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Outline

Hoare triples as assertions of partial correctness.

Hoare logic rules.

Weakest Precondition calculus.
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Hoare Logic

A way of asserting properties of programs.

Hoare triple: {A}P{B} asserts that “If program P is started
in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B.”

A proof system for proving such assertions.

A way of reasoning about such assertions using the notion of
“Weakest Preconditions” (due to Dijkstra).
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A simple programming language

skip

x := e (assignment)

if b then S elseT (if-then-else)

while b do S (while)

S ; T (sequencing)
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Example program

x := n;
a := 1;
while (x ≥ 1) {

a := a * x;
x := x - 1

}
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Programs as State Transformers

View program P as a partial map [P] : Stores → Stores.

All States

State s

State t

P

{x 7→ 2, y 7→ 10, z 7→ 3}

y = y + 1;
z = x + y

{x 7→ 2, y 7→ 11, z 7→ 12}
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Predicates on States

All States

States satisfying

Predicate A
A

Eg. x ≥ 0 ∧ x < y
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Assertion of “Partial Correctness” {A}P{B}

{A}P{B} asserts that “If program P is started in a state satisfying
condition A, either it will not terminate, or it will terminate in a
state satisfying condition B.”

All States

P

A

B

{10 ≤ y}

y = y + 1;
z = x + y

{x < z}
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Give “weakest” preconditions

1 {?} x := x + 2 {x ≥ 5}
2 {?} if (y < 0) then x:=x+1 else x:=y {x > 0}
3 {?} while (x ≤ 5) do x := x+1 {x = 6}
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Proof rules of Hoare Logic

Skip:

{A} skip {A}
Assignment

{A[e/x ]} x := e {A}
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Proof rules of Hoare Logic

If-then-else:

{P ∧ b} S {Q}, {P ∧ ¬b} T {Q}
{P} if b then S else T {Q}

While (here P is called a loop invariant)

{P ∧ b} S {P}
{P} while b do S {P ∧ ¬b}

Sequencing:
{P} S {Q}, {Q} T {R}

{P} S;T {R}
Weakening:

P =⇒ Q, {Q} S {R}, R =⇒ T

{P} S {T}
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Some examples to work on

1 {x ≥ 3} x := x + 2 {x ≥ 5}
2 {(y < 0 ∧ x > −1) ∨ (y > 0)} if (y < 0) then x:=x+1

else x:=y {x > 0}
3 {x ≤ 6} while (x ≤ 5) do x := x+1 {x = 6}
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Exercise

Prove using Hoare logic {x ≥ 1 ∧ x = n ∧ a = 1} P {a = n!},
where P is:

while (x ≥ 1) {
a := a * x;
x := x - 1

}
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Relative completeness of Hoare rules

Does {A}P{B} mean there exists a proof tree for the same
using the rules mentioned above?

Yes, provided the underlying logic is complete.

That is, whenever A⇒ B there ought to exist a proof for the
same using the rules of the underlying logic.
For example, (plain) first-order logic, and presburger arithmetic
(first-order logic, plus natural numbers with addition) are
complete. Peano arithmetic (which includes multiplication) is
not complete.
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Weakest Precondition WP(P, B)

WP(P, B) is “a predicate that describes the exact set of states s
such that when program P is started in s, if it terminates it will
terminate in a state satisfying condition B.”

All States

P

B

A

WP(P, B)

{−1 < y}

y = y + 1;
z = x + y;

{x < z}
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Using weakest pre-conditions for verification

Note that {A} P {B} iff A =⇒ WP(P, B).

Therefore, if we have an algorithm for WP we can verify
Hoare triples automatically.

Tools such as Spec# verify Hoare triples, using the above
approach.
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Illustration

To check:

{y > 10}

y = y + 1;
z = x + y;

{x < z}

Check verification condition:

(y > 10) =⇒ (y > −1).
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Rules for Computing Weakest Precondition

For assignment statement x = e:

{B[e/x ]}

x = e;

{B}

{(x + y) > 0 ∧ y = 0}

z = x + y;

{z > 0 ∧ y = 0}
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Rules for Computing Weakest Precondition

For assignment statement x = e:

{B[e/x ]}

x = e;

{B}

{(x + y) > 0 ∧ y = 0}

z = x + y;

{z > 0 ∧ y = 0}
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Rules for Computing Weakest Precondition

If-the-else statement if c then S1 else S2:

{(c ∧WP(S1, B)) ∨
(¬c ∧WP(S2, B))}

if (c)
S1;

else
S2;

{B}

{((x < y) ∧ (y > w)) ∨
((x ≥ y) ∧ (x > w))}

if (x < y)
z = y;

else
z = x;

{z > w}
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Rules for Computing Weakest Precondition

If-the-else statement if c then S1 else S2:

{(c ∧WP(S1, B)) ∨
(¬c ∧WP(S2, B))}

if (c)
S1;

else
S2;

{B}

{((x < y) ∧ (y > w)) ∨
((x ≥ y) ∧ (x > w))}

if (x < y)
z = y;

else
z = x;

{z > w}
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WP rule for sequencing

WP(S ;T , B) = WP(S , WP(T , B)).
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Weakest Precondition for while statements

Let W = “while b do S”.

In general it is not possible to compute the precise
WP(W , B).
It is possible to compute an under-approximating condition
WP’(W , B) such that WP’(W , B) =⇒ WP(W , B).

Unroll the loop k times, for some chosen value k ≥ 0, and let
W ′ be the thus unrolled loop.
For e.g., for k = 0
W ′ = skip

for k = 2,
W ′ = “if (b) { S ; if (b) S }”.

Now, WP’(W , B) ≡ WP(W ′, B ∧ (¬b)).
Higher value of k gives a better WP’(W , B).

Using this, one can verify a hoare triple {A} P {B}
conservatively.

That is, the above triple is true if A =⇒ WP ′(W , B) (the
converse is not necessarily true).
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Another approach: under-approximating weakest pre-conditions given
loop invariants

while loops

i is said to be a correct loop invariant in
W = “while b invariant i do S” iff
(i ∧ b) =⇒ WP(S , i).

WP’(W , B) ≡ (B ∧ ¬b) ∨ (((i ∧ ¬b) =⇒ B) ∧ i).
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Illustration

Consider the example loop W below

while (i < n) invariant i
i++;

Let B = “i == n”.

i ≡ “i < n”, is not a correct loop invariant.
i ≡ “i <= n” is correct, and is sufficient to imply the
post-condition B. In this case WP’(W , B) = WP(W , B) = “i
<= n”.
i ≡ “i <= n+1” is a correct (but weak) loop invariant, and is
not sufficient to imply the post-condition. In this case
WP’(W , B) is false.

Let B = “n == 10”.
i ≡ “n == 10” is a correct loop invariant, and is necessary to
imply the post-condition B.
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Conclusion

Hoare logic can be extended to reason about programs with
arrays, pointers [Separation Logic], function calls, etc.

Finds application in recent program analysis techniques like
finding “path conditions” in automated directed testing, and
null-deference analysis.
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