Interprocedural analysis: Sharir-Pnueli’'s
functional approach

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

18 September 2013

Outline

o Functional Approach

© Example
e Iterative Approach

Q@ Exercises

Functional Approach

Equations to capture JOP: why it works

o We want JOP at N.

o If transfer functions are
distributive, then we can take
join over paths at an any
intermediate point M, and then
join over paths from M to N.

Functional Approach

Equation solving: Problems with naive approach

@ In non-procedural case,

we setup equations to A ,/';,f:‘}%? ‘
capture JOP assuming ‘ 1 L
distributivity. Least . L
solution to these (/),./ L
equations gave us :\

C e | H

exact/over-approx »

JOP depending on 3 {earr o)’

distributive/monotonic

framework. S ti=a*p
@ Try to set up similar :’/ I%

equations for xy (JVP P Ne M"\ 14

at program point N). 5 e e M
@ How do we describe E

xp in terms of x,7

Functional Approach

Instead try to capture join over paths first

@ Set up equations to capture join over complete paths.

@ Now set up equations to capture JVP using join over
complete path values.

Functional Approach

Notation

_-=20 ©
b i
1 S 7
@ Root of procedure ‘ s —
p is denoted r,. B o/
@ Exit (return) of
procedure p is «
denoted e,.
@ Sometimes use r;
1
for rmain- 4 ti=a*b 0
@ Assume WLOG that Y
N N Mi @]
main is not called. N SR

Functional Approach

Example paths

An example valid path in IVP(r,).

[N

|

(S)

|

Path “FGHLFKJMIJ" is valid and complete and is in IVPq(rp, J).

Functional Approach

Basic idea: Why join over complete paths help

An IVP path p from r; to N in procedure p can be written as § - n
where ¢ is in IVP(r1, rp), and 7 is in IVPq(rp, N).

Path 7 is suffix after last pending call to procedure p was made.

Functional Approach

Valid and complete paths from r, to N

For a procedure p and node N in p, define:
Gron i D — D

given by

Pr.n(d) = L fo(d).

paths p€IVPq(rp,N)

®r,,n is thus the join of all functions f, where p is an
interprocedurally valid and complete path from r, to N.

Functional Approach

Visualizing ¢, n

p

(X

) Grpon(d)

d’

&

v brpon(d’)

Functional Approach

Using ¢, v's to get JVP values

Prp N

Assuming distributivity of underlying transfer functions, JVP value
at N equals ¢,, v applied to JVP value at r.

Functional Approach

Equations (1) to capture ¢,, v

Yro,rp = ’dD (

YoN = funoyn,m (stmt)

Yo, N = Yrgeq © Yrp,M (53”)

Yo, N = YL U Yro,M- (jOin) call g

Functional Approach

Example: Available expressions analysis

@ 0 (not available)
[]
!

Lattice for Av-Exp
analysis.

1 (available)

1

@ Is axb available at
program point N7

Functional Approach

Example: Available expressions analysis

@ 0 (not available)
°
°

Lattice for Av-Exp
analysis.

1 (available)

1

@ Is axb available at
program point N7

@ No if we consider all
paths.

Functional Approach

Example: Available expressions analysis

e 0 (not available)
|
|
Lattice for Av-Exp
analysis.

1 (available)

1

@ Is axb available at
program point N7

@ No if we consider all
paths.

@ Yes if we consider
interprocedurally
valid paths only.

Functional Approach

Functions we will use for example analysis

e D={1,1,0}.
@ 0: D — D given by
1l - L
0 — 0
1 — 0
@ 1:D — D given by
1l - 1
0 — 1
1 — 1
@ id: D — D given by
1l - L
0 — 0
1 — 1

@ Ordering: 1 <id <0.

Functional Approach

Example: Equations for ¢’s

yaa = id ’X
yag = 0oyan ‘ !
yac = loyas B
Yap = YF,JOYAC

yap = loyap

YAE = idoyap

yrr = id

YF.G6 = IdoyrF

yrk = idoyrF

yeH = 0oyrg

YF,Q = JYFJCYFH D

YF,i 1o YF.,Q 5
Yrg = YFIUYFK
E
N/

Functional Approach

Using ¢, v's to get JVP values

Prp N

Assuming distributivity of underlying transfer functions, JVP value
at N equals ¢,, v applied to JVP value at r.

Functional Approach

Equations (2) to capture JVP

x1 = do
Xrp = I—lcalls Ctop Xc
xn = ¢, N(Xr,) for N € ProgPts(p) — {rp}.

Functional Approach

Example: Equations for xy’s (JVP)

_--=0 6
xa = 0 /de //‘73¢id
xe = 10a) B$ 0 g G¢ id
> l(XA) n Ll
xe = 1(x s \ 3§ 0
E (xa) cl1 e
XF = XcUxy o
x¢ = id(xr) v ”
xk = id(xF) JF = 2ty
XH = O(XF) - ¢ I1
xq = 0(xr) “Ne. Yo g
X/ = l(X/:) b . » . &
x; = id(xF). R

>

o
o
a

Fig. shows values of ¢,, n's i

Functional Approach

Correctness claims

Consider lattice (F, <) of functions from D to D, obtained by
closing the transfer functions, identity, and f, : d — L under
composition and join. (Alternatively we can take F to be all
monotone functions on D.)
Ordering is f < g iff f(d) < g(d) for each d € D.
(F,<) is also a complete lattice.
f induced by Eq (1) is monotone on complete lattice (F, <).
o Sufficient to argue that function composition o is monotone
when applied to monotone functions.
e Join operation | | is monotone.

LFP / least solution (say yr n'S) exists by Knaster-Tarski.
Each y;; n IS necessarily monotonic.

ér,,N's are the least solution to Eq (1) (i.e. ¢, n = Y y) when
fun's are distributive. Otherwise each GroN < yr*; N-

Functional Approach

Using Kildall to compute LFP

@ We can use Kildall's algo to compute the LFP of these
equations as follows.

o Initialize the value at program points with RHS of the constant
equations (in this case id at entry of procedures), and the
bottom value (in this case f) everywhere else.

o Mark all values

o Pick a marked value at point say N, and “propagate” it (i.e.
for any node M in the LHS of an equation in which N occurs
in the RHS, evaluate M and join it with the existing value at
M). Mark as before in Kildall's algo.

e Stop when no more marked values to propagate.

o Kildall's algo will compute yr*; n if D is finite. Note that finite
height of (D, <) is not sufficient for termination.

Functional Approach

Correctness and algo - Il

Consider Eq (2)":

x1 = dy
Xrp = I—lcalls Ctop Xc
v = yp n(x) for N € N, — {rp}.

(Recall that ¥y, n's are the least solution of Eq (1).)

o f induced by Eq (2)" is a monotone function on the complete
lattice (D, <).
@ LFP / least solution (say xy's) exists by Knaster-Tarski.

JVP values are the least solution to Eq (2)' (i.e. JVPy = xy)
when fyn's are distributive. Otherwise JVPy < xj; for each N.

Kleene/Kildall's algo will compute x},'s (assuming D finite).

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: i ’
ple: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
YApP = YFJOYAC
YAD = 1o Ya.pP
YAE = lidoyap
yer = id

YrF.c = IdoyrF
Yrk = ldo }/F;F
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk

Example: Computing JVP values (x;’s to be precise)

0 IX”’ P Y

o g
xe = 10a) B¢ 0 LA G¢ id
x>~ I(XA) n Ll
xe = 1(xa) c \ 3 0

1 1K

XE = XcUxy 50
x¢ = id(xF) v "
xk = id(xF) = 2ty
XH = O(XF) - ‘/ 11
xq = 0(xF) e Mo $id
xi = 1(xF) e =

x; = id(xg).

Example: Computing JVP values (x;’s to be precise)

XA
XB
Xc
xp
Xp
XE

XF
XG
XK
XH
XQ
X1

XJ

id(xg).

P % o |

N,

ll
Fig shows initial (red) and final (blue) values.

Example: Computing JVP values (x;’s to be precise)

XA
XB
Xc
xp
Xp
XE

XF
XG
XK
XH
XQ
X1

XJ

id(xg).

N,

Fig shows initial (red) and final (blue) values.

Example

Summary of functional approach

@ Uses a two step approach
© Compute ¢, n's.
© Compute x,'s (JVP's) at each point.
Summary of conditions: For each property (column heading), the
conjunction of the ticked conditions (row headings) are sufficient
to ensure the property.

| | Termination | Least Sol of Eq(2) > JVP | Least Sol of Eq(2)= JVP |

v

fpn's monotonic
Finite underlying lattice
fpn's distributive

v
v

v

Iterative Approach

Viewing ¢ computation as a table

Iterative Approach

Viewing ¢ computation as a table

o oo™
o
SRR
H

Iterative Approach

Viewing ¢ computation as a table

o oo™
o
SRR
H

Iterative Approach

Viewing ¢ computation as a table

Iterative Approach

Viewing ¢ computation as a table

Iterative Approach

Iterative/ Tabulation Approach

@ Main idea: de-couple the propagation of function rows.

@ Maintain a table of values representing the current value of
¢r,,n for each program point N in procedure p.

@ Expand column for data value d in procedure p only if d is
reachable at r,.
@ Informally, at N in procedure p, the table has an entry d — d’
if we have seen
© valid paths p from ri to r, with | |, f,(do) = d, and
@ valid and complete paths ¢ from r, to N with | |5 f5(d) = d".

Iterative Approach

Iterative/ Tabulation Approach

@ Apply Kildall's algo with initial value of dp — dp at n.

@ Propagating across a call to procedure p: value d is
propagated to the column for d at root of p.

@ Propagating across return nodes from procedure p: value d’
in column for d is propagated to each column at a return site
of a call to procedure p that has the value d in the preceding
entry.

Iterative Approach

Example: Computing ¢’s iteratively: 1

Iterative Approach

Example: Computing ¢’s iteratively: 2

AYO_
] ™
Be 0 —
*

Iterative Approach

Example: Computing ¢’s iteratively: 3

AYO_
] ™
Be 0 —
*

Iterative Approach

Example: Computing ¢’s iteratively: 4

AYO_
] e
Be 0 —
*

Iterative Approach

Example: Computing ¢’s iteratively: 5

Iterative Approach

Example: Computing ¢’s iteratively: 6

Iterative Approach

Example: Computing ¢’s iteratively: 7

Iterative Approach

Example: Computing ¢’s iteratively: 8

Iterative Approach

Example: Computing ¢’s iteratively: 9

Iterative Approach

Example: Computing ¢’s iteratively: 10

Iterative Approach

Example: Computing ¢’s iteratively: 11

Iterative Approach

Example: Computing ¢’s iteratively: 12

Iterative Approach

Example: Computing ¢’s iteratively: 13

Iterative Approach

Example: Finally compute xy’s from ¢ values

At each point N take join of reachable ¢,, y values.

Iterative Approach

Correctness of iterative algo

@ lterative algo terminates provided underlying lattice is finite.
@ |t computes the y;’;hN's (where yr’;N's are the least solution to

Eq (1)) “partially”: If it maps d to d’ # L then y; \(d) = d".
@ The JVP values it gives (say zy's) are such that

JVPN < zy < xp

(where x3,'s are the solution to Eq (2')).

@ If underlying transfer functions are distributive it computes
ér,N's correctly (though partially), and the JVP values
correctly.

@ It thus computes an overapproximation of JVP for monotonic
transfer functions, and exact JVP when transfer functions are
distributive.

Exercises

Exercise 1: Iterative algo

Run the iterative algo to do constant propagation analysis for the
program below with initial value (). Assume here that “cond” is the

condition "a < 2",

Exercises

Exercise 2: Functional vs lterative algo

Run the functional and iterative algos to do constant propagation
analysis for the program below with initial value ():

Exercises

Comparing functional vs iterative approach

@ Functional algo can terminate even when underlying lattice is
infinite, provided we can represent and compose/join
functions “symbolically”.

@ lterative is typically more efficient than functional since it only
computes ¢, n's for values reachable at start of procedure.

	Functional Approach
	Example
	Iterative Approach
	Exercises

