Principles of Program Analysis:

Abstract Interpretation

Transparencies based on Chapter 4 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis. Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris Hankin.

Correctness Relations

$$R: V \times L \rightarrow \{true, false\}$$

Idea: v R l means that the value v is described by the property l.

Correctness criterion: R is preserved under computation:

Admissible Correctness Relations

$$v R l_1 \wedge l_1 \sqsubseteq l_2 \Rightarrow v R l_2$$

 $(\forall l \in L' \subseteq L : v R l) \Rightarrow v R (\Box L') \quad (\{l \mid v R l\} \text{ is a Moore family})$

Two consequences:

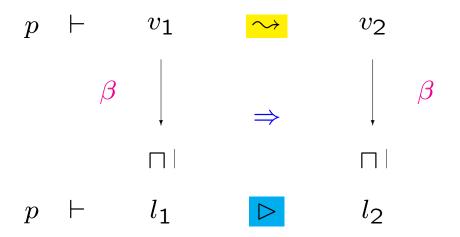
Assumption: (L, \sqsubseteq) is a complete lattice.

Representation Functions

$$\beta: V \to L$$

Idea: β maps a value to the *best* property describing it.

Correctness criterion:



Equivalence of Correctness Criteria

Given a representation function eta we define a correctness relation R_{eta} by v R_{eta} l iff $eta(v) \sqsubseteq l$

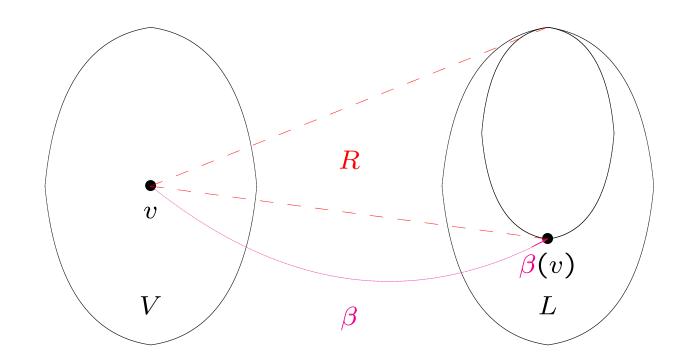
Given a correctness relation R we define a representation function β_R by

$$\beta_{R}(v) = \bigcap \{l \mid v \mid R \mid l\}$$

Lemma:

- (i) Given $\beta: V \to L$, then the relation $R_{\beta}: V \times L \to \{true, false\}$ is an admissible correctness relation such that $\beta_{R_{\beta}} = \beta$.
- (ii) Given an admissible correctness relation $R: V \times L \to \{true, false\}$, then β_R is well-defined and $R_{\beta_R} = R$.

Equivalence of Criteria: R is generated by β



A Modest Generalisation

Semantics:

$$p \vdash v_1 \longrightarrow v_2$$

where $v_1 \in V_1, v_2 \in V_2$

Program analysis:

$$p \vdash l_1 \triangleright l_2$$

where $l_1 \in L_1, l_2 \in L_2$

$$p \vdash v_1 \longrightarrow v_2$$

$$\vdots \qquad \vdots \qquad \vdots \\ R_1 \Rightarrow R_2 \\ \vdots \qquad \vdots \qquad \vdots$$
 $p \vdash l_1 \triangleright l_2$

logical relation:

$$(p \vdash \cdot \leadsto \cdot) (R_1 \twoheadrightarrow R_2) (p \vdash \cdot \rhd \cdot)$$

Galois Connections

- Galois connections and adjunctions
- Extraction functions
- Galois insertions
- Reduction operators

Galois connections

$$egin{array}{ccc} \gamma & & & & \\ L & & & & & M \end{array}$$

 α : abstraction function

 γ : concretisation function

is a Galois connection if and only if

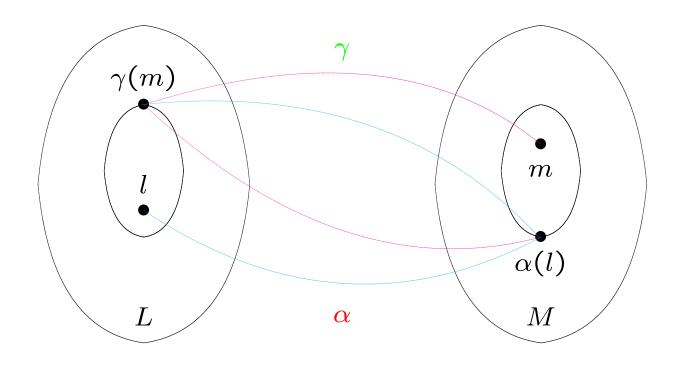
 α and γ are monotone functions

that satisfy

$$\gamma \circ \alpha \supseteq \lambda l.l$$

$$\alpha \circ \gamma \sqsubseteq \lambda m.m$$

Galois connections



$$\gamma \circ \alpha \supseteq \lambda l.l$$

$$\alpha \circ \gamma \sqsubseteq \lambda m.m$$

Example:

Galois connection

$$(\mathcal{P}(\mathbf{Z}), \boldsymbol{\alpha}_{\mathbf{ZI}}, \gamma_{\mathbf{ZI}}, \mathbf{Interval})$$

with concretisation function

$$\gamma_{\mathbf{ZI}}(int) = \{z \in \mathbf{Z} \mid \inf(int) \le z \le \sup(int)\}$$

and abstraction function

$$\alpha_{\mathbf{ZI}}(Z) = \begin{cases} \bot & \text{if } Z = \emptyset \\ [\inf'(Z), \sup'(Z)] & \text{otherwise} \end{cases}$$

Examples:

$$\gamma_{ZI}([0,3]) = \{0,1,2,3\}
\gamma_{ZI}([0,\infty]) = \{z \in \mathbb{Z} \mid z \ge 0\}
\alpha_{ZI}(\{0,1,3\}) = [0,3]
\alpha_{ZI}(\{2*z \mid z > 0\}) = [2,\infty]$$

Adjunctions

$$L \stackrel{\gamma}{\stackrel{\longleftarrow}{\longrightarrow}} M$$

is an adjunction if and only if

 $\alpha:L\to M$ and $\gamma:M\to L$ are total functions

that satisfy

$$\alpha(l) \sqsubseteq m \qquad \underline{\mathsf{iff}} \qquad l \sqsubseteq \gamma(m)$$

for all $l \in L$ and $m \in M$.

Proposition: (α, γ) is an adjunction iff it is a Galois connection.

Galois connections from representation functions

A representation function $\beta: V \to L$ gives rise to a Galois connection

$$(\mathcal{P}(V), \boldsymbol{\alpha}, \gamma, L)$$

where

$$\alpha(V') = \bigsqcup \{ \beta(v) \mid v \in V' \}$$

$$\gamma(l) = \{v \in V \mid \beta(v) \sqsubseteq l\}$$

for $V' \subseteq V$ and $l \in L$.

This indeed defines an adjunction:

$$\begin{array}{c}
\alpha(V') \sqsubseteq l \iff \bigsqcup \{\beta(v) \mid v \in V'\} \sqsubseteq l \\
\Leftrightarrow \forall v \in V' : \beta(v) \sqsubseteq l \\
\Leftrightarrow V' \subseteq \gamma(l)
\end{array}$$

Galois connections from extraction functions

An extraction function

$$\eta: V \to D$$

maps the values of V to their best descriptions in D.

It gives rise to a representation function $\beta_{\eta}: V \to \mathcal{P}(D)$ (corresponding to $L = (\mathcal{P}(D), \subseteq)$) defined by

$$\beta_{\eta}(v) = \{\eta(v)\}$$

The associated Galois connection is

$$(\mathcal{P}(V), \boldsymbol{\alpha_{\eta}}, \gamma_{\eta}, \mathcal{P}(D))$$

where

$$\alpha_{\eta}(V') = \bigcup \{\beta_{\eta}(v) \mid v \in V'\} \qquad = \{\eta(v) \mid v \in V'\}$$

$$\gamma_{\eta}(D') = \{v \in V \mid \beta_{\eta}(v) \subseteq D'\} = \{v \mid \eta(v) \in D'\}$$

Example:

Extraction function

$$sign: \mathbf{Z} \rightarrow Sign$$

specified by

$$\operatorname{sign}(z) = \begin{cases} - & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ + & \text{if } z > 0 \end{cases}$$

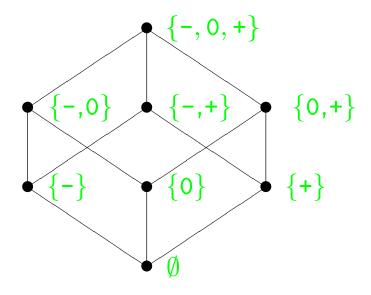
Galois connection

$$(\mathcal{P}(\mathbf{Z}), \frac{\alpha_{\mathsf{sign}}, \gamma_{\mathsf{sign}}, \mathcal{P}(\mathbf{Sign}))$$

with

$$\alpha_{\text{sign}}(Z) = \{\text{sign}(z) \mid z \in Z\}$$

$$\gamma_{\text{sign}}(S) = \{z \in \mathbf{Z} \mid \text{sign}(z) \in S\}$$



Properties of Galois Connections

Lemma: If (L, α, γ, M) is a Galois connection then:

- α uniquely determines γ by $\gamma(m) = \bigsqcup\{l \mid \alpha(l) \sqsubseteq m\}$
- \bullet γ uniquely determines α by $\alpha(l) = \bigcap \{m \mid l \sqsubseteq \gamma(m)\}$
- ullet α is completely additive and γ is completely multiplicative

In particular $\alpha(\bot) = \bot$ and $\gamma(\top) = \top$.

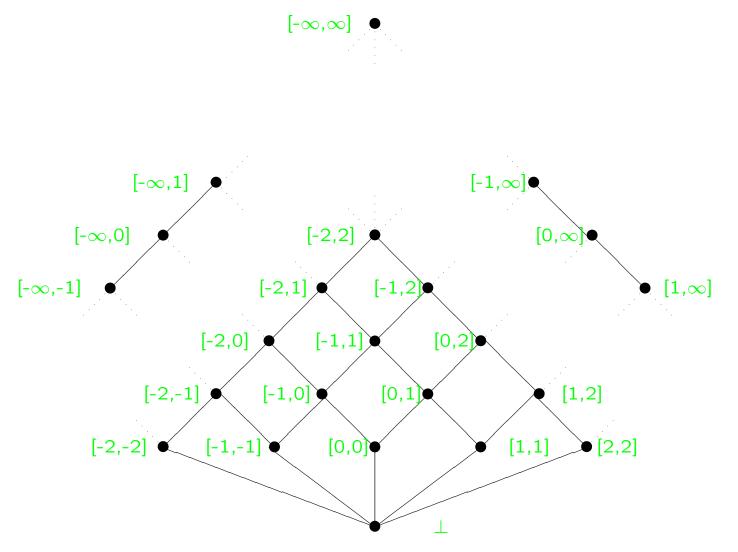
Lemma:

- If $\alpha:L\to M$ is completely additive then there exists (an upper adjoint) $\gamma:M\to L$ such that (L,α,γ,M) is a Galois connection.
- If $\gamma: M \to L$ is completely multiplicative then there exists (a lower adjoint) $\alpha: L \to M$ such that (L, α, γ, M) is a Galois connection.

Fact: If (L, α, γ, M) is a Galois connection then

• $\alpha \circ \gamma \circ \alpha = \alpha$ and $\gamma \circ \alpha \circ \gamma = \gamma$

The complete lattice Interval = (Interval, \sqsubseteq)



Example:

Define $\gamma_{\text{IS}}: \mathcal{P}(\mathbf{Sign}) \to \mathbf{Interval}$ by:

$$\gamma_{\text{IS}}(\{-,0,+\}) = [-\infty,\infty]$$
 $\gamma_{\text{IS}}(\{-,0\}) = [-\infty,0]$
 $\gamma_{\text{IS}}(\{-,+\}) = [-\infty,\infty]$ $\gamma_{\text{IS}}(\{0,+\}) = [0,\infty]$
 $\gamma_{\text{IS}}(\{-,0\}) = [0,\infty]$
 $\gamma_{\text{IS}}(\{-,0\}) = [0,\infty]$
 $\gamma_{\text{IS}}(\{0,+\}) = [0,0]$
 $\gamma_{\text{IS}}(\{+,0\}) = [0,0]$
 $\gamma_{\text{IS}}(\{0,+\}) = [0,0]$

Does there exist an abstraction function

$$\alpha_{\mathsf{IS}}: \mathsf{Interval} o \mathcal{P}(\mathsf{Sign})$$

such that (Interval, α_{IS} , γ_{IS} , $\mathcal{P}(Sign)$) is a Galois connection?

Example (cont.):

Is γ_{IS} completely multiplicative?

- if yes: then there exists a Galois connection
- if no: then there cannot exist a Galois connection

Lemma: If L and M are complete lattices and M is finite then $\gamma: M \to L$ is completely multiplicative if and only if the following hold:

- $\gamma: M \to L$ is monotone,
- $\gamma(\top) = \top$, and
- $\gamma(m_1 \sqcap m_2) = \gamma(m_1) \sqcap \gamma(m_2)$ whenever $m_1 \not\sqsubseteq m_2 \land m_2 \not\sqsubseteq m_1$

We calculate

$$\gamma_{\text{IS}}(\{-,0\} \cap \{-,+\}) = \gamma_{\text{IS}}(\{-\}) = [-\infty,-1]$$

$$\gamma_{\text{IS}}(\{-,0\}) \sqcap \gamma_{\text{IS}}(\{-,+\}) = [-\infty,0] \sqcap [-\infty,\infty] = [-\infty,0]$$

showing that there is no Galois connection involving $\gamma_{\rm IS}$.

Galois Connections are the Right Concept

We use the mundane approach to correctness to demonstrate this for:

- Admissible correctness relations
- Representation functions

The mundane approach: correctness relations

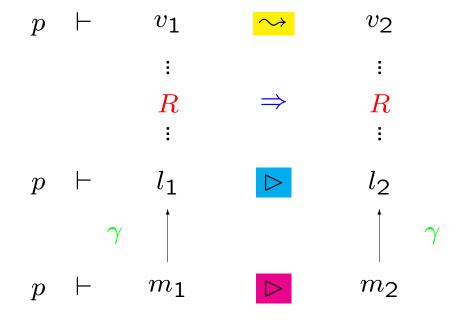
Assume

- $R: V \times L \rightarrow \{true, false\}$ is an admissible correctness relation
- (L, α, γ, M) is a Galois connection

Then $S: V \times M \rightarrow \{\textit{true}, \textit{false}\}\$ defined by

$$v S m \qquad \underline{\mathsf{iff}} \qquad v R (\gamma(m))$$

is an admissible correctness relation between V and M



The mundane approach: representation functions

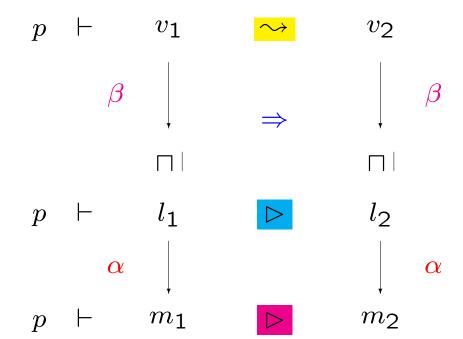
Assume

- $R: V \times L \rightarrow \{true, false\}$ is generated by $\beta: V \rightarrow L$
- (L, α, γ, M) is a Galois connection

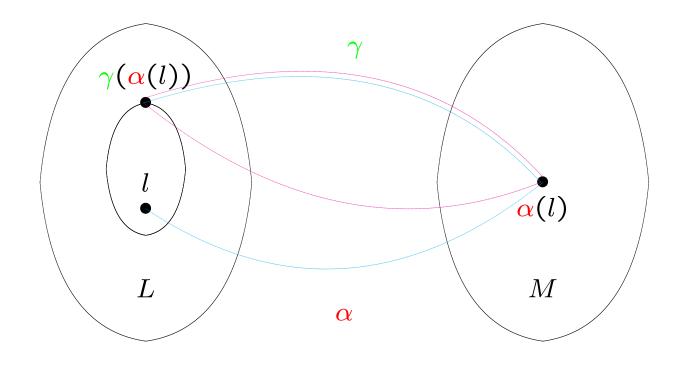
Then $S: V \times M \rightarrow \{\mathit{true}, \mathit{false}\}$ defined by

$$v S m \qquad \underline{iff} \qquad v R (\gamma(m))$$

is generated by $\alpha \circ \beta : V \to M$



Galois Insertions



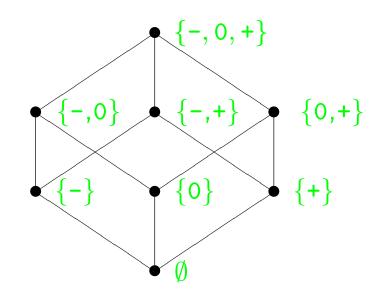
Monotone functions satisfying: $\gamma \circ \alpha \supseteq \lambda l.l$ $\alpha \circ \gamma = \lambda m.m$

Example (1):

$$(\mathcal{P}(\mathbf{Z}), \frac{\alpha_{\mathsf{sign}}, \gamma_{\mathsf{sign}}, \mathcal{P}(\mathbf{Sign}))$$

where $sign : \mathbf{Z} \rightarrow Sign$ is specified by:

$$\operatorname{sign}(z) = \begin{cases} - & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ + & \text{if } z > 0 \end{cases}$$



Is it a Galois insertion?

Example (2):

$$(\mathcal{P}(\mathbf{Z}), \alpha_{\mathsf{signparity}}, \gamma_{\mathsf{signparity}}, \mathcal{P}(\mathbf{Sign} \times \mathbf{Parity}))$$
 where $\mathbf{Sign} = \{-, 0, +\}$ and $\mathbf{Parity} = \{\mathsf{odd}, \mathsf{even}\}$ and $\mathbf{signparity}: \mathbf{Z} \to \mathbf{Sign} \times \mathbf{Parity}:$
$$\mathsf{signparity}(z) = \left\{ \begin{array}{l} (\mathsf{sign}(z), \mathsf{odd}) & \mathsf{if} \ z \ \mathsf{is} \ \mathsf{odd} \\ (\mathsf{sign}(z), \mathsf{even}) & \mathsf{if} \ z \ \mathsf{is} \ \mathsf{even} \end{array} \right.$$

Is it a Galois insertion?

Properties of Galois Insertions

Lemma: For a Galois connection (L, α, γ, M) the following claims are equivalent:

- (i) (L, α, γ, M) is a Galois insertion;
- (ii) α is surjective: $\forall m \in M : \exists l \in L : \alpha(l) = m$;
- (iii) γ is injective: $\forall m_1, m_2 \in M : \gamma(m_1) = \gamma(m_2) \Rightarrow m_1 = m_2$; and
- (iv) γ is an order-similarity: $\forall m_1, m_2 \in M : \gamma(m_1) \sqsubseteq \gamma(m_2) \Leftrightarrow m_1 \sqsubseteq m_2$.

Corollary: A Galois connection specified by an extraction function η : $V \to D$ is a Galois insertion if and only if η is surjective.

Example (1) reconsidered:

$$(\mathcal{P}(\mathbf{Z}), \frac{\alpha_{\mathsf{sign}}, \gamma_{\mathsf{sign}}, \mathcal{P}(\mathbf{Sign}))$$

$$\operatorname{sign}(z) = \begin{cases} - & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ + & \text{if } z > 0 \end{cases}$$

is a Galois insertion because sign is surjective.

Example (2) reconsidered:

$$(\mathcal{P}(\mathbf{Z}), \alpha_{\text{signparity}}, \gamma_{\text{signparity}}, \mathcal{P}(\mathbf{Sign} \times \mathbf{Parity}))$$

$$signparity(z) = \begin{cases} (sign(z), odd) & \text{if } z \text{ is odd} \\ (sign(z), even) & \text{if } z \text{ is even} \end{cases}$$

is not a Galois insertion because signparity is not surjective.

Reduction Operators

Given a Galois connection (L, α, γ, M) it is always possible to obtain a Galois insertion by enforcing that the concretisation function γ is injective.

Idea: remove the superfluous elements from M using a $reduction\ oper-$ ator

$$\varsigma: M \to M$$

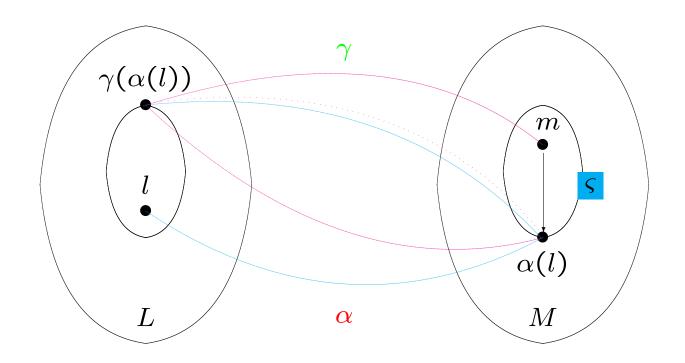
defined from the Galois connection.

Proposition: Let (L, α, γ, M) be a Galois connection and define the reduction operator $\varsigma: M \to M$ by

$$\varsigma(m) = \bigcap \{m' \mid \gamma(m) = \gamma(m')\}$$

Then $\varsigma[M] = (\{\varsigma(m) \mid m \in M\}, \sqsubseteq_M)$ is a complete lattice and $(L, \alpha, \gamma, \varsigma[M])$ is a Galois insertion.

The reduction operator $\varsigma: M \to M$



Reduction operators from extraction functions

Assume that the Galois connection $(\mathcal{P}(V), \alpha_{\eta}, \gamma_{\eta}, \mathcal{P}(D))$ is given by an extraction function $\eta: V \to D$.

Then the reduction operator ς_{η} is given by

$$\varsigma_{\eta}(D') = D' \cap \eta[V]$$

where $\eta[V] = \{d \in D \mid \exists v \in V : \eta(v) = d\}.$

Since $\varsigma_{\eta}[\mathcal{P}(D)]$ is isomorphic to $\mathcal{P}(\eta[V])$ the resulting Galois insertion is isomorphic to

$$(\mathcal{P}(V), \boldsymbol{\alpha_{\eta}}, \boldsymbol{\gamma_{\eta}}, \mathcal{P}(\boldsymbol{\eta}[V]))$$