Software Model Checking

Aditya V. Nori

Microsoft Research India

Thanks to Tom Ball & Sriram Rajamani for material from their lectures



PROBLEM



Software validation problem

Does the software work?

I hope this version
still interoperates
with my other
software!

I hope it can handle
my peak transaction
load!




How do we do software validation?

Testing:

* The "old-fashioned" way

* Run it and see if it works
» Fix it if it doesn't work
 Ship it if it doesn't crash!




What's wrong with testing?

program correctness. Taday 3 usual technique is to mske 3 program and then to
test it. But: program testing can be a very effective way to show the presence
of bugs, but is hopelessly inadequate for showing their absence. The only
effective way to raise the confidence level of a program significantly is

to give a convincing preoof of its correctness. But one should not first make



What's wrong with testing?

ACM Turirg Lesture 1572 EWD340 = O

The Humble Programmer.

by

Edzger W.0ijkstra

BAs a result of 2 long seguence of coincidences | entered the programming
profession officislly on the first spring momning of 1352 and a5 far as | hawe
been able to trace, | was the first Dutchman to do so in my country. In
retrospect the most amaiing thing was the slowness with which, at least
in my part of the world, ths programming profession emerged, a slowness
whick is mow hard to believe. But 1 am grateful for two wivid recollections

from that periond that estshlishk that zlowness beyond any doubt.


http://images.google.com/imgres?imgurl=http://www.komputasi.lipi.go.id/gambar/1111015013.jpg&imgrefurl=http://www.komputasi.lipi.go.id/utama.cgi?artikel&1111015013&5&h=240&w=186&sz=8&hl=en&start=1&tbnid=wYI8u7uw_dm4UM:&tbnh=110&tbnw=85&prev=/images?q=edsgar+dijkstra&gbv=2&svnum=10&hl=en

Program Verification

The algorithmic discovery of properties
of a program by inspection of the
source text

- Manna and Pnueli, "Algorithmic Verification”

Also known as: static analysis, static
program analysis, formal methods, ...




Difficulties in program verification

* What will you prove?
- Specification of a complex software is as
complex as the software itself
» "Deep” specifications of software are
hard to prove

- State-of-art in tools and automation not
good enough



Elusive triangle

Large programs

We will let go
of this onel

Deep properties Automation



Example properties

Type safety

Memory safety (absence of buffer
overruns)

Protocol conformance for APIs
Race freedom



New generation of software tools

« SLAM/SDV (Windows Device Drivers)

» SAL+PREfast (Buffer overflow checking
for C/C++)

« Spec# & Boogie (.NET)

- ASTREE (C, avionics software)

* FindBugs (Java, bug finder)
 Saturn (C, null deref bug finder)
and many morel ...



Other routes to reliability

Test

Don't program in C ©

Debug

Code inspection

Modern languages (Java, C#, ML, ...)
Runtime checking



Outline

« SLAM: Software model checking via
abstraction refinement
—c2bp
— bebop
— hewton

 Synergy: Property checking by
combining static analysis and testing



Software Validation

* Large scale reliable software is hard to
build and test.

» Different groups of programmers write
different components.

» Integration testing is a nightmare.



Property Checking

* Programmer provides redundant partial
specifications

* Code is automatically checked for
consistency

» Different from proving whole program
correcthess

— Specifications are not complete



Interface Usage Rules

e Rules in documentation

2 UN]’X postiess — Incomplete, unenforced, wordy
9 B pno(mmmm ';g — Or'gser' of operations & data
2 = acce
— Resource management

e - Disobeying rules causes bad
-wa | behavior

— System crash or deadlock

— Unexpected exceptions

river
Development Kit — Failed runtime checks

fer Oney




Does a given usage rule hold?

 Checking this is computationally
impossiblel

» Equivalent to solving Turing's halting
problem (undecidable)

 Even restricted computable versions of
the problem (finite state programs) are
prohibitively expensive



Why bother?

Just because a problem is undecidable, it
doesn't go away!



Automatic property checking =
Study of tradeoffs

« Soundness vs completeness
— Missing errors vs reporting false alarms

« Annotation burden on the programmer

» Complexity of the analysis
— Local vs Global
— Precision vs Efficiency
— Space vs Time



Broad classification

* Underapproximations

— Testing

 After passing testing, a program may still
violate a given property

* Overapproximations

— Type checking

* Even if a program satisfies a property, the type
checker for the property could still reject it



Current trend

 Confluence of techniques from
different fields:

— Model checking
— Automatic theorem proving
— Program analysis

« Significant emphasis on practicality

 Several new projects in academia and
industry



Software Model Checking via
Abstraction Refinement

* Model checking = exhaustive exploration of state
space

 Challenge: realistic software has a huge state space?

« Approach: Abstraction-refinement

— Construct an abstraction

* a "simpler model” of the software that only contains the
variables and relationships that are important to the property
being checked

— Model check the abstraction

* easier because state space of the abstraction is smaller
— Refine the abstraction

* to reduce false errors



SLAM - Software Model Checking

SLAM models

— boolean programs: a new model for software

SLAM components
— model creation (c2bp)
— model checking (bebop)
— model refinement (newton)




SLIC

» Finite state language for stating rules
— monitors behavior of C code
— Yemporal safety properties (security automata)
— familiar C syntax

» Suitable for expressing control-dominated
properties
— e.g. proper sequence of events
— can encode data values inside state



State Machine Locking Rule in
for Locking SLIC

state {
enum {Locked,Unlocked}
s = Unlocked;

}

KeAcquireSpinLock.entry {
if (s==Locked) abort;
else s = Locked,;

}

KeReleaseSpinLock.entry {
if (s==Unlocked) abort;
else s = Unlocked;

}



The SLAM Process

boolean
program

SLIC rule

predicate




Example

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Does this code
obey the
locking rule?

4




Example

do {
KeAcquireSpinLock();

if(*){
KeReleaseSpinLock();

}

o U }while (*);
L W

E

KeReleaseSpinLock();

Model checking

boolean program
(bebop)

4




Example

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
o request = request->Next;
KeReleaseSpinLock();

Q nPackets++;

}
Cu) while (nPackets != nPacketsOld);

° (U KeReleaseSpinLock();

E

Is error path feasible
in C program?
(newton)




Example

b : (nPacketsOld == nPackets)

@ ol
KeAcquireSpinLock();
(L)

nPacketsOld = nPackets; b = true;

o if(request){

C1 request = request->Next;
KeReleaseSpinLock();
CU) nPackets++; b = b ? false : *;
}
Q CU) } while (nPackets != nPacketsOld); b

° (U KeReleaseSpinLock();
(W @

Add new predicate
to boolean program
(c2bp)

4




Example

b : (nPacketsOld == nPackets)

do {
KeAcquireSpinLock();

b = true;

()

KeReleaseSpinLock();
b=Db?false:*;

Model checking
refined
boolean program
(bebop)

4




Example

do {

b : (nPacketsOld == nPackets)

KeAcquireSpinLock();

b = true;

()

}

KeReleaseSpinLock();
b=Db?false:*;

}while (b );

KeReleaseSpinLock();

Model checking
refined
boolean program
(bebop)

4




Observations about SLAM

« Automatic discovery of invariants
— driven by property and a finite set of (false) execution paths
— predicates are not invariants, but observations

— abstraction + model checking computes inductive invariants
(boolean combinations of observations)

A hybrid dynamic/static analysis
— newton executes path through C code symbolically
— c2bp+bebop explore all paths through abstraction

* A new form of program slicing
— program code and data not relevant to property are dropped
— hon-determinism allows slices to have more behaviors



