Interprocedural Analysis: Sharir-Pnueli's Call-strings Approach

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

04 September 2013

- Motivation
- 2 Call-strings method
- 3 Correctness
- 4 Approximate call-string method
- **5** Bounded call-string method

Handling programs with procedure calls

How would we extend an abstract interpretation to handle programs with procedures?

```
main(){
                       f(){
                                               g(){
  x := 0;
                                                 f();
                         x := x+1;
  f();
                         return;
                                                 return;
  g();
  print x;
```

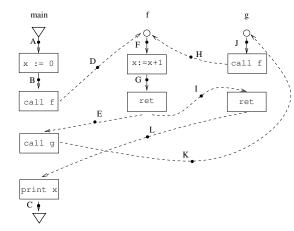
Handling programs with procedure calls

How would we extend an abstract interpretation to handle programs with procedures?

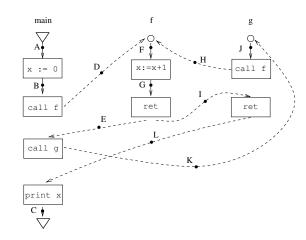
```
main(){
    x := 0;
    x := x+1;
    f();
    return;
    return;
    print x;
}
```

Question: what is the collecting state before the print x statement in main?

- Add extra edges
 - call edges: from call site (call p) to start of procedure (p)
 - ret edges: from return statement (in p) to point after call sites ("ret sites") (call p).

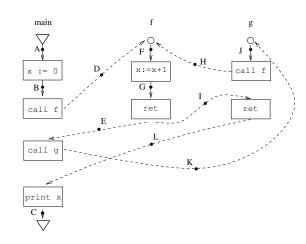


- Assume variables are uniquely named across program.
- Transfer functions for call/return edges?



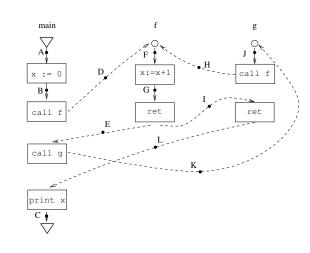
Handling programs with procedure calls

- Assume variables are uniquely named across program.
- Transfer functions for call/return edges? Identity if we assume no parameters/return values; else treat like assignment statement.



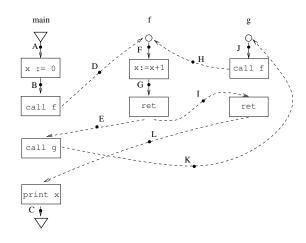
Handling programs with procedure calls

- Assume variables are uniquely named across program.
- Transfer functions for call/return edges? Identity if we assume no parameters/return values; else treat like assignment statement.
- Now compute JOP in this extended control-flow graph.



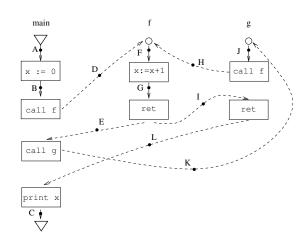
Problem with JOP in this graph

Ex. 1. Actual collecting state at C?



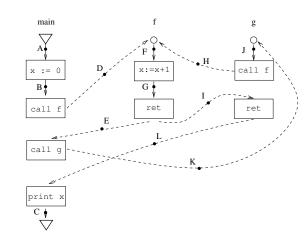
Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$.



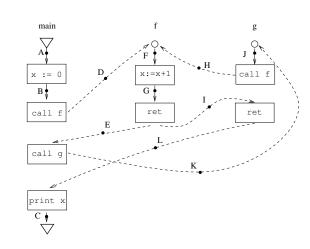
Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C for the collecting semantics abstract interpretation?



Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C for the collecting semantics abstract interpretation? $\{x\mapsto 1,\ x\mapsto 2,\ x\mapsto$ $3,\ldots\}.$

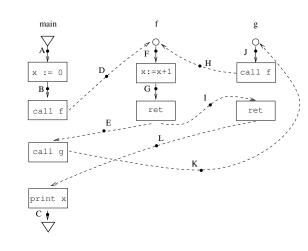


Approximate call-string method

Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C for the collecting semantics abstract interpretation? $\{x \mapsto 1, x \mapsto 2, x \mapsto 3, \ldots\}$.

- JOP is sound but very imprecise.
- Some paths don't correspond to executions of the program: Eg. ABDFGILC.



Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C for the collecting semantics abstract interpretation? $\{x \mapsto 1, \ x \mapsto 2, \ x \mapsto 3, \ldots\}$.

- JOP is sound but very imprecise.
- Some paths don't correspond to executions of the program: Eg. ABDFGILC.

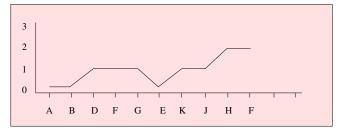
main x := 0 x := x+1В 🖢 G call ret ret call print x C 🛊

What we want is Join over "Interprocedurally-Valid" Paths (JVP).

- Informally a path ρ in the extended CFG G' is inter-procedurally valid if every return edge in ρ "corresponds" to the most recent "pending" call edge.
- For example, in the example program the ret edge E corresponds to the call edge D.
- The call-string of a valid path ρ is a subsequence of call edges which have not been "returned" as yet in ρ .
- For example, cs(ABDFGEKJHF) is "KH".

Interprocedurally valid paths and their call-strings

• A path $\rho = ABDFGEKJHF$ in $IVP_{G'}$ for example program:



- Associated call-string $cs(\rho)$ is KH.
- For $\rho = ABDFGEK \ cs(\rho) = K$.
- For $\rho = ABDFGE \ cs(\rho) = \epsilon$.

More formally: Let ρ be a path in G'. We define when ρ is interprocedurally valid (and we say $\rho \in IVP(G')$) and what is its call-string $cs(\rho)$, by induction on the length of ρ .

- If $\rho = \epsilon$ then $\rho \in IVP(G')$. In this case $cs(\rho) = \epsilon$.
- If $\rho = \rho' \cdot N$ then $\rho \in IVP(G')$ iff $\rho' \in IVP(G')$ with $cs(\rho') = \gamma$ say, and one of the following holds:
 - N is neither a call nor a ret edge. In this case $cs(\rho) = \gamma$.
 - N is a call edge. In this case $cs(\rho) = \gamma \cdot N$.
 - **1** N is ret edge, and γ is of the form $\gamma' \cdot C$, and N corresponds to the call edge C. In this case $cs(\rho) = \gamma'$.
- We denote the set of (potential) call-strings in G' by Γ . Thus $\Gamma = \mathcal{C}^*$, where \mathcal{C} is the set of call edges in G'.

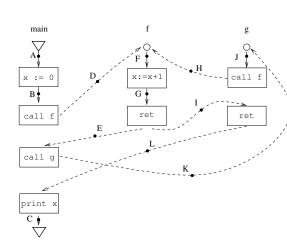
• Let P be a given program, with extended CFG G'.

- Let $path_{I,N}(G')$ be the set of paths from the initial point I to
- point N in G'. • Let $\mathcal{A} = ((D, \leq), f_{MN}, d_0)$ be a given abstract interpretation.
- Then we define the join over all interprocedurally valid paths
- (JVP) at point N in G' to be:

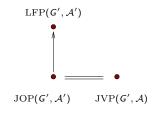
$$\bigsqcup_{\rho \in path_{I,N}(G') \cap IVP(G')} f_{\rho}(d_0)$$

One approach to obtain JVP

- Find JOP over same graph, but modify the abs int.
- Modify transfer functions for call/ret edges to detect and invalidate invalid edges.
- Augment underlying data values with some information for this.
- Natural thing to try: "call-strings".



- Define an abs int A' which extends given abs int A with call-string data.
- Show that JOP of A' on G' coincides with JVP of A on G'.
- Use Kildall (or any other technique) to compute LFP of \mathcal{A}' on \mathcal{G}' . This value over-approximates JVP of \mathcal{A} on G'.

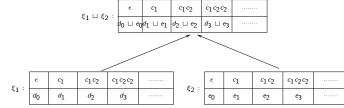


Call-string abs int A': Lattice (D', \leq')

• Elements of D' are maps $\xi: \Gamma \to D$

¢ .	ϵ	c_1	c ₁ c ₂	c ₁ c ₂ c ₂	
ζ.	d ₀	d_1	d ₂	d ₃	

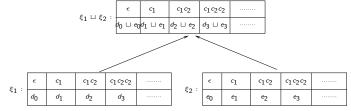
- Ordering on D': \leq' is the pointwise extension of \leq in D.
- That is $\xi_1 \leq \xi_2$ iff for each $\gamma \in \Gamma$, $\xi_1(\gamma) \leq \xi_2(\gamma)$.



• Elements of D' are maps $\xi : \Gamma \to D$

¢ .	ϵ	c_1	c ₁ c ₂	$c_1c_2c_2$	
ζ.	d ₀	d_1	d ₂	d ₃	

- Ordering on D': \leq' is the pointwise extension of \leq in D.
- That is $\xi_1 \leq '\xi_2$ iff for each $\gamma \in \Gamma$, $\xi_1(\gamma) \leq \xi_2(\gamma)$.



• Check that (D', \leq') is also a complete lattice.

Call-string abs int A': Initial value ξ_0

• Initial value ξ_0 is given by

$$\xi_0(\gamma) = \begin{cases} d_0 & \text{if } \gamma = \epsilon \\ \bot & \text{otherwise.} \end{cases}$$

Call-string abs int A': transfer functions

Transfer functions for non-call/ret edge N:

$$f'_{MN}(\xi) = f_{MN} \circ \xi.$$

Transfer functions for call edge N:

$$f'_{MN}(\xi) = \lambda \gamma. \begin{cases} \xi(\gamma') & \text{if } \gamma = \gamma' \cdot N \\ \bot & \text{otherwise} \end{cases}$$

• Transfer functions for ret edge N whose corresponding call edge is C:

$$f'_{MN}(\xi) = \lambda \gamma . \xi(\gamma \cdot C)$$

• Transfer functions f'_{MN} is monotonic (distributive) if each f_{MN} is monotonic (distributive).

print

Transfer functions f'_{MN} for example program

Non-call/ret edge B:

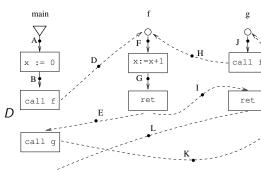
$$\xi_B = f_{AB} \circ \xi_A.$$

• Call edge *D*:

$$\xi_D(\gamma) = \begin{cases} \xi_B(\gamma') & \text{if } \gamma = \gamma' \cdot D \\ \bot & \text{otherwise} \end{cases}$$

• Return edge *E*:

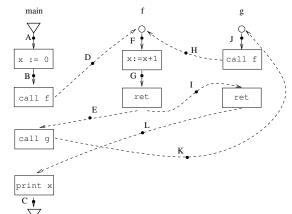
$$\xi_E(\gamma) = \xi_G(\gamma \cdot D).$$



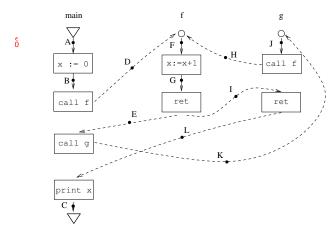
Let $\mathcal A$ be the standard collecting state analysis. For brevity, represent a set of concrete states as $\{0,1\}$ (meaning the 2 concrete states $x\mapsto 0$ and $x\mapsto 1$). Assume an initial value $d_0=\{0\}$.

Show the call-string tagged abstract states (in the lattice \mathcal{A}') along the paths

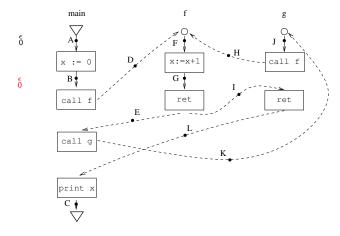
- ABDFGEKJHFGIL (interprocedurally valid)
- ABDFGIL (interprocedurally invalid).



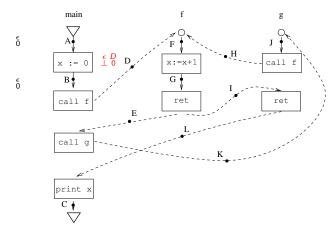
Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.



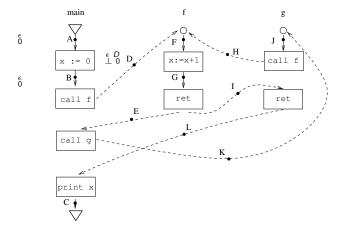
Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.



Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.



Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.



Correctness claim

Assumption on A: Each transfer function satisfies $f_{MN}(\bot) = \bot$.

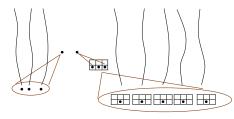
Claim

Motivation

Let N be a point in G'. Then

$$JVP_{\mathcal{A}}(N) = \bigsqcup_{\gamma \in \Gamma} JOP_{\mathcal{A}'}(N)(\gamma).$$

Proof: Use following lemmas to prove that LHS dominates RHS and vice-versa.



IVP Paths reaching N

Paths reaching N

Correctness claim: Lemma 1

Lemma 1

Let ρ be a path in $IVP_{G'}$. Then

$$f'_{\rho}(\xi_0) = \lambda \gamma. \begin{cases} f_{\rho}(d_0) & \text{if } \gamma = cs(\rho) \\ \bot & \text{otherwise.} \end{cases}$$

ϵ	c_1	$cs(\rho)$	c ₁ c ₂ c ₂	
Т		d		

Proof: by induction of length of ρ .

Correctness claim: Lemma 2

Lemma 2

Let ρ be a path not in $IVP_{G'}$. Then

$$f_{\rho}'(\xi_0) = \lambda \gamma. \perp.$$

Approximate call-string method

ϵ	c_1	c ₂	c1 c2 c2	
Т	1		1	

Proof:

- ρ must have an invalid prefix.
- Consider smallest such prefix $\alpha \cdot N$. Then it must be that α is valid and N is a return edge not corresponding to $cs(\alpha)$.
- Using previous lemma it follows that $f'_{\alpha,N}(\xi_0) = \lambda \gamma. \perp$.
- But then all extensions of α along ρ must also have transfer function $\lambda \gamma. \perp$.

Computing JOP for abs int A'

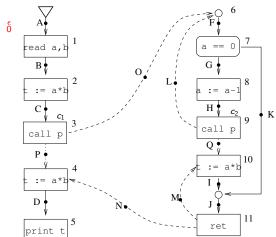
- Problem is that D' is infinite in general (even if D were finite). So we cannot use Kildall's algo to compute an over-approximation of JOP.
- We give two methods to bound the number of call-strings
 - Use "approximate" call-strings.
 - Give a bound on largest call-string needed.

Approximate (suffix) call-string method

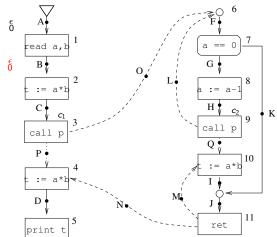
Idea:

- Consider only call-strings of length $\leq I$. So each table ξ is now a finite table.
- Transfer functions for non-call/ret edges remains same.
- Transfer functions for call edge C: Shift γ entry to $\gamma \cdot C$ if $|\gamma \cdot C| < I$; else shift it to $\gamma' \cdot C$ where $\gamma = A \cdot \gamma'$.
- Transfer functions for ret edge *N*:
 - If $\gamma = \gamma' \cdot C$ and N corresponds to call edge C, then shift $\gamma' \cdot C$ entry to all entries $\alpha \gamma'$ which are "feasible" at the return site:
 - If $\gamma = \epsilon$ then copy its entry to all entries α which are "feasible" at the return site.

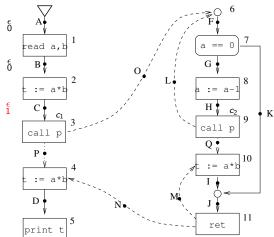
Assume approximate call-string length of 2. Use Kildall's algo to compute the ξ table values for the example program. Start with initial value $d_0 = 0$.



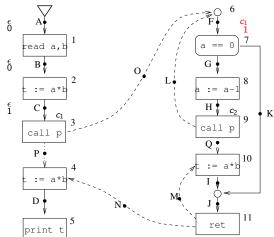
Exercise: approximate call-strings

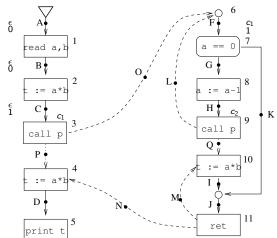


Exercise: approximate call-strings



Exercise: approximate call-strings



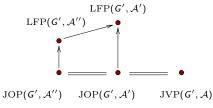


Bounded call-string method for finite underlying lattice *D*

• Possible to bound length of call-strings Γ we need to consider.

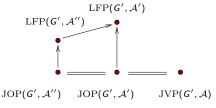
Approximate call-string method

- For a number I, we denote the set of call-strings (for the given program P) of length at most I, by Γ_I .
- Define a new analysis \mathcal{A}'' (M-bounded call-string analysis) in which call-string tables have entries only for Γ_M for a certain constant M, and transfer functions ignore entries for call-strings of length more than M.
- We will show that JOP(G', A'') = JOP(G', A').



Motivation

- Consider any fixpoint V (a vector of tables) of \mathcal{A}'' .
- Truncate each entry of V to (call-strings of) length M, to get V'
- Clearly V dominates V'.
- Further, observe that V' is a post-fixpoint of the transfer functions for A''.
- By Knaster-Tarski characterisation of LFP, we know that V'dominates LFP(\mathcal{A}'').



Approximate call-string method

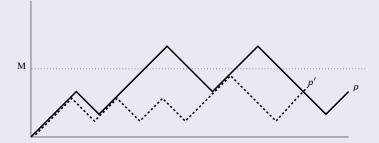
Sufficiency (or safety) of bound

Let k be the number of call sites in P.

Claim

For any path p in $IVP(r_1, N)$ with a prefix q such that $|cs(q)| > k|D|^2 = M$ there is a path p' in $IVP(r_1, N)$ with $|cs(q')| \leq M$ for each prefix q' of p', and $f_p(d_0) = f_{p'}(d_0)$.

Paths with bounded call-strings



Approximate call-string method

Proving claim

Claim

For any path p in $IVP(r_1, N)$ such that for some prefix q of p, $|cs(q)| > M = k|D|^2$, there is a path p' in $IVP_{\Gamma_M}(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0).$

Sufficient to prove:

Subclaim

For any path p in $IVP(r_1, N)$ with a prefix q such that |cs(q)| > M, we can produce a smaller path p' in $IVP(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0).$

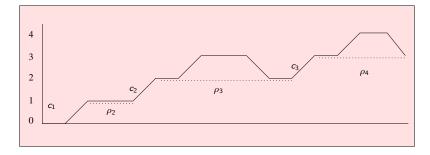
• ...since if $|p| \leq M$ then $p \in IVP_{\Gamma_M}$.

Motivation

A path ρ in $IVP(r_1, n)$ can be decomposed as

$$\rho_1\|(c_1,r_{p_2})\|\rho_2\|(c_2,r_{p_3})\|\sigma_3\|\cdots\|(c_{j-1},r_{p_j})\|\rho_j.$$

where each ρ_i (i < j) is a valid and complete path from r_{p_i} to c_i , and ρ_j is a valid and complete path from r_{p_j} to n. Thus c_1, \ldots, c_{j-1} are the unfinished calls at the end of ρ .



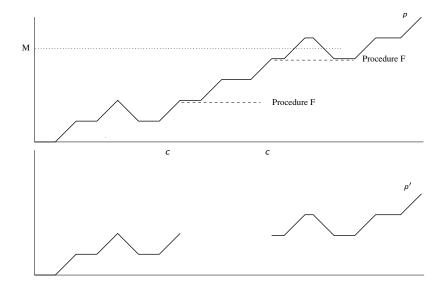
Motivation

- Let p_0 be the first prefix of p where $|cs(p_0)| > M$.
- Let decomposition of p_0 be

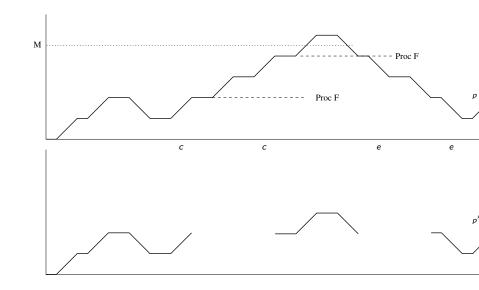
$$\rho_1\|(c_1,r_{p_2})\|\rho_2\|(c_2,r_{p_3})\|\sigma_3\|\cdots\|(c_{j-1},r_{p_j})\|\rho_j.$$

- Tag each unfinished-call c in p_0 by $(c, f_{q \cdot c}(d_0), f_{q \cdot cq'e}(d_0))$ where e is corresponding return of c in p.
- If no return for c in p tag with $(c, f_{q \cdot c}(d_0), \perp)$.
- Number of distinct such tags is $k \cdot |D|^2$.
- So there are two calls qc and qcq'c with same tag values.

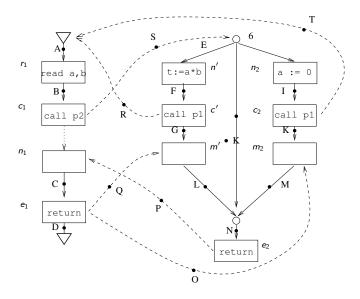
Proving subclaim − tag values are ⊥



Proving subclaim – tag values are not \bot



Example



Transfer functions f'_{MN} for Example 2

• Non-call/ret edge *C*:

$$\xi_C = f_{BC} \circ \xi_B.$$

• Call edge O:

$$\xi_O(\gamma) = \begin{cases} \xi_C(\gamma') & \text{if } \gamma = \gamma' \cdot \phi_{\text{call p}} \\ \bot & \text{otherwise} \end{cases}$$

• Return edge N:

$$\xi_N(\gamma) = \xi_I(\gamma \cdot O).$$

