Interprocedural analysis: Sharir-Pnueli's functional approach

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

18 September 2013

Outline

- 1 Functional Approach
- 2 Example
- 3 Iterative Approach
- 4 Exercises

Equations to capture JOP: why it works

- We want JOP at N.
- If transfer functions are distributive, then we can take join over paths at an any intermediate point M, and then join over paths from M to N.

Equation solving: Problems with naive approach

- In non-procedural case, we setup equations to capture JOP assuming distributivity. Least solution to these equations gave us exact/over-approx JOP depending on distributive/monotonic framework.
- Try to set up similar equations for x_N (JVP at program point N).
- How do we describe
 x_N in terms of x_I?

Instead try to capture join over complete paths first

- Set up equations to capture join over complete paths.
- Now set up equations to capture JVP using join over complete path values.

Notation

- Root of procedure p is denoted r_p .
- Exit (return) of procedure p is denoted e_p.
- Sometimes use r_1 for r_{main} .
- Assume WLOG that main is not called.

Example paths

An example valid path in $IVP(r_1, I)$.

An example valid and complete path in $IVP_0(r_1, D)$.

Path "FGHLFKJMIJ" is valid and complete and is in $IVP_0(r_p, J)$.

Basic idea: Why join over complete paths help

An IVP path ρ from r_1 to N in procedure p can be written as $\delta \cdot \eta$ where δ is in IVP (r_1, r_p) , and η is in IVP $_0(r_p, N)$.

Path η is suffix after last pending call to procedure p was made.

Valid and complete paths from r_p to N

For a procedure p and node N in p, define:

$$\phi_{r_p,N}:D\to D$$

given by

$$\phi_{r_{\rho},N}(d) = \bigsqcup_{\text{paths } \rho \in \text{IVP}_0(r_{\rho},N)} f_{\rho}(d).$$

 $\phi_{r_p,N}$ is thus the join of all functions f_ρ where ρ is an interprocedurally valid and complete path from r_ρ to N.

Visualizing $\overline{\phi_{r_p,N}}$

Using $\phi_{r_p,N}$'s to get JVP values

Assuming distributivity of underlying transfer functions, JVP value at N equals $\phi_{r_p,N}$ applied to JVP value at r_p .

Equations (1) to capture $\phi_{r_p,N}$

$$y_{r_p,r_p} = id_D$$
 (root)
 $y_{r_p,N} = f_{MN} \circ y_{r_p,M}$ (stmt)
 $y_{r_p,N} = y_{r_q,e_q} \circ y_{r_p,M}$ (call)
 $y_{r_p,N} = y_{r_p,L} \sqcup y_{r_p,M}$. (join)

Example: Available expressions analysis

Lattice for Av-Exp analysis.

• Is a*b available at program point N?

Example: Available expressions analysis

Lattice for Av-Exp analysis.

- Is a*b available at program point N?
- No if we consider all paths.

Example: Available expressions analysis

Lattice for Av-Exp analysis.

- Is a*b available at program point N?
- No if we consider all paths.
- Yes if we consider interprocedurally valid paths only.

Functions we will use for example analysis

- $D = \{\bot, 1, 0\}.$
- $\mathbf{0}: D \to D$ given by

$$\begin{array}{ccc} \bot & \mapsto & \bot \\ 0 & \mapsto & 0 \\ 1 & \mapsto & 0 \end{array}$$

• $\mathbf{1}: D \to D$ given by

$$\begin{array}{ccc} \bot & \mapsto & \bot \\ 0 & \mapsto & 1 \\ 1 & \mapsto & 1 \end{array}$$

• **id** : $D \rightarrow D$ given by

$$\begin{array}{ccc} \bot & \mapsto & \bot \\ 0 & \mapsto & 0 \\ 1 & \mapsto & 1 \end{array}$$

• Ordering: $1 \le id \le 0$.

Example: Equations for ϕ 's

```
id
y_{A,A}
              \mathbf{0} \circ y_{A,A}
y_{A,B} =
y_{A,C} = \mathbf{1} \circ y_{A,B}
y_{A,P} = y_{F,J} \circ y_{A,C}
y_{A,D} = \mathbf{1} \circ y_{A,P}
               id \circ y_{A,D}
y_{A,E}
                id
y_{F,F}
       = id \circ y_{F,F}
УF.G
y_{F,K} = id \circ y_{F,F}
y_{F,H} = \mathbf{0} \circ y_{F,G}
y_{F,Q} = y_{F,J} \circ y_{F,H}
y_{F,I} = \mathbf{1} \circ y_{F,Q}
y_{F,J} = y_{F,I} \sqcup y_{F,K}
```


Using $\phi_{r_p,N}$'s to get JVP values

Assuming distributivity of underlying transfer functions, JVP value at N equals $\phi_{r_p,N}$ applied to JVP value at r_p .

Equations (2) to capture JVP

$$\begin{array}{lcl} x_1 & = & d_0 \\ x_{r_p} & = & \bigsqcup_{\operatorname{calls} C \operatorname{to} p} x_C \\ x_N & = & \phi_{r_p,N}(x_{r_p}) & \operatorname{for} N \in \operatorname{ProgPts}(p) - \{r_p\}. \end{array}$$

Example: Equations for x_N 's (JVP)

```
X_A
         \mathbf{0}(x_A)
x_B =
   = \mathbf{1}(x_A)
x_P = \mathbf{1}(x_A)
x_D = \mathbf{1}(x_A)
     = \mathbf{1}(x_A)
ΧE
                                                                              call p
                                       call p
          x_C \sqcup x_H
                                                                               Q • 0
    = id(x_F)
X_G
x_K = id(x_F)
x_H = \mathbf{0}(x_F)
x_Q = \mathbf{0}(x_F)
x_I = \mathbf{1}(x_F)
                                                                                ret
                                      print t
   = id(x_F).
ХJ
```

Fig. shows values of $\phi_{r_p,N}$'s in bold.

Functional Approach Example Iterative Approach Exercises

Correctness claims

- Consider lattice (F, \leq) of functions from D to D, obtained by closing the transfer functions, identity, and $f_{\perp}: d \mapsto \bot$ under composition and join. (Alternatively we can take F to be all monotone functions on D.)
- Ordering is $f \leq g$ iff $f(d) \leq g(d)$ for each $d \in D$.
- (F, \leq) is also a complete lattice.
- \overline{f} induced by Eq (1) is monotone on complete lattice (\overline{F}, \leq) .
 - Sufficient to argue that function composition o is monotone when applied to monotone functions.
- LFP / least solution (say $y_{r_0,N}^*$'s) exists by Knaster-Tarski.
- Each $y_{r_n,N}^*$ is necessarily monotonic.

Claim

 $\phi_{r_p,N}$'s are the least solution to Eq (1) (i.e. $\phi_{r_p,N} = y_{r_p,N}^*$) when f_{MN} 's are distributive. Otherwise each $\phi_{r_p,N} \leq y_{r_p,N}^*$.

Functional Approach Example Iterative Approach Exercises

Using Kildall to compute LFP

- We can use Kildall's algo to compute the LFP of these equations as follows.
 - Initialize the value at program points with RHS of the constant equations (in this case id at entry of procedures), and the bottom value (in this case f_{\perp}) everywhere else.
 - Mark all values
 - Pick a marked value at point say N, and "propagate" it (i.e. for any node M in the LHS of an equation in which N occurs in the RHS, evaluate M and join it with the existing value at M). Mark as before in Kildall's algo.
 - Stop when no more marked values to propagate.
- Kildall's algo will compute $y_{r_p,N}^*$ if D is finite. Note that finite height of (D, \leq) is not sufficient for termination.

Correctness and algo - II

Consider Eq (2)':

$$\begin{array}{lcl} x_1 & = & d_0 \\ x_{r_p} & = & \bigsqcup_{\operatorname{calls} C \operatorname{to} p} x_C \\ x_N & = & y_{r_p,N}^*(x_{r_p}) & \text{for } N \in N_p - \{r_p\}. \end{array}$$

(Recall that $y_{r_p,N}^*$'s are the least solution of Eq (1).)

- \overline{f} induced by Eq (2)' is a monotone function on the complete lattice (\overline{D}, \leq) .
- LFP / least solution (say x_N^* 's) exists by Knaster-Tarski.

Claim

JVP values are the least solution to Eq (2)' (i.e. $JVP_N = x_N^*$) when f_{MN} 's are distributive. Otherwise $JVP_N \le x_N^*$ for each N.

Kleene/Kildall's algo will compute x_N^* 's (assuming D finite).

```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                  \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
            = y_{F,J} \circ y_{A,C}
                  \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                   id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
y_{F,K}
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$


```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                  \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
            = y_{F,J} \circ y_{A,C}
                \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                   id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
y_{F,K}
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$


```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                  \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
                \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                  id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
УF,К
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$


```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                 \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
                \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                  id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
УF,К
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$


```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                  \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
            = y_{F,J} \circ y_{A,C}
                  \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                   id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
y_{F,K}
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$


```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                  \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
                  \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                  id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
УF,К
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$

 $y_{F,Q}$

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$


```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                  \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
                  \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                  id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
УF,К
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$

 $y_{F,Q}$

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$


```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                  \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
            = y_{F,J} \circ y_{A,C}
                  \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                   id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
y_{F,K}
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$

 $y_{F,Q}$

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$


```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                  \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
                \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                  id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
УF,К
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$


```
id
y_{A,A}
               \mathbf{0} \circ y_{A,A}
y_{A,B}
                                                       read a, b
                 \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
               \mathbf{1} \circ y_{A,P}
y_{A,D}
                 id \circ y_{A,D}
y_{A,E}
                                                        call p
                 id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
УF,К
                 \mathbf{0} \circ y_{F,G}
УF,Н
                y_{F,J} \circ y_{F,H}
y_{F,Q}
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$


```
id
y_{A,A}
               \mathbf{0} \circ y_{A,A}
y_{A,B}
                                                       read a, b
                 \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
               \mathbf{1} \circ y_{A,P}
y_{A,D}
                 id \circ y_{A,D}
y_{A,E}
                                                        call p
                 id
YF.F
          = id \circ y_{F,F}
y_{F,G}
          = id \circ y_{F,F}
УF,К
                 \mathbf{0} \circ y_{F,G}
УF,Н
                y_{F,J} \circ y_{F,H}
y_{F,Q}
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$


```
id
y_{A,A}
               \mathbf{0} \circ y_{A,A}
y_{A,B}
                                                      read a, b
                 \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
               \mathbf{1} \circ y_{A,P}
y_{A,D}
                 id \circ y_{A,D}
y_{A,E}
                                                                                                        call p
                                                       call p
                 id
YF.F
                                                                                                          Qv
          = id \circ y_{F,F}
y_{F,G}
          = id \circ y_{F,F}
УF,К
                 \mathbf{0} \circ y_{F,G}
УF,Н
               y_{F,J} \circ y_{F,H}
y_{F,Q}
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

id

ret

```
\mathbf{0} \circ y_{A,A}
y_{A,B}
                  \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
                \mathbf{1} \circ y_{A,P}
y_{A,D}
                  id \circ y_{A,D}
y_{A,E}
                  id
YF.F
           = id \circ y_{F,F}
y_{F,G}
           = id \circ y_{F,F}
УF,К
                  \mathbf{0} \circ y_{F,G}
УF,Н
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

 $y_{F,J} \circ y_{F,H}$

id

 $y_{A,A}$

Example: Computing $\phi_{r_p,N}$'s $(y_{r_p,N}^*$ to be precise) using Kildall's algo

```
id
y_{A,A}
               \mathbf{0} \circ y_{A,A}
y_{A,B}
                                                      read a, b
                 \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
               \mathbf{1} \circ y_{A,P}
y_{A,D}
                 id \circ y_{A,D}
y_{A,E}
                                                                                                        call p
                                                       call p
                 id
YF.F
                                                                                                          Qv
          = id \circ y_{F,F}
y_{F,G}
          = id \circ y_{F,F}
УF,К
                 \mathbf{0} \circ y_{F,G}
УF,Н
               y_{F,J} \circ y_{F,H}
y_{F,Q}
                                                                                                                  id
```

ret

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

Example: Computing $\phi_{r_p,N}$'s $(y_{r_p,N}^*$ to be precise) using Kildall's algo

```
id
y_{A,A}
               \mathbf{0} \circ y_{A,A}
y_{A,B}
                                                      read a, b
                 \mathbf{1} \circ y_{A,B}
y_{A,C}
y_{A,P}
           = y_{F,J} \circ y_{A,C}
               \mathbf{1} \circ y_{A,P}
y_{A,D}
                 id \circ y_{A,D}
y_{A,E}
                                                        call p
                 id
YF.F
                                                                                                           Qv
          = id \circ y_{F,F}
y_{F,G}
          = id \circ y_{F,F}
УF,К
                 \mathbf{0} \circ y_{F,G}
УF,Н
               y_{F,J} \circ y_{F,H}
y_{F,Q}
```

 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$

 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

id

ret

Example: Computing JVP values (x_N^* 's to be precise)

```
X_A
          \mathbf{0}(x_A)
X_B
          \mathbf{1}(x_A)
x_C
x_P = \mathbf{1}(x_A)
x_D = \mathbf{1}(x_A)
       = \mathbf{1}(x_A)
ΧE
           x_C \sqcup x_H
X_F
      = id(x_F)
X_G
    = id(x_F)
XK
x_H = \mathbf{0}(x_F)
     = \mathbf{0}(x_F)
X_Q
     = \mathbf{1}(x_F)
ΧĮ
     = id(x_F).
ХJ
```


Example: Computing JVP values (x_N^*) 's to be precise)

```
X_A
          \mathbf{0}(x_A)
X_B
x_C = \mathbf{1}(x_A)
x_P = \mathbf{1}(x_A)
x_D = \mathbf{1}(x_A)
      = \mathbf{1}(x_A)
          x_C \sqcup x_H
    = id(x_F)
x_K = id(x_F)
x_H = \mathbf{0}(x_F)
x_Q = \mathbf{0}(x_F)
x_I = \mathbf{1}(x_F)
    = id(x_F).
```


Fig shows initial (red) and final (blue) values.

Example: Computing JVP values (x_N^*) 's to be precise)

```
X_A
          \mathbf{0}(x_A)
X_B
x_C = \mathbf{1}(x_A)
x_P = \mathbf{1}(x_A)
x_D = \mathbf{1}(x_A)
      = \mathbf{1}(x_A)
          x_C \sqcup x_H
    = id(x_F)
x_K = id(x_F)
x_H = \mathbf{0}(x_F)
x_Q = \mathbf{0}(x_F)
x_I = \mathbf{1}(x_F)
    = id(x_F).
```


Fig shows initial (red) and final (blue) values.

Summary of functional approach

- Uses a two step approach
 - **①** Compute $\phi_{r_p,N}$'s.
 - 2 Compute x_n 's (JVP's) at each point.

Summary of conditions: For each property (column heading), the conjunction of the ticked conditions (row headings) are sufficient to ensure the property.

	Termination	Least Sol of Eq(2) \geq JVP	Least Sol of Eq(2)= JVP
f_{MN} 's monotonic Finite underlying lattice f_{MN} 's distributive	√ ✓	√	\checkmark

Iterative/Tabulation Approach

- Main idea: de-couple the propagation of function rows.
- Maintain a table of values representing the current value of $\phi_{r_p,N}$ for each program point N in procedure p.
- Expand column for data value d in procedure p only if d is reachable at r_p .
- Informally, at N in procedure p, the table has an entry $d \mapsto d'$ if we have seen
 - **1** valid paths ρ from r_1 to r_p with $\bigsqcup_{\rho} f_{\rho}(d_0) = d$, and
 - ② valid and complete paths δ from r_p to N with $\bigsqcup_{\delta} f_{\delta}(d) = d'$.

Iterative/Tabulation Approach

- Apply Kildall's algo with initial value of $d_0 \mapsto d_0$ at r_1 .
- Propagating across a call to procedure p: value d is propagated to the column for d at root of p.
- Propagating across return nodes from procedure p: value d' in column for d is propagated to each column at a return site of a call to procedure p that has the value d in the preceding entry.

Example: Finally compute x_N 's from ϕ values

At each point N take join of reachable $\phi_{r_p,N}$ values.

Correctness of iterative algo

- Iterative algo terminates provided underlying lattice is finite.
- It computes the $y^*_{r_p,N}$'s (where $y^*_{r_p,N}$'s are the least solution to Eq (1)) "partially": If it maps d to $d' \neq \bot$ then $y^*_{r_p,N}(d) = d'$.
- The JVP values it gives (say z_N 's) are such that

$$\text{JVP}_N \leq z_N \leq x_N^*$$

(where x_N^* 's are the solution to Eq (2')).

- If underlying transfer functions are distributive it computes $\phi_{r_p,N}$'s correctly (though partially), and the JVP values correctly.
- It thus computes an overapproximation of JVP for monotonic transfer functions, and exact JVP when transfer functions are distributive.

Exercise 1: Iterative algo

Run the iterative algo to do constant propagation analysis for the program below with initial value \emptyset . Assume here that "cond" is the condition " $a \le 2$ ".

Exercise 2: Functional vs Iterative algo

Run the functional and iterative algos to do constant propagation analysis for the program below with initial value \emptyset :

Comparing functional vs iterative approach

- Functional algo can terminate even when underlying lattice is infinite, provided we can represent and compose/join functions "symbolically".
- Iterative is typically more efficient than functional since it only computes $\phi_{r_p,N}$'s for values reachable at start of procedure.