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Correctness Relations

RV x L — {true, false}

Idea: v R I means that the value v is described by the property |.

Correctness criterion: R is preserved under computation:

p F v1 o v2

logical relation:

A (pr-~) (R — R) (p+ &)




Admissible Correctness Relations

v RIi Nl7Cl, = v Rl

VMleLlCL:vRlD = vR(ILY ({I|vRI}isa Moore family)

TwO conseguences:
v R T
v RIiL N vRIlI = v R ({1Ml)

Assumption: (L,C) is a complete lattice.



Representation Functions
BV — L

Idea: 3 maps a value to the best property describing it.

Correctness criterion:



Equivalence of Correctness Criteria

Given a representation function 3 we define a correctness relation RB by

v Rg 1 iff B(v) E

Given a correctness relation R we define a representation function gp by

Br(w) = | {l|v R}
Lemma:

(i) Given 8 :V — L, then the relation Rz : V x L — {true, false} is an
admissible correctness relation such that 635 = 0.

(i) Given an admissible correctness relation R : V x L — {true, false},
then i is well-defined and Rz, = R.



Equivalence of Criteria: R is generated by (3




Galois connections

L M «. abstraction function

concretisation function

is a Galois connection if and only if

« and are monotone functions

that satisfy

ALl

O

1L

o0 L Am.m



Galois connections

v o a 1 M.l aov L Amm



Adjunctions

is an adjunction if and only if

a. L — M and ~+v: M — L are total functions

that satisfy
a(l) T m iff [ E ~v(m)

forallle L and m &€ M.

Proposition: («,~) is an adjunction iff it is a Galois connection.



Galois connections from extraction functions

An extraction function
n:V—-D

maps the values of V to their best descriptions in D.

It gives rise to a representation function g, : V — P(D)
defined by

Bn(v) = {n(v)}

The associated Galois connection is

(P(V), o, m, P(D))
where
an(V")

’Yn(D/)

U{Bn(v) [veV'} {n(v) [veV'}

eV | <D} = {v|nk) €D}



Properties of Galois Connections

Lemma: 1f (L,«,~, M) is a Galois connection then:

e o uniquely determines ~ by ~(m) = | [{l | «(l) C m}

e - uniquely determines o by a(l) =!| [{m |1 C ~(m)}

e « IS completely additive and ~ is completely multiplicative
In particular a(L) = L and +(T) = T.

Lemma:

o If « : L — M is completely additive then there exists (an
adjoint) v : M — L such that (L,«,~, M) is a Galois connection.

o If v: M — L is completely multiplicative then there exists (a lower
adjoint) o« : L — M such that (L,«,~, M) is a Galois connection.

Fact: 1f (L,o,~, M) is a Galois connection then

e vovoua=q«o and yoaovy =



The mundane approach: correctness relations

Assume
e R:V x L — {true, false} is an
admissible correctness relation
e (L,a,v, M) is a Galois connec-
tion
Then S : V. x M — {true, false}
defined by

vSm iff v R (v(m))

IS an admissible correctness rela-
tion between V and M

U1

mi

v2

m2



The mundane approach: representation functions

Assume
o R:VxL — {true, false} is gen- p v1 ~ V2
erated by .V — L
e (L,a,v, M) is a Galois connec- B N B
tion
M M
Then S : V. x M — {true, false}
defined by p F l1 > I
vSm iff v R ((m)) o \ \ o

is generated by ao3:V — M p mi > m2



Galois Insertions

Monotone functions satisfying: v oo Jd Al a oy = Am.m



Reduction Operators

Given a Galois connection (L,«,~, M) it is always possible to obtain
a Galois insertion by enforcing that the concretisation function IS
injective.

Idea: remove the superfluous elements from M using a reduction oper-
ator

B:M— M

defined from the Galois connection.

PI’ODOSitiOnZ Let (L,«,~, M) be a Galois connection and define the
reduction operator [§ : M — M by
B(m) = [{m | 7(m) =+(m)}

Then @[M] = ({BI(m) | m € M},Cyr) isa complete lattice and (L, o, v, G[M])
is a Galois insertion.



‘T he reduction operator@: M — M

.
(o)) —

| N

i\ /!




Systematic Design of Galois Connections

The “functional composition” (or ‘“sequential composition” ) of two Ga-
lois connections is also a Galois connection:

Ly,

Lo L4 Lo

a1 0% a3 Q.

A catalogue of techniques for combining Galois connections:

— independent attribute method — relational method
— direct product — direct tensor product
— reduced product — reduced tensor product

— total function space — monotone function space



Running Example: Array Bound Analysis

Approximation of the difference in magnitude between two numbers
(typically the index and the bound):

e a Galois connection for approximating pairs (z1,22) of integers by
their difference |z1|— |25

e a Galois connection for approximating integers using a finite lattice
{<-1,-1,0,+1,>+1}

e a Galois connection for their functional composition



Example: Difference in Magnitude

(P(Z x Z), agife, 7 difr» P(Z))

where the extraction function diff : Z x Z — 7. calculates the difference
in magnitude:

diff(z1,22) = |z1| — |22
The abstraction and concretisation functions are
agiff(ZZ) {lz1] = 22| | (21,20) € ZZ}
dir(Z) = {(z1,22) | |z1]—|22| € Z}
for ZZ C7Z x Z and Z C Z.



Example: Finite Approximation

(P(Z>aarangea rangeaP(Range))

where Range = {<-1,-1,0,+1,>+1}
and the extraction function range : Z — Range is

(<-1 ifz< —1
-1 ifz=-1
range(z) =< 0 ifz=0
+1 ifz=1
\>+1 if z>1

The abstraction and concretisation functions are
arange(Z) = {range(z) | z € Z}
range(R} {Z | range(z) c R}
for Z C Z and R C Range.



Example: Functional Composition
(P(Z x Z), ar,7~, P(Range))
where
@R = Qrange © Q{iff

diff © “/range

The explicit formulae for the abstraction and concretisation functions
ar(Z2Z) = {range(|z1|—|z22|) | (z1,22) € ZZ}

(R) = {(z1,22) | range(|z1| —|22|) € R}

correspond to the extraction function range o diff.



Approximation of Pairs

Independent Attribute Method

Let (L1,a1,71,Mq1) and (Lo, an,>, M>) be Galois connections.

The independent attribute method gives a Galois connection
(L1 X Lo, a, v, My x M>)
where
a(ly,l2) = (a1(l1),a2(l2))
(v1(m1),72(m2))

(m1, m2)



Example: Detection of Signs Analysis

Given
(P(Z), Asigny Vsign» P(Sign))

using the extraction function sign.

The independent attribute method gives
(P(Z) x P(Z), ass, 755, P(Sign) x P(Sign))
where

({sign(z) | z € Z1},{sign(z) | z € Z>})
({z | sign(z) € S1},{z | sign(z) € Sy})

aSS(Zla ZQ)
(S1,52)



Motivating the Relational Method

The independent attribute method often leads to imprecision!

Semantics: The expression (x,-x) may have a value in

{(z,—2) | z € Z}

Analysis: When we use P(Z) x P(Z) to represent sets of pairs of integers
we cannot do better than representing {(z,—z) | z € Z} by

(2,Z)

Hence the best property describing it will be

aSS(Zv Z) — ({—7 0, +}7 {—7 0, +})



Relational Method

Let (P(V1),a1,7v1,P(D1)) and (P(V5),as,v-,P(D>)) be Galois connec-
tions.

The relational method will give rise to the Galois connection
(P(V1 x V2),a, v, P(D1 x D3))

where

a(VV) Ha1({v1}) x ao({w2}) | (v1,v2) € VV}
(DD) = {(v1,v2) | a1({v1}) x ax({v2}) € DD}

Generalisation to arbitrary complete lattices: use tensor products.



Relational Method from Extraction Functions

Assume that the Galois connections (P(V;), «y, v, P(D;)) are given by
extraction functions n; . V; — D; as in

a;(Vi) = {mi(v) | v; €V}
(D7) = {v; | mi(v;) € Di}
Then the Galois connection (P(V1 x V2), a,~,P(D1 x D3)) has
(VW) = {(n(v1),n2(v2)) | (v1,v2) € VV}
(DD) = {(v1,v2) | (n1(v1),n2(v2)) € DD}

which also can be obtained directly from the extraction function
n: Vi X Vo — Dy X Dy defined by

n(v1,v2) = (n1(v1),12(v2))



Example: Detection of Signs Analysis

Using the relational method we get a Galois connection
(P(Z x Z), agey, ,P(Sign x Sign))

where

ass(Z42) {(sign(z1),sign(z2)) | (21,22) € ZZ}
155/(SS) = {(z1,22) | (sign(z1),sign(z2)) € SS}

corresponding to an extraction function twosigns : Z x Z — Sign X Sign
defined by

twosigns(z1, zo0) = (sign(z1), sign(z>))



Advantages of the Relational Method

Semantics: The expression (x,-x) may have a value in

In the present setting {(z,—z) | z € Z} is an element of P(Z x Z).

Analysis: The best “relational’” property describing it is

aSS’({(Z7 _Z) | z € Z}) — {(—7+)7 (070)7 (+7—)}

whereas the best “independent attribute” property was

Q{SS(Z7 Z) — ({—7 07 +}7 {-7 07 +})



Function Spaces
Total Function Space

Let (L,o,v, M) be a Galois connection and let S be a set.

The Galois connection for the total function space
(S—L,o,+,8— M)
is defined by
o'(f)y =aof (9) =709



Monotone Function Space
Let (Lq,a1,71,Mq1) and (Lo, an, v, M>) be Galois connections.

The Galois connection for the monotone function space

(L1 — Lo, a, v, My — M>)

is defined by
a(f) =apo fo (g) =120g0a;
f (9)
Lq " Lo Lq Lo
an aq
My Mo My Mo




Performing Analyses Simultaneously
Direct Product
Let (L,xq,v1,M71) and (L, an,v>, M>) be Galois connections.

The direct product is the Galois connection
(L, o, v, M1 x Mp)

defined by

(a1(), an(l))

(m1) My2(mo)

a(l)

(m1,m2)



Example:

Combining the detection of signs analysis for pairs of integers with the
analysis of difference in magnitude.

We get the Galois connection
(P(Z x Z), assR, ,P(Sign x Sign) x P(Range))
where

assr(Z2Z) = ({(sign(z1),sign(z2)) | (21,22) € ZZ},
{range(|z1| —|22|) | (21,22) € ZZ})

{(21,22) | (sign(z1),sign(z2)) € SS}
{(21,22) | range(|z1| —|22|) € R}

(S5, R)



Motivating the Direct Tensor Product

The expression (x, 3*x) may have a value in
{(z2,3%2) | z€Z}
which is described by

O‘SSR({(Za:3 * Z) | z € Z}) — ({(—7—)7 (070)7 (+7+)}7 {O,<—1})

But

e any pair described by (0,0) will have a difference in magnitude de-
scribed by 0

e any pair described by (-,-) or (+,+) will have a difference in magni-
tude described by <-1

and the analysis cannot express this.



Direct Tensor Product

Let (P(V),a1,v1,P(D1)) and (P(V),as,v>,P(D>)) be Galois connec-
tions.
The direct tensor product is the Galois connection
(P(V),a,v,P(D1 x D3))
defined by
a(V") (Ha1({v}) x ax({v}) |v e V'}

(DD) = {v|ai1({v}) x ax({v}) C DD}



Direct Tensor Product from Extraction Functions

Assume that the Galois connections (P(V),«;,v;, P(D;)) are given by
extraction functions n; : V. — D; as in

a;(V) = {m(v) |veV'}
(D)) = {v|ni(v) € Ds}
The Galois connection (P(V),«a,~,P(D1 x D3)) has
a(V') = {(n(v),n2)) [veV'}
(DD) = {v | (m(v),n2(v)) € DD}

corresponding to the extraction function n:V — D1 x D> defined by

n(v) = (n1(v),n2(v))



Example:

Using the direct tensor product to combine the detection of signs anal-
ysis for pairs of integers with the analysis of difference in magnitude.

(P(Z x Z), agsgr, ,P(Sign x Sign x Range))

IS given by

assr(Z2Z)
(SSR)

{(sign(z1),sign(z2),range(|z1| —|22|)) | (21,22) € ZZ}
{(2z1, 22) | (sign(z1),sign(z2), range(|z1| —|22|)) € SSR}

corresponding to twosignsrange : Z x Z — Sign x Sign x Range given by

twosignsrange(z1, z2) = (sign(z1),sign(zz), range(|z1]| — |22|))



Advantages of the Direct Tensor Product

The expression (x,3*x) may have a value in {(z,3%2) | z € Z} which in
the direct tensor product can be described by

assr({(2,3%2) | 2 € Z}) = {(-,-,<-1),(0,0,0), (+,+,<-1)}

compared to the direct product that gave

assr({(2,3*2) | z€ Z}) = ({(5,-),(0,0), (+,+)},{0,<-1})

Note that the Galois connection is not a Galois insertion because

0) =0= ({(0,0,<-1)})

SO iS not injective and hence we do not have a Galois insertion.



From Direct to Reduced

Reduced Product
Let (L,oq,7v1,M71) and (L, an,v>, M>) be Galois connections.

The reduced product is the Galois insertion
(L, o, 7, s [M1 X M3])
defined by
al) = (a1(l),a2(l))
(m1) My2(m2)

H{(mly,mb) | 71 (me) Ma(ma) = 51 (mh) Mo (mb)}

(m1,m2)

C(m]_, m2)



Reduced Tensor Product

Let (P(V),a1,7v1,P(D1)) and (P(V),as,v>,P(D>)) be Galois connec-
tion.

The reduced tensor product is the Galois insertion

(P(V),a,v,<[P(D1 x D3)])
defined by
a(V") (Ha1({v}) x ac({v}) |v e V'}

(DD) = {v|ai1({v}) x asx({v}) € DD}
<(DD) (W{DD' | v+(DD) = ~(DD')}



Example: Array Bounds Analysis

The superfluous elements of P(Sign x Sign x Range) will be removed
when we use a reduced tensor product:

The reduction operator ¢ggr/ amounts to

cssr(SSR) = ({SSR'| (SSR) = (SSR)}
where SSR, SSR' C Sign x Sign x Range.

The singleton sets constructed from the following 16 elements

(-707<—1)7 (—707—1)7 (—7070)7

(07_70)7 (07_7+1)7 (07_7>+1)7

(0707<-1)7 (0707-1)7 (0707+1)7 (0707>+1)7
(O7+7O)7 (O7+7+1)7 (Oa+7>+1>7

(+707<_1)7 (+707_1)7 (+7O7O)

will be mapped to the empty set (as they are useless).



Example (cont.): Array Bounds Analysis

The remaining 29 elements of Sign x Sign x Range are

(—7—7<—1)7 <—7-7-1)7 (—7—70)7 (—7-7+1)7 (—7—7>+1)7
(_707+1)7 (_7O7>+1)7

(_7+7<_1)7 <_7+7_1)7 (_7+7O)7 (_7+7+1)7 (_7+7>+1)7
(07—7<-1)7 (07—7—1)7 (07070)7 (07+7<—1)7 (07+7—1)7

(+7_7<_1)7 (+7_7_1)7 (+7_70)7 (+7_7+1)7 (+7_7>+1)7
(+707+1)7 (+707>+1)7

(+7+7<—1)7 (+7+7-1)7 (+7+7O)7 (+7+7+1)7 (+7+7>+1)

and they describe disjoint subsets of Z x Z.

Any collection of properties can be descibed in 4 bytes.



Summary

The Array Bound Analysis has been designed from three simple Galois
connections specified by extraction functions:

(i) an analysis approximating integers by their sign,

(ii) an analysis approximating pairs of integers by their difference in
magnitude, and

(iii) an analysis approximating integers by their closeness to 0, 1 and —1.

These analyses have been combined using:
(iv) the relational product of analysis (i) with itself,
(v) the functional composition of analyses (ii) and (iii), and

(vi) the reduced tensor product of analyses (iv) and (v).



Induced Operations

Given: Galois connections (L;, oy, 7v;, M;) so that M; is more approximate
than (i.e. is coarser than) L;.

Aim: Replace an existing analysis over L, with an analysis making use
of the coarser structure of M;.
Methods:

e Inducing along the abstraction function: move the computations
from L; to M;.

e Application to Data Flow Analysis.

e Inducing along the concretisation function: move a widening from
Mi to Li-



Application to Data Flow Analysis

A generalised Monotone Framework consists of:
e the property space: a complete lattice L = (L,C);

e the set F of monotone functions from L to L.

An instance A of a generalised Monotone Framework consists of:
e a finite flow, F' C Lab x Lab;
e a finite set of extremal labels, E C Lab;
e an extremal value, + € L; and

e 2 mapping f. from the labels Lab of FF and E to monotone transfer
functions from L to L.



Application to Data Flow Analysis
Let (L,o,v, M) be a Galois connection.

Consider an instance B of the generalised Monotone Framework M that
satisfies

e the mapping g from the labels Lab of F' and E to monotone transfer

functions of M — M satisfies _ for all ¢: and
e the extremal value j satisfies -;

and otherwise B is as A.

One can show that a solution to the B-constraints gives rise to a solution
to the A-constraints:

(Bo, Be) = B= implies (70 Bo,7 0 Be) = A=



The Mundane Approach to Semantic Correctness
Here F' = (Sx) and E = {init(S«)}.

Correctness of every solution to A= amounts to:

Assume (Ao, Ae) = A= and (Sx,01) —* oo.
Then 3(o1) C ¢ implies B(o2) C | [{Ae(¥) | £ € (S«)}
where (3 : State — L.

One can then prove the correctness result for B:

Assume (Bo, Be) = B= and (Sx,01) —* 05.
Then (aoB)(o1) E g implies (a0 B)(02) E [I{Be(£) | £ € (Sx)}-



Sets of States Analysis

Generalised Monotone Framework over (P(State), C).
Instance SS for Sk:

e the flow F is (S%);
e the set F of extremal labels is {init(Sx)};
e the extremal value . is State; and

e the transfer functions are given by f.SS:

z:=al’ f35(Z) = {o[z+ Alalo] |0 € =}
skip]’  fP(X) = T

o] PE = =

where > C State.

Correctness: Assume (SSo, SSe) = SS=2 and (Sx,01) —* op.
Then o1 € State implies 05 € U{SSe(¥) | £ € (S%)}.



Constant Propagation Analysis

Generalised Monotone Framework over St/a\tecp = ((Var - Z") ,0D).
Instance CP for Sk:

e the flow F'is (S%);
e the set F of extremal labels is {/nit(Sx)};
e the extremal value ¢ is Ax.T; and

e the transfer functions are given by the mapping f.CP:

0. CPray )L To=.1
x = a]": b, (6) = { olx — Acpllal]lo] otherwise
skipl":  fP(E) = &

b]° : @) =

Q



Galois Connection
The representation function Gcp : State — St/zReCp is defined by

Beplo) = o

This gives rise to a Galois connection

(P(State), acp, cp, Statecp)
where acp(X) = [ {Bcp(o) | o € X} and 7cp(6) = {o | Bcp(o) T 7}

One can show that for all labels ¢

It follows that CP is an upper approximation to the analysis induced
from SS and the Galois connection: therefore it is correct.




Widening Operators

Problem: We cannot guarantee that (f"(.L)), eventually stabilises nor
that its least upper bound necessarily equals Ifp(f).

Idea: We replace (f™(L))n by a new sequence (f&), that is known to
eventually stabilise and to do so with a value that is a safe (upper)
approximation of the least fixed point.

The new sequence is parameterised on the widening operator V: an
upper bound operator satisfying a finiteness condition.



Upper bound operators

O : L xL— L is an upper bound operator iff
1 © 1Ol J 1o

for all I1,l» € L.

Let (In)n be a sequence of elements of L. Define the sequence (1), by:

. In if n=0
o O, ifn>0

n

ln

Fact: ir (In)n IS a sequence and [ is an upper bound operator then
(i), is an ascending chain; furthermore It} J [ [{lg, 11, -, ln} for all n.



Widening operators

An operator V : L x L — L is a widening operator iff
e it is an upper bound operator, and

e for all ascending chains (I,)n the ascending chain (1Y), eventually
stabilises.



Widening operators

Given a monotone function f : L — L and a widening operator V define
the sequence (f&)n by

(1 if n=20
fe=9 5 ifn>0 A (g DE R
\ f@_l \V4 f(f@_l) otherwise

One can show that:
o (f&)n is an ascending chain that eventually stabilises
e it happens when f(f{') C f& for some value of m

e Tarski’'s Theorem then gives (' 3 Ifp(f)

Ifoy (f) = &




he widening operator V applied to f

/
/
/
/

/o o\ R =2 =g (f)
Red(f)- + - - I

—_— —

‘x |
i {




Inducing along the Concretisation Function

Given an upper bound operator
Vy MxM—M

and a Galois connection (L, a,~, M).

Define an upper bound operator
V) :LxL—L
by
l1 Vi lo =7( a(ly) Vi a(l2) )

It defines a widening operator if one of the following conditions holds:
(i) M satisfies the Ascending Chain Condition, or
(ii) (L,a,~, M) is a Galois insertion and Vy; : M x M — M is a widening.



Precision of the Induced Widening Operator

Lemma: Let (L,a,~, M) be a Galois insertion such that (L) = L
and let Vy : M x M — M be a widening operator.

Then the widening operator Vy, : L x L — L defined by
l1 Vi lo =v(a(l1) Vi a(l2))
satisfies

Ifoy, (f) = ~(fpy,, (ao fory))

for all monotone functions f: L — L.



Precision of the Induced Widening Operator

Corollary: Let M be of finite height, let (L,«,~v, M) be a Galois
insertion (such that ~(Ly;) = L), and let V,; equal the least upper
bound operator Uj,.

Then the above lemma shows that Ifpy, (f) = v(Ifp(ao fo)).

This means that /fva(f) equals the result we would have obtained if we
decided to work with avo fo~ : M — M instead of the given f : L — L;
furthermore the number of iterations needed turn out to be the same.
However, for all other operations the increased precision of L is available.



