Principles of Program Analysis:

Abstract Interpretation

Transparencies based on Chapter 4 of the book: Flemming Nielson,
Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis.

Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris
Hankin.

A Mundane Approach to Semantic Correctness

Semantics: Program analysis:
pl—’l)lf\»vz pl_l]_-lz
where vi,vp € V. where [1,lo € L.

Note: ~ might be deterministic. | Note: B should be deterministic:

fp(ll) = lo.

What is the relationship between the semantics and the analysis?

Restrict attention to analyses where properties directly describe sets of
values i.e. “first-order'’ analyses (rather than ‘“second-order” analyses).

Example: Data Flow Analysis

Structural Operational
Semantics:

Values: V = State

Transitions:

Sx o1~ 0o
iff

<S*7 01> o 02

Constant Propagation Analysis:
Properties: L = St/zﬁzecp = (Vary — Z") |

Transitions:

S, F 51JB16-
iff
o1 =1
o2 = |L{CPe({) | £ € (Sx) }
(CPQ, CP.) |: CP:(S*)

Correctness Relations

RV x L — {true, false}

Idea: v R I means that the value v is described by the property |.

Correctness criterion: R is preserved under computation:

p F v1 o v2

logical relation:

A (pr-~) (R — R) (p+ &)

Admissible Correctness Relations

v RIi Nl7Cl, = v Rl

VMleLlCL:vRlD = vR(ILY ({I|vRI}isa Moore family)

TwO conseguences:
v R T
v RIiL N vRIlI = v R ({1Ml)

Assumption: (L,C) is a complete lattice.

Example: Data Flow Analysis

Correctness relation

Rep : State x Statecp — {true, false}

is defined by

o Rep & Iff Yz € FV(Sy) : (6(z) =T V o(z) = 5(z))

Representation Functions
BV — L

Idea: 3 maps a value to the best property describing it.

Correctness criterion:

Equivalence of Correctness Criteria

Given a representation function 3 we define a correctness relation RB by

v Rg 1 iff B(v) E

Given a correctness relation R we define a representation function gp by

Br(w) = | {l|v R}
Lemma:

(i) Given 8 :V — L, then the relation Rz : V x L — {true, false} is an
admissible correctness relation such that 635 = 0.

(i) Given an admissible correctness relation R : V x L — {true, false},
then i is well-defined and Rz, = R.

Equivalence of Criteria: R is generated by (3

Example: Data Flow Analysis

Representation function
Bcp @ State — St/EReCP

is defined by
Bep(o) = Az.o(z)

Rcp is generated by [cp:

o Rcp o I Bcp(o) Ecp o

A Modest Generalisation

Program analysis:

Semantics:
pl—vl’\»’UQ pl—ll-l2
where v1 € V3,v0 € V5 where [1 € L1,lo € Lo
p U1 ~> (V)
: _ logical relation:
R = R
! 2 (p~s) (Ry — Rp) (p+ B

Approximation of Fixed Points

e Fixed points

e \Widening

e Narrowing

Example: lattice of intervals for Array Bound Analysis

The complete lattice Interval = (Interval,C

Fixed points

Let f: L — L be a monotone function on a complete lattice
L — (L7 E) I—|7 |_|7 J-? —l_)

[is a fixed point iff f() =1 Fix(f)={l| f() =1}
f is reductive at 1 iff f(l) C1 Red(f) ={l]| f(I) C 1}
f is extensive at 1l iff f(l) 21 Ext(f)={l] f(1) 31}

Tarski's Theorem ensures that

ito(f) =1 |Fix(f) =1 |Red(f) € Fix(f) C Red(f)
ap(f) = U Fix(f) = LI Ext(f) € Fix(f) C Ext(f)

Fixed points of f

F7(T)
(T

afp(f)

Ifp(f)
L, f7(L)

(L)

Widening Operators

Problem: We cannot guarantee that (f"(.L)), eventually stabilises nor
that its least upper bound necessarily equals Ifp(f).

Idea: We replace (f™(L))n by a new sequence (f&), that is known to
eventually stabilise and to do so with a value that is a safe (upper)
approximation of the least fixed point.

The new sequence is parameterised on the widening operator V: an
upper bound operator satisfying a finiteness condition.

Upper bound operators

O : L xL— L is an upper bound operator iff
1 © 1Ol J 1o

for all I1,l» € L.

Let (In)n be a sequence of elements of L. Define the sequence (1), by:

. In if n=0
o O, ifn>0

n

ln

Fact: ir (In)n IS a sequence and [is an upper bound operator then
(i), is an ascending chain; furthermore It} J [[{lg, 11, -, ln} for all n.

Example:

Let int be an arbitrary but fixed element of Interval.

An upper bound operator:

inty U inty if inty C int Vv inty C inty

- ~int —
inty U7 inty = { [— 00, 00] otherwise

Example: [1,2]092][2,3] = [1,3] and [2,3]0l0:2][1,2] = [—o0, o0].

Transformation of: [0,0],[1,1],[2,2],[3,3], [4,4],[5,5],---

If int = [0700] 0707 07 17 0727 0737 074] 7[075]7

If int = [072] 0707 07 17 0727 0737 —O0,00] 7[_00700]7 toe

Widening operators

An operator V : L x L — L is a widening operator iff
e it is an upper bound operator, and

e for all ascending chains (I,)n the ascending chain (1Y), eventually
stabilises.

Widening operators

Given a monotone function f : L — L and a widening operator V define
the sequence (f&)n by

(1 if n=20
fe=9 5 ifn>0 A (g DE R
\ f@_l \V4 f(f@_l) otherwise

One can show that:
o (f&)n is an ascending chain that eventually stabilises
e it happens when f(f{') C f& for some value of m

e Tarski’'s Theorem then gives (' 3 Ifp(f)

Ifoy (f) = &

he widening operator V applied to f

/
/
/
/

/o o\ R =2 =g (f)
Red(f)- + - - I

—_— —

‘x |
i {

Example:

Let K be a finite set of integers, e.g. the set of integers explicitly
mentioned in a given program.

We shall define a widening operator V based on K.

[21,20] V |23, 24] is
[LB(21,23) , UB(22,24)]
where
o LB(z1,23) € {21} UK U{—0} is the best possible lower bound, and
e UB(29,24) € {20} U K U{o0} is the best possible upper bound.

a change in any of the bounds of the interval [z1,22] can
only take place finitely many times — corresponding to the cardinality of
K.

Example (cont.) — formalisation:

Let 2, € Z' = Z U {—o00, 00} and write:

)

z1 if 29 < 23
LBr(z1,23) = <(k if 23 <21 A k=max{k€K|k§23}
| —o0 if 23 <21 N Ve K:z3<k
(2o if 24 < 25
UBgK(20,24) = k ifzo<zg4 N k=min{k € K| z4 <k}
|00 ifT20< 24 NVEEK k<24
(1

if inty = into, = L
| LB (inf(inty),inf(inty)) , UBg(sup(inty),sup(ints)) |
otherwise

inty V inty, = <

Example (cont.):

Consider the ascending chain (inty)n
[Oa 1]7 [072]7 [Oa 3]7 [074]7 [075]7 [Oa 6]7 [077]7 o
and assume that K = {3,5}.

Then (intY)y is the chain
0, 1], [0, 3], [0, 3], [0,5], [0, 5], [0, <], [0, 0], - - -

which eventually stabilises.

Narrowing Operators

Status: Widening gives us an upper approximation I/fpy(f) of the least
fixed point of f.

Observation: Ifow (f) Ifow(f) so the approximation can be im-

proved by considering the iterative sequence Ifow (f)
It will satisfy Ifow (f) for all n so we can stop at an arbitrary
point.

The notion of narrowing is one way of encapsulating a termination
criterion for the sequence.

Narrowing

An operator L x L — L is a narrowing operator iff
e bl = I C (4 I,) Clq for all I1,l> € L, and

e for all descending chains (l,)n the sequence (I;)n eventually sta-
bilises.

In ifn=20
e, AL, ifa>0

Narrowing

We construct the sequence

Ifow (f) ifn=20
B if n>0
One can show that:
o is a descending chain where all elements satisfy Ifp(f) C
e the chain eventually stabilises so for some value

/fpv (f) = [f]

he narrowing operator A applied to f

(1A =Ifow (f)
[F1A

AR Y

1R = (IR = &

Example:
The complete lattice (Interval,C) has two kinds of infinite descending
chains:

e those with elements of the form [—oco, 2], z € Z

e those with elements of the form [z, 0], z € Z

Idea: Given some fixed non-negative number
the narrowing operator will force an infinite descending chain

[21, 00], [22, o0], [23, 0], - - -

(where z1 < zp < z3 < ---) to stabilise when z; >

Similarly, for a descending chain with elements of the form [—co, ;] the
narrowing operator will force it to stabilise when z; <

Example (cont.) — formalisation:

Define = by

L if intqy =1 V intob, =1

inty inty = {[zl,zz] otherwise

where

. { inf(inty) if NV <inf(ints) Asup(ints) = oo
1

inf(inty) otherwise

. sup(inty) if inf(ints) = —oo Asup(inty) <
“2 = Y sup(inty) otherwise

Example (cont.):

Consider the infinite descending chain ([n,c])n
[07 OO], [17 OO]: [27 OO], [37 OO], [47 OO], [57 OO]) e

and assume that

Then the narrowing operator will give the sequence ([n, 0])n

[0, 00], [1, 00], [2, 00], [3, o0], [3, o0], [3, oo], - - -

