Principles of Program Analysis:

Data Flow Analysis

Transparencies based on Chapter 2 of the book: Flemming Nielson,
Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis.

Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris
Hankin.

Shape Analysis

Goal: to obtain a finite representation of the shape of the heap of a
language with pointers.

The analysis result can be used for
e detection of pointer aliasing
e detection of sharing between structures

e software development tools
— detection of errors like dereferences of nil-pointers

e program verification
— reverse transforms a non-cyclic list to a non-cyclic list

Syntax of the pointer language

a = pln|ay op, ar|nil

p = z|xz.sel

b ::= true|false|not b|by Opy, bo|ay Op, ax | 0P, p
S = [p:=a]®| [skip]‘| S1; S2 |

if [b]¢ then Sp else S |while [b]¢ do S |
[malloc p]*

Example

[y:=nil1]®;
while [not is-nil(x)]? do

([z:=y]3; [y:=x]%; [x:=x.cdr]®; [y.cdr:=2]®);
[z:=nil1]’

Reversal of a list

cdr cdr cdr cdr
(&)——(&a)—(&)—°C

cdr
o

z—

X
y

cdr cdr cdr
(§a)——(&)—<

cdr

cdr
x — (&)—(&)

y—<

Z

cdr cdr
X — (&) ——(&)—°

cdr cdr cdr
X —(&)—(&)——(&)—9
y — (e o

Z

cdr cdr cdr
y— (&) —(&)—(&)—°

Z

cdr
X —(&H)—9

cdr cdr cdr cdr cdr
(Sa)——(&)——(&)——(&)—°

y

cdr cdr
(&2)——(&)—<

cdr

cdr
y—(&)—(&)

Structural Operational Semantics

A configurations consists of

e a state s € = Vary — (Z + Loc + {¢})

mapping variables to values, locations (in the heap) or the nil-value

e a heap n € Heap = (Loc x Sel) —i, (Z 4+ Loc + {¢})

mapping pairs of locations and selectors to values, locations in the
heap or the nil-value

Pointer expressions

o PExp — (x Heap) —+n (Z 4 {¢} + Loc)
is defined by
plz](o,n) = o(=z)
([H(o(x), sel)
ollz.sell(o,H) = ¢ if o(x) € Loc and # is defined on (o(x), sel)
| undefined otherwise

Arithmetic and boolean expressions

A AExp — (x Heap) —+iy (Z 4+ Loc + {¢})
B : BExp — (x Heap) —¢in T

Statements

Clauses for assignments:

([z:=a]t, o, H) — { JH)
if Afla]l(o,H) is defined

([z.s€el:=a)t, o, 1) — (o, H[(o(z), sel) — A[a] (o, H)])
if o(x) € Loc and Ala]](o,H) is defined
Clauses for malloc:

([malloc z]t, o, H) — { £, H)

where £ does not occur in ¢ or ‘H

([malloc (z.sel)], ,H) — (o, H[(o(x), sel) — &])

where ¢ does not occur in o or H and o(z) € Loc

Shape graphs

The analysis will operate on shape graphs (S, H,is) consisting of
e an abstract state, S,
e an abstract heap, H, and

e sharing information, is, for the abstract locations.

The nodes of the shape graphs are abstract locations:

ALoc = {nyx | X C Var,}

Example

In the semantics:

x (&) =
y (e) =

.

In the analysis:
cdr
i) cdr an

cdr

X

y "y} M {z}

.

&

cdr

&

Abstract Locations

The abstract location ny represents
the location o(z) if x € X

‘The abstract location ny is called the
abstract summary location: ng rep-
resents all the locations that cannot
be reached directly from the state
without consulting the heap

If two abstract locations
nx and ny occur in the same shape
graph then either X =Y or XNY = ()

Abstract states and heaps

S € AState = 7P(Vars x ALoc) abstract states

H € AHeap P(ALoc x Sel x ALoc) abstract heap

If x is mapped to ny by
@Cdr the abstract state S then z € X
ngy

cdr

X N {x}

cdr
y Myy —— ™z Whenever (ny, sel, nyy)

” // and (ny,sel,ny) are in the abstract

heap H then either V. =0 or W = W'

Reversal of a list

X

X

y

X

y

cdr

cdr
(g cdr n(bq

cdr

"y} M {z}

7

cdr
" {x} noq

t cdr

cdr nig

n{y}

7

y

cdr
g cdr nmq

Ny}
n{x} ﬂ. ngy

t cdr
ngyy -S4 ng,y

cdr

f cdr

cdr Nz

n{y}

Sharing in the heap

x —(a) (e)

| cdr

| cdr

y ‘®§5 cdr o

cdr
iz cdr m@
iy /

cdr

X

y

x ——(a) (e)

| cdr

cdr cdr S

y o

is: the abstract locations that might
be shared due to pointers in the
heap:

ny IS included in is if it might repre-
sents a location that is the target of
more than one pointer in the heap

Examples: sharing in the heap

x — (&)< <t i
| cdr X ngy -SAr. ng
Y,
| cdrC dr y " cdr
y L&) O
x ——(a) e)= oo
| cdr X ngy CAr. ny

Ce)<r(Ces)= Y,

y oo
y / cdr

car car @Cdr
| cdr x —— n{x}
% 4» cdr cdr o y
y %-

y -

Sharing information

The implicit sharing information of the abstract heap must be consistent
with the explicit sharing information:

If ny € is then either
o (ng,sel,nx) is in the abstract heap for

cdr
. n{}) some sel, or
y e there are two distinct triples (ny, sel1,nx)
y %- and (ny/,selo, ny) in the abstract heap

Whenever there are two distinct
triples (ny, sel1,nx) and (ny,sel>, nx) in the
abstract heap and X # () then ny € is

