>)t
'
[1,4,5,6](>,>,>)

= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)
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