
Software Model Checking

Aditya V. Nori
Microsoft Research India

Thanks to Tom Ball & Sriram Rajamani for material from their lectures

2

PROBLEM

3

Software validation problem

Does the software work?

I hope this version
still interoperates

with my other
software!

I hope some hacker
cannot steal all my

money, and publish all my
email on the web!

I hope it doesn’‛t
crash!

I hope it can handle
my peak transaction

load!

4

How do we do software validation?

Testing:
• The “old-fashioned” way
• Run it and see if it works
• Fix it if it doesn’‛t work
• Ship it if it doesn’‛t crash!

5

What’‛s wrong with testing?

6

What’‛s wrong with testing?

http://images.google.com/imgres?imgurl=http://www.komputasi.lipi.go.id/gambar/1111015013.jpg&imgrefurl=http://www.komputasi.lipi.go.id/utama.cgi?artikel&1111015013&5&h=240&w=186&sz=8&hl=en&start=1&tbnid=wYI8u7uw_dm4UM:&tbnh=110&tbnw=85&prev=/images?q=edsgar+dijkstra&gbv=2&svnum=10&hl=en

7

Program Verification

The algorithmic discovery of properties
of a program by inspection of the
source text

- Manna and Pnueli, “Algorithmic Verification”

Also known as: static analysis, static
program analysis, formal methods, ….

8

Difficulties in program verification

• What will you prove?
– Specification of a complex software is as

complex as the software itself
• “Deep” specifications of software are

hard to prove
– State-of-art in tools and automation not

good enough

Elusive triangle

Large programs

Deep properties Automation

We will let go
of this one!

Example properties

• Type safety
• Memory safety (absence of buffer

overruns)
• Protocol conformance for APIs
• Race freedom

New generation of software tools

• SLAM/SDV (Windows Device Drivers)
• SAL+PREfast (Buffer overflow checking

for C/C++)
• Spec# & Boogie (.NET)
• ASTREE (C, avionics software)
• FindBugs (Java, bug finder)
• Saturn (C, null deref bug finder)
and many more! …

Other routes to reliability

• Test
• Don’‛t program in C -
• Debug
• Code inspection
• Modern languages (Java, C#, ML, …)
• Runtime checking

Outline

• SLAM: Software model checking via
abstraction refinement
– c2bp
– bebop
– newton

• Synergy: Property checking by
combining static analysis and testing

Software Validation

• Large scale reliable software is hard to
build and test.

• Different groups of programmers write
different components.

• Integration testing is a nightmare.

Property Checking
• Programmer provides redundant partial

specifications

• Code is automatically checked for
consistency

• Different from proving whole program
correctness
– Specifications are not complete

Interface Usage Rules

• Rules in documentation
– Incomplete, unenforced, wordy
– Order of operations & data
access
– Resource management

• Disobeying rules causes bad
behavior
– System crash or deadlock
– Unexpected exceptions
– Failed runtime checks

Does a given usage rule hold?
• Checking this is computationally

impossible!

• Equivalent to solving Turing’‛s halting
problem (undecidable)

• Even restricted computable versions of
the problem (finite state programs) are
prohibitively expensive

Why bother?

Just because a problem is undecidable, it
doesn’‛t go away!

Automatic property checking =
Study of tradeoffs

• Soundness vs completeness
– Missing errors vs reporting false alarms

• Annotation burden on the programmer
• Complexity of the analysis

– Local vs Global
– Precision vs Efficiency
– Space vs Time

Broad classification

• Underapproximations
– Testing

• After passing testing, a program may still
violate a given property

• Overapproximations
– Type checking

• Even if a program satisfies a property, the type
checker for the property could still reject it

Current trend
• Confluence of techniques from

different fields:
– Model checking
– Automatic theorem proving
– Program analysis

• Significant emphasis on practicality

• Several new projects in academia and
industry

Software Model Checking via
Abstraction Refinement

• Model checking = exhaustive exploration of state
space

• Challenge: realistic software has a huge state space?

• Approach: Abstraction-refinement
– Construct an abstraction

• a “simpler model” of the software that only contains the
variables and relationships that are important to the property
being checked

– Model check the abstraction
• easier because state space of the abstraction is smaller

– Refine the abstraction
• to reduce false errors

SLAM – Software Model Checking

SLAM models
– boolean programs: a new model for software

SLAM components
– model creation (c2bp)
– model checking (bebop)
– model refinement (newton)

SLIC
• Finite state language for stating rules

– monitors behavior of C code
– temporal safety properties (security automata)
– familiar C syntax

• Suitable for expressing control-dominated
properties
– e.g. proper sequence of events
– can encode data values inside state

State Machine
for Locking

Unlocked Locked

Error

Rel Acq

Acq

Rel

state {

enum {Locked,Unlocked}

s = Unlocked;

}

KeAcquireSpinLock.entry {

if (s==Locked) abort;

else s = Locked;

}

KeReleaseSpinLock.entry {

if (s==Unlocked) abort;

else s = Unlocked;

}

Locking Rule in
SLIC

prog. P’‛
prog. P

SLIC rule

The SLAM Process

boolean
program

pathpredicates

slic

c2bp

bebop

newton

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example
Does this code

obey the
locking rule?

do {
KeAcquireSpinLock();

if(*){

KeReleaseSpinLock();

}
} while (*);

KeReleaseSpinLock();

Example
Model checking
boolean program

(bebop)
U

L

L

L

L

U

L

U

U

U

E

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example
Is error path feasible

in C program?
(newton)

U

L

L

L

L

U

L

U

U

U

E

do {
KeAcquireSpinLock();

nPacketsOld = nPackets; b = true;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++; b = b ? false : *;

}
} while (nPackets != nPacketsOld); !b

KeReleaseSpinLock();

Example
Add new predicate
to boolean program

(c2bp)
b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

do {
KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();
b = b ? false : *;

}
} while (!b);

KeReleaseSpinLock();

b

b

b

b

Example
Model checking

refined
boolean program

(bebop)

b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

b

b

!b

Example

do {
KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();
b = b ? false : *;

}
} while (!b);

KeReleaseSpinLock();

b : (nPacketsOld == nPackets)

b

b

b

b

U

L

L

L

L

U

L

U

U

b

b

!b

Model checking
refined

boolean program
(bebop)

Observations about SLAM
• Automatic discovery of invariants

– driven by property and a finite set of (false) execution paths
– predicates are not invariants, but observations
– abstraction + model checking computes inductive invariants

(boolean combinations of observations)

• A hybrid dynamic/static analysis
– newton executes path through C code symbolically
– c2bp+bebop explore all paths through abstraction

• A new form of program slicing
– program code and data not relevant to property are dropped
– non-determinism allows slices to have more behaviors

