# Deepak D'Souza, K. V. Raghavan

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

April 2012

#### Outline

- Hoare triples as assertions of partial correctness.
- Hoare logic rules.
- Weakest Precondition calculus.

- A way of asserting properties of programs.
- Hoare triple: {A}P{B} asserts that "If program P is started in a state satisfying condition A, if it terminates, it will terminate in a state satisfying condition B."
- A proof system for proving such assertions.
- A way of reasoning about such assertions using the notion of "Weakest Preconditions" (due to Dijkstra).

#### A simple programming language

- skip
- x := e (assignment)
- if *b* then *S* else *T* (if-then-else)
- while b do S (while)
- S ; T (sequencing)

# Example program

x := n;  
a := 1;  
while (x 
$$\geq$$
 1) {  
a := a \* x;  
x := x - 1  
}

Weakest Preconditions

#### **Programs as State Transformers**

View program P as a partial map [P]: Stores  $\rightarrow$  Stores.





$$\{x\mapsto 2, \,\, y\mapsto 10, \,\, z\mapsto 3\}$$

$$y = y + 1;$$
  

$$z = x + y$$
  

$$\{x \mapsto 2, \ y \mapsto 11, \ z \mapsto 12\}$$

Weakest Preconditions

# **Predicates on States**



# Assertion of "Partial Correctness" $\{A\}P\{B\}$

 $\{A\}P\{B\}$  asserts that "If program *P* is started in a state satisfying condition *A*, either it will not terminate, or it will terminate in a state satisfying condition *B*."



# Give "weakest" preconditions

**1** {?} 
$$x := x + 2 \{x \ge 5\}$$

2 {?} if 
$$(y < 0)$$
 then x:=x+1 else x:=y  $\{x > 0\}$ 

**3** {?} while 
$$(x \le 5)$$
 do  $x := x+1$   $\{x = 6\}$ 

Hoare logic 00●0000

Weakest Preconditions

### **Proof rules of Hoare Logic**

# Skip:

$$\overline{\{A\} \text{ skip } \{A\}}$$

Assignment

$$\overline{\{A[e/x]\} \times := e \{A\}}$$

#### **Proof rules of Hoare Logic**

# If-then-else:

$$\frac{\{P \land b\} S \{Q\}, \{P \land \neg b\} T \{Q\}}{\{P\} \text{ if } b \text{ then } S \text{ else } T \{Q\}}$$

While (here *P* is called a *loop invariant*)

$$\frac{\{P \land b\} \ S \ \{P\}}{\{P\} \ \texttt{while} \ b \ \texttt{do} \ S \ \{P \land \neg b\}}$$

Sequencing:

$$\frac{\{P\} \ S \ \{Q\}, \ \{Q\} \ T \ \{R\}}{\{P\} \ S; T \ \{R\}}$$

Weakening:

$$\frac{P \implies Q, \{Q\} S \{R\}, R \implies T}{\{P\} S \{T\}}$$

Hoare logic 0000●00 Weakest Preconditions

#### Some examples to work on

**1** 
$$\{x \ge 3\}$$
 x := x + 2  $\{x \ge 5\}$ 

② { $(y < 0 \land x > -1) \lor (y > 0)$ } if (y < 0) then x:=x+1 else x:=y {x > 0}

**3** 
$$\{x \le 6\}$$
 while  $(x \le 5)$  do  $x := x+1$   $\{x = 6\}$ 

#### Exercise

Prove using Hoare logic  $\{x \ge 1 \land x = n \land a = 1\} P \{a = n!\}$ , where P is:

```
while (x \ge 1) \{
a := a * x;
x := x - 1
}
```

#### **Relative completeness of Hoare rules**

- Does {A}P{B} mean there exists a proof tree for the same using the rules mentioned above?
- Yes, provided the underlying logic is complete.
  - That is, whenever A ⇒ B there ought to exist a proof for the same using the rules of the underlying logic.
  - For example, (plain) first-order logic, and presburger arithmetic (first-order logic, plus natural numbers with addition) are complete. Peano arithmetic (which includes multiplication) is not complete.

#### Weakest Precondition WP(P, B)

WP(P, B) is "a predicate that describes the exact set of states *s* such that when program *P* is started in *s*, if it terminates it will terminate in a state satisfying condition *B*."

All States



#### Using weakest pre-conditions for verification

- Note that  $\{A\} P \{B\}$  iff  $A \implies WP(P, B)$ .
- Therefore, if we have an algorithm for *WP* we can verify Hoare triples automatically.
- Tools such as Spec# verify Hoare triples, using the above approach.

| Programs |  | transformers |
|----------|--|--------------|
|          |  |              |

### Illustration

To check:

 $\{y > 10\}$ 

- y = y + 1;
- z = x + y;

 $\{x < z\}$ 

Check verification condition:

$$(y > 10) \implies (y > -1).$$

#### For assignment statement x = e:

 $\{B[e/x]\}$ 

x = e;

*{B}* 

#### For assignment statement x = e:

| $\{B[e/x]\}$ | $\{(x+y)>0 \land y=0\}$ |  |  |
|--------------|-------------------------|--|--|
| x = e;       | z = x + y;              |  |  |
| <i>{B}</i>   | $\{z > 0 \land y = 0\}$ |  |  |

```
If-the-else statement if c then S_1 else S_2:
```

```
{(c ∧ WP(S<sub>1</sub>, B)) ∨
  (¬c ∧ WP(S<sub>2</sub>, B))}
if (c)
  S1;
else
  S2;
{B}
```

If-the-else statement if c then  $S_1$  else  $S_2$ :

{(c ∧ WP(S<sub>1</sub>, B)) ∨
 (¬c ∧ WP(S<sub>2</sub>, B)))}
if (c)
 S1;
else
 S2;
{B}

 $\{ ((x < y) \land (y > w)) \lor \\ ((x \ge y) \land (x > w)) \}$ if (x < y)z = y;else z = x; $\{z > w\}$ 

Weakest Preconditions

# WP rule for sequencing

$$WP(S;T, B) = WP(S, WP(T, B)).$$

#### Weakest Precondition for while statements

• Let 
$$W =$$
 "while  $b$  do  $S$ ".

- In general it is not possible to compute the precise WP(W, B).
- It is possible to compute an under-approximating condition WP'(W, B) such that WP'(W, B) ⇒ WP(W, B).
  - Unroll the loop k times, for some chosen value k ≥ 0, and let W' be the thus unrolled loop.

• For e.g., for 
$$k = 0$$

$$W' = skip$$

for k = 2,

W' = "if (b) { S; if (b) S }".

- Now,  $WP'(W, B) \equiv WP(W', B \land (\neg b)).$
- Higher value of k gives a better WP'(W, B).
- Using this, one can verify a hoare triple {*A*} *P* {*B*} conservatively.
  - That is, the above triple is true if  $A \implies WP'(W,B)$  (the converse is not necessarily true).

# Another approach: under-approximating weakest pre-conditions given loop invariants

#### while loops

*i* is said to be a correct loop invariant in W = "while b invariant *i* do S" iff (*i* ∧ b) ⇒ WP(S, *i*).
WP'(W, B) ≡ (B ∧ ¬b) ∨ (((*i* ∧ ¬b) ⇒ B) ∧ *i*).

| Programs |  | transformers |
|----------|--|--------------|
|          |  |              |

#### Illustration

Consider the example loop W below

```
while (i < n) invariant i
    i++;</pre>
```

• Let B ="i == n".

- $i \equiv$  "i < n", is not a correct loop invariant.
- *i* ≡ "i <= n" is correct, and is sufficient to imply the post-condition *B*. In this case WP'(W, B) = WP(W, B) = "i <= n".</li>
- i ≡ "i <= n+1" is a correct (but weak) loop invariant, and is not sufficient to imply the post-condition. In this case WP'(W, B) is false.
- Let B = "n == 10".
  - *i* ≡ "n == 10" is a correct loop invariant, and is necessary to imply the post-condition *B*.

#### Conclusion

- Hoare logic can be extended to reason about programs with arrays, pointers [Separation Logic], function calls, etc.
- Finds application in recent program analysis techniques like finding "path conditions" in automated directed testing, and null-deference analysis.