
Programs as state transformers Hoare logic Weakest Preconditions

Hoare Logic

Deepak D’Souza, K. V. Raghavan

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

April 2012



Programs as state transformers Hoare logic Weakest Preconditions

Outline

Hoare triples as assertions of partial correctness.

Hoare logic rules.

Weakest Precondition calculus.



Programs as state transformers Hoare logic Weakest Preconditions

Hoare Logic

A way of asserting properties of programs.

Hoare triple: {A}P{B} asserts that “If program P is started
in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B.”

A proof system for proving such assertions.

A way of reasoning about such assertions using the notion of
“Weakest Preconditions” (due to Dijkstra).



Programs as state transformers Hoare logic Weakest Preconditions

A simple programming language

skip

x := e (assignment)

if b then S elseT (if-then-else)

while b do S (while)

S ; T (sequencing)



Programs as state transformers Hoare logic Weakest Preconditions

Example program

x := n;
a := 1;
while (x ≥ 1) {

a := a * x;
x := x - 1

}



Programs as state transformers Hoare logic Weakest Preconditions

Programs as State Transformers

View program P as a partial map [P] : Stores → Stores.

All States

State s

State t

P

{x 7→ 2, y 7→ 10, z 7→ 3}

y = y + 1;
z = x + y

{x 7→ 2, y 7→ 11, z 7→ 12}



Programs as state transformers Hoare logic Weakest Preconditions

Predicates on States

All States

States satisfying

Predicate A
A

Eg. x ≥ 0 ∧ x < y



Programs as state transformers Hoare logic Weakest Preconditions

Assertion of “Partial Correctness” {A}P{B}

{A}P{B} asserts that “If program P is started in a state satisfying
condition A, either it will not terminate, or it will terminate in a
state satisfying condition B.”

All States

P

A

B

{10 ≤ y}

y = y + 1;
z = x + y

{x < z}



Programs as state transformers Hoare logic Weakest Preconditions

Give “weakest” preconditions

1 {?} x := x + 2 {x ≥ 5}
2 {?} if (y < 0) then x:=x+1 else x:=y {x > 0}
3 {?} while (x ≤ 5) do x := x+1 {x = 6}



Programs as state transformers Hoare logic Weakest Preconditions

Proof rules of Hoare Logic

Skip:

{A} skip {A}
Assignment

{A[e/x ]} x := e {A}



Programs as state transformers Hoare logic Weakest Preconditions

Proof rules of Hoare Logic

If-then-else:

{P ∧ b} S {Q}, {P ∧ ¬b} T {Q}
{P} if b then S else T {Q}

While (here P is called a loop invariant)

{P ∧ b} S {P}
{P} while b do S {P ∧ ¬b}

Sequencing:
{P} S {Q}, {Q} T {R}

{P} S;T {R}
Weakening:

P =⇒ Q, {Q} S {R}, R =⇒ T

{P} S {T}



Programs as state transformers Hoare logic Weakest Preconditions

Some examples to work on

1 {x ≥ 3} x := x + 2 {x ≥ 5}
2 {(y < 0 ∧ x > −1) ∨ (y > 0)} if (y < 0) then x:=x+1

else x:=y {x > 0}
3 {x ≤ 6} while (x ≤ 5) do x := x+1 {x = 6}



Programs as state transformers Hoare logic Weakest Preconditions

Exercise

Prove using Hoare logic {x ≥ 1 ∧ x = n ∧ a = 1} P {a = n!},
where P is:

while (x ≥ 1) {
a := a * x;
x := x - 1

}



Programs as state transformers Hoare logic Weakest Preconditions

Relative completeness of Hoare rules

Does {A}P{B} mean there exists a proof tree for the same
using the rules mentioned above?

Yes, provided the underlying logic is complete.

That is, whenever A⇒ B there ought to exist a proof for the
same using the rules of the underlying logic.
For example, (plain) first-order logic, and presburger arithmetic
(first-order logic, plus natural numbers with addition) are
complete. Peano arithmetic (which includes multiplication) is
not complete.



Programs as state transformers Hoare logic Weakest Preconditions

Weakest Precondition WP(P, B)

WP(P, B) is “a predicate that describes the exact set of states s
such that when program P is started in s, if it terminates it will
terminate in a state satisfying condition B.”

All States

P

B

A

WP(P, B)

{−1 < y}

y = y + 1;
z = x + y;

{x < z}



Programs as state transformers Hoare logic Weakest Preconditions

Using weakest pre-conditions for verification

Note that {A} P {B} iff A =⇒ WP(P, B).

Therefore, if we have an algorithm for WP we can verify
Hoare triples automatically.

Tools such as Spec# verify Hoare triples, using the above
approach.



Programs as state transformers Hoare logic Weakest Preconditions

Illustration

To check:

{y > 10}

y = y + 1;
z = x + y;

{x < z}

Check verification condition:

(y > 10) =⇒ (y > −1).



Programs as state transformers Hoare logic Weakest Preconditions

Rules for Computing Weakest Precondition

For assignment statement x = e:

{B[e/x ]}

x = e;

{B}

{(x + y) > 0 ∧ y = 0}

z = x + y;

{z > 0 ∧ y = 0}



Programs as state transformers Hoare logic Weakest Preconditions

Rules for Computing Weakest Precondition

For assignment statement x = e:

{B[e/x ]}

x = e;

{B}

{(x + y) > 0 ∧ y = 0}

z = x + y;

{z > 0 ∧ y = 0}



Programs as state transformers Hoare logic Weakest Preconditions

Rules for Computing Weakest Precondition

If-the-else statement if c then S1 else S2:

{(c ∧WP(S1, B)) ∨
(¬c ∧WP(S2, B))}

if (c)
S1;

else
S2;

{B}

{((x < y) ∧ (y > w)) ∨
((x ≥ y) ∧ (x > w))}

if (x < y)
z = y;

else
z = x;

{z > w}



Programs as state transformers Hoare logic Weakest Preconditions

Rules for Computing Weakest Precondition

If-the-else statement if c then S1 else S2:

{(c ∧WP(S1, B)) ∨
(¬c ∧WP(S2, B))}

if (c)
S1;

else
S2;

{B}

{((x < y) ∧ (y > w)) ∨
((x ≥ y) ∧ (x > w))}

if (x < y)
z = y;

else
z = x;

{z > w}



Programs as state transformers Hoare logic Weakest Preconditions

WP rule for sequencing

WP(S ;T , B) = WP(S , WP(T , B)).



Programs as state transformers Hoare logic Weakest Preconditions

Weakest Precondition for while statements

Let W = “while b do S”.

In general it is not possible to compute the precise
WP(W , B).
It is possible to compute an under-approximating condition
WP’(W , B) such that WP’(W , B) =⇒ WP(W , B).

Unroll the loop k times, for some chosen value k ≥ 0, and let
W ′ be the thus unrolled loop.
For e.g., for k = 0
W ′ = skip

for k = 2,
W ′ = “if (b) { S ; if (b) S }”.

Now, WP’(W , B) ≡ WP(W ′, B ∧ (¬b)).
Higher value of k gives a better WP’(W , B).

Using this, one can verify a hoare triple {A} P {B}
conservatively.

That is, the above triple is true if A =⇒ WP ′(W , B) (the
converse is not necessarily true).



Programs as state transformers Hoare logic Weakest Preconditions

Another approach: under-approximating weakest pre-conditions given
loop invariants

while loops

i is said to be a correct loop invariant in
W = “while b invariant i do S” iff
(i ∧ b) =⇒ WP(S , i).

WP’(W , B) ≡ (B ∧ ¬b) ∨ (((i ∧ ¬b) =⇒ B) ∧ i).



Programs as state transformers Hoare logic Weakest Preconditions

Illustration

Consider the example loop W below

while (i < n) invariant i
i++;

Let B = “i == n”.

i ≡ “i < n”, is not a correct loop invariant.
i ≡ “i <= n” is correct, and is sufficient to imply the
post-condition B. In this case WP’(W , B) = WP(W , B) = “i
<= n”.
i ≡ “i <= n+1” is a correct (but weak) loop invariant, and is
not sufficient to imply the post-condition. In this case
WP’(W , B) is false.

Let B = “n == 10”.
i ≡ “n == 10” is a correct loop invariant, and is necessary to
imply the post-condition B.



Programs as state transformers Hoare logic Weakest Preconditions

Conclusion

Hoare logic can be extended to reason about programs with
arrays, pointers [Separation Logic], function calls, etc.

Finds application in recent program analysis techniques like
finding “path conditions” in automated directed testing, and
null-deference analysis.


	Programs as state transformers
	Hoare logic
	Weakest Preconditions

