Principles of Program Analysis:

Abstract Interpretation

Transparencies based on Chapter 4 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis. Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris Hankin.

A Mundane Approach to Semantic Correctness

Semantics:

$$p \vdash v_1 \leadsto v_2$$

where $v_1, v_2 \in V$.

Program analysis:

$$p \vdash l_1 \triangleright l_2$$

where $l_1, l_2 \in L$.

Note: > should be deterministic:

$$f_p(l_1) = l_2.$$

What is the relationship between the semantics and the analysis?

Restrict attention to analyses where properties directly describe sets of values i.e. "first-order" analyses (rather than "second-order" analyses).

Example: Data Flow Analysis

Structural Operational Semantics:

Values: V = State

Transitions:

$$S_{\star} \vdash \sigma_1 \rightsquigarrow \sigma_2$$

iff

$$\langle S_{\star}, \sigma_1 \rangle \to^* \sigma_2$$

Structural Operational | Constant Propagation Analysis:

Properties:
$$L = \widehat{\text{State}}_{CP} = (\text{Var}_{\star} \to \mathbf{Z}^{\top})_{\perp}$$

Transitions:

$$S_{\star} \vdash \widehat{\sigma}_1 \triangleright \widehat{\sigma}_2$$

iff

$$\widehat{\sigma}_1 = \iota$$

$$\widehat{\sigma}_2 = \bigsqcup \{ \mathsf{CP}_{\bullet}(\ell) \mid \ell \in \mathit{final}(S_{\star}) \}$$

$$(\mathsf{CP}_{\circ}, \mathsf{CP}_{\bullet}) \models \mathsf{CP}^{=}(S_{\star})$$

Correctness Relations

$$R: V \times L \rightarrow \{true, false\}$$

Idea: v R l means that the value v is described by the property l.

Correctness criterion: R is preserved under computation:

Admissible Correctness Relations

$$v R l_1 \wedge l_1 \sqsubseteq l_2 \Rightarrow v R l_2$$

 $(\forall l \in L' \subseteq L : v R l) \Rightarrow v R (\Box L') \quad (\{l \mid v R l\} \text{ is a Moore family})$

Two consequences:

Assumption: (L, \sqsubseteq) is a complete lattice.

Example: Data Flow Analysis

Correctness relation

$$R_{\mathsf{CP}}: \mathbf{State} \times \mathbf{State}_{\mathsf{CP}} \rightarrow \{\mathit{true}, \mathit{false}\}\$$

is defined by

$$\sigma R_{\mathsf{CP}} \widehat{\sigma} \text{ iff } \forall x \in \mathsf{FV}(S_{\star}) : (\widehat{\sigma}(x) = \top \lor \sigma(x) = \widehat{\sigma}(x))$$

Representation Functions

$$\beta: V \to L$$

Idea: β maps a value to the *best* property describing it.

Correctness criterion:

Equivalence of Correctness Criteria

Given a representation function eta we define a correctness relation R_{eta} by v R_{eta} l iff $eta(v) \sqsubseteq l$

Given a correctness relation R we define a representation function β_R by

$$\beta_{R}(v) = \bigcap \{l \mid v \mid R \mid l\}$$

Lemma:

- (i) Given $\beta: V \to L$, then the relation $R_{\beta}: V \times L \to \{true, false\}$ is an admissible correctness relation such that $\beta_{R_{\beta}} = \beta$.
- (ii) Given an admissible correctness relation $R: V \times L \to \{true, false\}$, then β_R is well-defined and $R_{\beta_R} = R$.

Equivalence of Criteria: R is generated by β

Example: Data Flow Analysis

Representation function

$$\beta_{\mathsf{CP}}: \mathbf{State} \to \widehat{\mathbf{State}}_{\mathsf{CP}}$$

is defined by

$$\beta_{\mathsf{CP}}(\sigma) = \lambda x.\sigma(x)$$

 $R_{\sf CP}$ is generated by $\beta_{\sf CP}$:

$$\sigma R_{\mathsf{CP}} \widehat{\sigma} \quad \underline{\mathsf{iff}} \quad \beta_{\mathsf{CP}}(\sigma) \sqsubseteq_{\mathsf{CP}} \widehat{\sigma}$$

A Modest Generalisation

Semantics:

$$p \vdash v_1 \longrightarrow v_2$$

where $v_1 \in V_1, v_2 \in V_2$

Program analysis:

$$p \vdash l_1 \triangleright l_2$$

where $l_1 \in L_1, l_2 \in L_2$

$$p \vdash v_1 \longrightarrow v_2$$

$$\vdots \qquad \vdots \qquad \vdots \\ R_1 \Rightarrow R_2 \\ \vdots \qquad \vdots \qquad \vdots$$
 $p \vdash l_1 \triangleright l_2$

logical relation:

$$(p \vdash \cdot \leadsto \cdot) (R_1 \twoheadrightarrow R_2) (p \vdash \cdot \rhd \cdot)$$

Approximation of Fixed Points

Fixed points

Widening

Narrowing

Example: lattice of intervals for Array Bound Analysis

The complete lattice Interval = (Interval, \sqsubseteq)

Fixed points

Let $f: L \to L$ be a *monotone function* on a complete lattice $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$.

$$l$$
 is a fixed point iff $f(l) = l$
$$Fix(f) = \{l \mid f(l) = l\}$$
 f is reductive at l iff $f(l) \sqsubseteq l$
$$Red(f) = \{l \mid f(l) \sqsubseteq l\}$$
 f is extensive at l iff $f(l) \sqsupseteq l$
$$Ext(f) = \{l \mid f(l) \sqsupseteq l\}$$

Tarski's Theorem ensures that

$$Ifp(f) = \prod Fix(f) = \prod Red(f) \in Fix(f) \subseteq Red(f)$$
$$gfp(f) = \coprod Fix(f) = \coprod Ext(f) \in Fix(f) \subseteq Ext(f)$$

Fixed points of f

Widening Operators

Problem: We cannot guarantee that $(f^n(\bot))_n$ eventually stabilises nor that its least upper bound necessarily equals lfp(f).

Idea: We replace $(f^n(\bot))_n$ by a new sequence $(f^n_{\nabla})_n$ that is known to eventually stabilise and to do so with a value that is a safe (upper) approximation of the least fixed point.

The new sequence is parameterised on the widening operator ∇ : an upper bound operator satisfying a finiteness condition.

Upper bound operators

 $\coprod : L \times L \to L$ is an upper bound operator iff

$$l_1 \sqsubseteq l_1 \stackrel{\sqcup}{\sqcup} l_2 \stackrel{\sqcup}{\sqcup} l_2$$

for all $l_1, l_2 \in L$.

Let $(l_n)_n$ be a sequence of elements of L. Define the sequence $(l_n^{\perp})_n$ by:

$$l_n^{\square} = \begin{cases} l_n & \text{if } n = 0\\ l_{n-1}^{\square} & \text{if } n > 0 \end{cases}$$

Fact: If $(l_n)_n$ is a sequence and $\[\]$ is an upper bound operator then $(l_n^{\square})_n$ is an ascending chain; furthermore $l_n^{\square} \supseteq \bigsqcup \{l_0, l_1, \cdots, l_n\}$ for all n.

Example:

Let *int* be an arbitrary but fixed element of **Interval**.

An upper bound operator:

$$int_1 \stackrel{int}{\sqsubseteq} int_2 = \begin{cases} int_1 \stackrel{int_2}{\sqsubseteq} int_1 \stackrel{int_1}{\sqsubseteq} int \vee int_2 \stackrel{int_1}{\sqsubseteq} int_1 \\ [-\infty, \infty] & \text{otherwise} \end{cases}$$

Example: $[1,2] \stackrel{[0,2]}{=} [2,3] = [1,3]$ and $[2,3] \stackrel{[0,2]}{=} [1,2] = [-\infty,\infty]$.

Transformation of: [0,0],[1,1],[2,2],[3,3], [4,4],[5,5],...

If
$$int = [0, \infty]$$
: $[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], \cdots$

If
$$int = [0, 2]$$
: $[0, 0], [0, 1], [0, 2], [0, 3], [-\infty, \infty], [-\infty, \infty], \cdots$

Widening operators

An operator $\nabla: L \times L \to L$ is a *widening operator* iff

- it is an upper bound operator, and
- for all ascending chains $(l_n)_n$ the ascending chain $(l_n^{\nabla})_n$ eventually stabilises.

Widening operators

Given a monotone function $f:L\to L$ and a widening operator ∇ define the sequence $(f^n_{\nabla})_n$ by

$$f^n_{\nabla} = \left\{ \begin{array}{ll} \bot & \text{if } n = 0 \\ f^{n-1}_{\nabla} & \text{if } n > 0 \ \land \ f(f^{n-1}_{\nabla}) \sqsubseteq f^{n-1}_{\nabla} \\ f^{n-1}_{\nabla} \ \nabla \ f(f^{n-1}_{\nabla}) & \text{otherwise} \end{array} \right.$$

One can show that:

- \bullet $(f^n_{\nabla})_n$ is an ascending chain that eventually stabilises
- it happens when $f(f^m_{\nabla}) \sqsubseteq f^m_{\nabla}$ for some value of m
- Tarski's Theorem then gives $f^m_{\nabla} \supseteq lfp(f)$

$$Ifp_{\nabla}(f) = f_{\nabla}^{m}$$

The widening operator ∇ applied to f

Example:

Let K be a *finite* set of integers, e.g. the set of integers explicitly mentioned in a given program.

We shall define a widening operator ∇ based on K.

Idea:
$$[z_1,z_2]$$
 ∇ $[z_3,z_4]$ is
$$[\ \mathsf{LB}(z_1,z_3)\ ,\ \mathsf{UB}(z_2,z_4)\]$$

where

- LB $(z_1, z_3) \in \{z_1\} \cup K \cup \{-\infty\}$ is the best possible lower bound, and
- $\mathsf{UB}(z_2,z_4)\in\{z_2\}\cup K\cup\{\infty\}$ is the best possible upper bound.

The effect: a change in any of the bounds of the interval $[z_1, z_2]$ can only take place finitely many times — corresponding to the cardinality of K.

Example (cont.) — formalisation:

Let $z_i \in \mathbf{Z}' = \mathbf{Z} \cup \{-\infty, \infty\}$ and write:

$$\mathsf{LB}_{K}(z_{1},z_{3}) \ = \ \begin{cases} z_{1} & \text{if } z_{1} \leq z_{3} \\ k & \text{if } z_{3} < z_{1} \ \land \ k = \max\{k \in K \mid k \leq z_{3}\} \\ -\infty & \text{if } z_{3} < z_{1} \ \land \ \forall k \in K : z_{3} < k \end{cases}$$

$$\mathsf{UB}_K(z_2, z_4) \ = \ \begin{cases} z_2 & \text{if } z_4 \le z_2 \\ k & \text{if } z_2 < z_4 \ \land \ k = \min\{k \in K \mid z_4 \le k\} \\ \infty & \text{if } z_2 < z_4 \ \land \ \forall k \in K : k < z_4 \end{cases}$$

Example (cont.):

Consider the ascending chain $(int_n)_n$

$$[0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], \cdots$$

and assume that $K = \{3, 5\}$.

Then $(int_n^{\nabla})_n$ is the chain

$$[0, 1], [0, 3], [0, 3], [0, 5], [0, 5], [0, \infty], [0, \infty], \cdots$$

which eventually stabilises.

Narrowing Operators

Status: Widening gives us an upper approximation $f_{\nabla}(f)$ of the least fixed point of f.

Observation: $f(Ifp_{\nabla}(f)) \sqsubseteq Ifp_{\nabla}(f)$ so the approximation can be improved by considering the iterative sequence $(f^n(Ifp_{\nabla}(f)))_n$.

It will satisfy $f^n(Ifp_{\nabla}(f)) \supseteq Ifp(f)$ for all n so we can stop at an arbitrary point.

The notion of narrowing is *one way* of encapsulating a termination criterion for the sequence.

Narrowing

An operator $\triangle: L \times L \to L$ is a *narrowing operator* iff

- $l_2 \sqsubseteq l_1 \Rightarrow l_2 \sqsubseteq (l_1 \triangle l_2) \sqsubseteq l_1$ for all $l_1, l_2 \in L$, and
- for all descending chains $(l_n)_n$ the sequence $(l_n^{\triangle})_n$ eventually stabilises.

Recall: The sequence $(l_n^{\Delta})_n$ is defined by:

$$l_n^{\Delta} = \begin{cases} l_n & \text{if } n = 0\\ l_{n-1}^{\Delta} \Delta l_n & \text{if } n > 0 \end{cases}$$

Narrowing

We construct the sequence $([f]_{\wedge}^n)_n$

$$[f]^n_{\Delta} = \begin{cases} Ifp_{\nabla}(f) & \text{if } n = 0\\ [f]^{n-1}_{\Delta} \Delta f([f]^{n-1}_{\Delta}) & \text{if } n > 0 \end{cases}$$

One can show that:

- $([f]_{\Delta}^{n})_{n}$ is a descending chain where all elements satisfy $f(f) \sqsubseteq [f]_{\Delta}^{n}$
- the chain eventually stabilises so $[f]_{\Delta}^{m'} = [f]_{\Delta}^{m'+1}$ for some value m'

$$Ifp_{\nabla}^{\triangle}(f) = [f]_{\triangle}^{m'}$$

The narrowing operator \triangle applied to f

Example:

The complete lattice (**Interval**, \sqsubseteq) has two kinds of infinite descending chains:

- ullet those with elements of the form $[-\infty,z]$, $z\in {f Z}$
- ullet those with elements of the form $[z,\infty]$, $z\in {f Z}$

Idea: Given some fixed non-negative number N the narrowing operator Δ_N will force an infinite descending chain

$$[z_1,\infty],[z_2,\infty],[z_3,\infty],\cdots$$

(where $z_1 < z_2 < z_3 < \cdots$) to stabilise when $z_i > N$

Similarly, for a descending chain with elements of the form $[-\infty, z_i]$ the narrowing operator will force it to stabilise when $z_i < -N$

Example (cont.) — formalisation:

Define $\Delta = \Delta_N$ by

$$int_1 \triangle int_2 = \left\{ egin{array}{ll} \bot & ext{if } int_1 = \bot \lor int_2 = \bot \\ [z_1,z_2] & ext{otherwise} \end{array} \right.$$

where

$$z_1 = \begin{cases} \inf(int_1) & \text{if } N < \inf(int_2) \land \sup(int_2) = \infty \\ \inf(int_2) & \text{otherwise} \end{cases}$$

$$z_2 = \begin{cases} \sup(int_1) & \text{if } \inf(int_2) = -\infty \land \sup(int_2) < -N \\ \sup(int_2) & \text{otherwise} \end{cases}$$

Example (cont.):

Consider the infinite descending chain $([n,\infty])_n$

$$[0,\infty],[1,\infty],[2,\infty],[3,\infty],[4,\infty],[5,\infty],\cdots$$

and assume that N=3.

Then the narrowing operator Δ_N will give the sequence $([n,\infty]^{\Delta})_n$

$$[0,\infty],[1,\infty],[2,\infty],[3,\infty],[3,\infty],[3,\infty],\cdots$$