Program Analysis and Specialization
for
the C Programming Language

Ph.D. Thesis

Lars Ole Andersen

DIKU, University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen O
Denmark
email: lars@diku.dk

May 1994

Chapter 4

Pointer Analysis

We develop an efficient, inter-procedural pointer analysis for the C programming language.
The analysis approximates for every variable of pointer type the set of objects it may point
to during program execution. This information can be used to improve the accuracy of
other analyses.

The C language is considerably harder to analyze than for example Fortran and Pas-
cal. Pointers are allowed to point to both stack and heap allocated objects; the address
operator can be employed to compute the address of an object with an lvalue; type casts
enable pointers to change type; pointers can point to members of structs; and pointers to
functions can be defined.

Traditional pointer analysis is equivalent to alias analysis. For example, after an
assignment ‘p = &x’, ‘*p’ is aliased with ‘x’, as denoted by the alias pair (xp, z). In this
chapter we take another approach. For an object of pointer type, the set of objects the
pointer may point to is approximated. For example, if in the case of the assignments ‘p
= &x; p = &y’, the result of the analysis will be a map [p — {z,y}]. This is a more
economical representation that requires less storage, and is suitable for many analyses.

We specify the analysis by the means of a non-standard type inference system, which is
related to the standard semantics. From the specification, a constraint-based formulation
is derived and an efficient inference algorithm developed. The use of non-standard type
inference provides a clean separation between specification and implementation, and gives
a considerably simpler analysis than previously reported in the literature.

This chapter also presents a technique for inter-procedural constraint-based program
analysis. Often, context-sensitive analysis of functions is achieved by copying of con-
straints. This increases the number of constraints exponentially, and slows down the
solving. We present a method where constraints over vectors of pointer types are solved.
This way, only a few more constraint are generated than in the intra-procedural case.

Pointer analysis is employed in the C-Mix system to determine side-effects, which is
then used by binding-time analysis.

111

4.1 Introduction

When the lvalue of two objects coincides the objects are said to be aliased. An alias is
for instance introduced when a pointer to a global variable is created by the means of
the address operator. The aim of alias analysis is to approximate the set of aliases at
runtime. In this chapter we present a related but somewhat different pointer analysis for
the C programming language. For every pointer variable it computes the set of abstract
locations the pointer may point to.

In languages with pointers and/or call-by-reference parameters, alias analysis is the
core part of most other data flow analyses. For example, live-variable analysis of an
expression ‘*p = 13’ must make worst-case assumptions without pointer information:
‘p’ may reference all (visible) objects, which then subsequently must be marked “live”.
Clearly, this renders live-variable analysis nearly useless. On the other hand, if it is known
that only the aliases {(xp,x), (xp,y)} are possible, only ‘x’ and ‘y’ need to be marked
“live”.

Traditionally, aliases are represented as an equivalence relation over abstract locations
[Aho et al. 1986]. For example, the alias introduced due to the expression ‘p = &x’ is rep-
resented by the alias set {(xp,z)}. Suppose that the expressions ‘q = &p; *q = &y’ are
added to the program. The alias set then becomes {(xp,), (xq,p), (x* x ¢, x) , (* x q,y)},
where the latter aliases are induced aliases. Apparently, the size of an alias set may evolve
rather quickly in a language with multi-level pointers such as C. Some experimental ev-
idence: Landi’s alias analysis reports more than 2,000,000 program-point specific aliases
in a 3,000 line program [Landi 1992a].

Moreover, alias sets seem excessively general for many applications. What needed is
an answer to “which objects may this pointer point to”? The analysis of this chapter
answer this question.

4.1.1 What makes C harder to analyze?

The literature contains a substantial amount of work on alias analysis of Fortran-like
languages, see Section 4.11. However, the C programming language is considerably more
difficult to analyze; some reasons for this include: multi-level pointers and the address op-
erator ‘&’, structs and unions, runtime memory allocations, type casts, function pointers,
and separate compilation.

As an example, consider an assignment ‘*q = &y’ which adds a point-to relation to p
(assuming ‘q’ points to ‘p’) even though ‘p’ is not syntactically present in the expression.
With only single-level pointers, the variable to be updated is syntactically present in the
expression.! Further, in C it is possible to have pointers to both heap and stack allocated
objects, as opposed to Pascal that abandon the latter. We shall mainly be concerned with
analysis of pointers to stack allocated objects, due to our specific application.

A special characteristic of the C language is that implementation-defined features are
supported by the Standard. An example of this is cast of integral values to pointers.?

Tt can easily be shown that call-by-reference and single-level pointers can simulate multi-level pointers.
2Recall that programs relying on implementation-defined features are non-strictly conforming.

112

Suppose that ‘long table[]’ is an array of addresses. A cast ‘q = (int **)table[1]’
renders ‘q’ to be implementation-defined, and accordingly worst-case assumptions must
be made in the case of ‘*q = 2.

4.1.2 Points-to analysis

For every object of pointer type we determine a safe approximation to the set of locations
the pointer may contain during program execution, for all possible input. A special case
is function pointers. The result of the analysis is the set of functions the pointer may
invoke.

Example 4.1 We represent point-to information as a map from program variables to
sets of object “names”. Consider the following program.

int main(void)

{
int x, y, *p, *xq, (*fp)(char *, char *);
P = &x;
q = &p;
*q = &y;
fp = &strcmp;
}

A safe point-to map is

[p = {z,y},q = {p}, fp — {stremp}]

and it is also a minimal map. End of Example

A point-to relation can be classified static or dynamic depending on its creation. In the
case of an array ‘int a[10]’, the name ‘a’ statically points to the object ‘a[]’ representing
the content of the array.®> Moreover, a pointer to a struct points, when suitable converted,
to the initial member [ISO 1990]. Accurate static point-to information can be collected
during a single pass of the program.

Point-to relations created during program execution are called dynamic. Examples
include ‘p = &x’, that creates a point-to relation between ‘p’ and ‘x’; an ‘alloc()’ call
that returns a pointer to an object, and ‘strdup()’ that returns a pointer to a string.
More general, value setting functions may create a dynamic point-to relation.

Example 4.2 A point-to analysis of the following program

char *compare(int first, char *s, char c)

{

char (*fp) (char *, char);
fp = first? &strchr : &strrchr;
return (*fp) (s,c);

}
will reveal [fp — {strchr, strrchr}]. End of Example

It is easy to see that a point-to map carries the same information as an alias set, but
it is a more compact representation.

3We treat arrays as aggregates.

113

4.1.3 Set-based pointer analysis

In this chapter we develop a flow-insensitive set-based point-to analysis implemented via
constraint solving. A set-based analysis consists of two parts: a specification and an
inference algorithm.

The specification describes the safety of a pointer approximation. We present a set
of inference rules such that a pointer abstraction map fulfills the rules only if the map is
safe. This gives an algorithm-independent characterization of the problem.

Next, we present a constraint-based characterization of the specification, and give a
constraint-solving algorithm. The constraint-based analysis works in two phases. First,
a constraint system is generated, capturing dependencies between pointers and abstract
locations. Next, a solution to the constraints is found via an iterative solving procedure.

Example 4.3 Consider again the program fragment in Example 4.1. Writing 7}, for the
abstraction of ‘p’, the following constraint system could be generated:

{T, > {«},T, > {p},«T, 2 {y}, Ty, 2 {stremp}}

with the interpretation of the constraint *7}, O {y}: “the objects ‘q’ may point to contain

7

Y. End of Example

Constraint-based analysis resembles classical data-flow analysis, but has a stronger
semantical foundation. We shall borrow techniques for iterative data-flow analysis to
solve constraint systems with finite solutions [Kildall 1973].

4.1.4 Overview of the chapter

This chapter develops a flow-insensitive, context-sensitive constraint-based point-to anal-
ysis for the C programming language, and is structured as follows.

In Section 4.2 we discuss various degrees of accuracy a value-flow analysis can im-
plement: intra- and inter-procedural analysis, and flow-sensitive versus flow-insensitive
analysis. Section 4.3 considers some aspects of pointer analysis of C.

Section 4.4 specifies a sticky, flow-insensitive pointer analysis for C, and defines the
notion of safety. In Section 4.5 we give a constraint-based characterization of the problem,
and prove its correctness.

Section 4.6 extends the analysis into a context-sensitive inter-procedural analysis. A
sticky analysis merges all calls to a function, resulting in loss of precision. We present a
technique for context-sensitive constraint-based analysis based on static-call graphs.

Section 4.7 presents a constraint-solving algorithm. In Section 4.8 we discuss algorith-
mic aspects with emphasis on efficiency, and Section 4.9 documents the usefulness of the
analysis by providing some benchmarks from an existing implementation.

Flow-sensitive analyses are more precise than flow-insensitive analyses. In Section 4.10
we investigate program-point, constraint-based pointer analysis of C. We show why multi-
level pointers render this kind of analysis difficult.

Finally, Section 4.11 describe related work, and Section 4.12 presents topics for future
work and concludes.

114

4.2 Pointer analysis: accuracy and efficiency

The precision of a value-flow analysis can roughly be characterized by two properties:
flow-sensitivity and whether it is inter-procedural vs. intra-procedural. Improved accuracy
normally implies less efficiency and more storage usage. In this section we discuss the
various degrees of accuracy and their relevance with respect to C programs.

4.2.1 Flow-insensitive versus flow-sensitive analysis

A data-flow analysis that takes control-flow into account is called flow-sensitive. Otherwise
it is flow-insensitive. The difference between the two is most conspicuous by the treatment
of if statements. Consider the following lines of code.

int x, y, *p;
if (test) p = &x; else p = &y;

A flow-sensitive analysis records that in the branches, ‘p’ is assigned the address of ‘x” and
‘y’, respectively. After the branch, the information is merged and ‘p’ is mapped to both
‘x’ and ‘y’. The discrimination between the branches is important if they for instance
contain function calls ‘foo(p)’ and ‘bar(p)’, respectively.

A flow-insensitive analysis summarizes the pointer usage and states that ‘p’ may point
to ‘x” and ‘y’ in both branches. In this case, spurious point-to information would be
propagated to ‘foo()’ and ‘bar()’.

The notion of flow-insensitive and flow-sensitive analysis is intimately related with the
notion of program-point specific versus summary analysis. An analysis is program-point
specific is if it computes point-to information for each program point.? An analysis that
maintains a summary for each variable, valid for all program points of the function (or a
program, in the case of a global variable), is termed a summary analysis. Flow-sensitive
analyses must inevitably be program-point specific.

Flow-sensitive versus in-sensitive analysis is a trade off between accuracy and effi-
ciency: a flow-sensitive analysis is more precise, but uses more space and is slower.

Example 4.4 Flow-insensitive and flow-sensitive analysis.

/* Flow-insensitive */ /* Flow-sensitive */
int main(void) int main(void)
{ {
int x, y, *p; int x, y, *p;
p = &x; p = &x;
/¥ p = {wy}*x/ /* pr{x} */
foo(p); foo(p);
P = &y; p = &y;
/xp = { @y} */ /* p—{y} */
} }

4The analysis does not necessarily have to compute the complete set of pointer variable bindings; only
at “interesting” program points.

115

Notice that in the flow-insensitive case, the spurious point-to information p — {y} is
propagated into the function ‘foo (). End of Example

We focus on flow-insensitive (summary) pointer analysis for the following reasons.
First, in our experience, most C programs consist of many small functions.® Thus, the ex-
tra approximation introduced by summarizing all program points appears to be of minor
importance. Secondly, program-point specific analyses may use an unacceptable amount
of storage. This, pragmatic argument matters when large programs are analyzed. Thirdly,
our application of the analysis does not accommodate program-point specific information,
e.g. the binding-time analysis is program-point insensitive. Thus, flow-sensitive pointer
analysis will not improve upon binding-time separation (modulo the propagation of spu-
rious information — which we believe to be negligible).

We investigate program-point specific pointer analysis in Section 4.10.

4.2.2 Poor man’s program-point analysis

By a simple transformation it is possible to recover some of the accuracy of a program-
point specific analysis, without actually collecting information at each program point.

Let an assignment e; = ey, where e; is a variable and e; is independent from pointer
variables, be called an initialization assignment. The idea is to rename pointer variables
when they are initialized.

Example 4.5 Poor man’s flow-sensitive analysis of Example 4.4. The variable ‘p’ has
been “copied” to ‘pl’” and ‘p2’.

int main(void)

{
int x, y, *pl, *p2;
pl = &x;
/* pl = {z} */
foo(pl);
p2 = &y;
/* p2 = {y} */

}

Renaming of variables can clearly be done automatically. End of Example

Y

The transformation fails on indirect initializations, e.¢g. an assignment ‘xq = &x;’,
where ‘q’ points to a pointer variable.%

4.2.3 Intra- and inter-procedural analysis

Intra-procedural analysis is concerned with the data flow in function bodies, and makes
worst-call assumption about function calls. In this chapter we shall use ‘intra-procedural’
in a more strict meaning: functions are analysed context-independently. Inter-procedural

5As opposed to Fortran, that tends to use “long” functions.
6All flow-sensitive analyses will gain from this transformation, including binding-time analysis.

116

main(void) foo(int *p)

px = foo(&x)

py = foo(&y) return

return O

Figure 34: Inter-procedural call graph for program in Example 4.6

analysis infers information under consideration of call contexts. Intra-procedural anal-
ysis is also called monovariant or sticky, and inter-procedural analysis is also known as
polyvariant.

Example 4.6 Consider the following program.

int main(void) int *foo(int *p)
{ {

int x,y,*px,*py;

px = foo(&x); return p;

py = foo(&y); }

return 0;
}

An intra-procedural analysis merges the contexts of the two calls and computes the point-
to information [pz,py — {z,y}]. An inter-procedural analysis differentiates between to
two calls. Figure 34 illustrates the inter-procedural call graph. End of Example

Inter-procedural analysis improves the precision of intra-procedural analysis by pre-
venting calls to interfere. Consider Figure 34 that depicts the inter-procedural call graphs
of the program in Example 4.6. The goal is that the value returned by the first call is not
erroneous propagated to the second call, and vice versa. Information must only be propa-
gated through valid or realizable program paths [Sharir and Pnueli 1981]. A control-path
is realizable when the inter-procedural exit-path corresponds to the entry path.

4.2.4 Use of inter-procedural information

Inter-procedural analysis is mainly concerned with the propagation of value-flow infor-
mation through functions. Another aspect is the use of the inferred information, e.g.
for optimization, or to drive other analyses. Classical inter-procedural analyses produce
a summary for each function, that is, all calls are merged. Clearly, this degrades the
number of possible optimizations.

Example 4.7 Suppose we apply inter-procedural constant propagation to a program
containing the calls ‘bar (0) " and ‘bar(1)’. Classical analysis will merge the two calls and
henceforth classify the parameter for ‘non-const’, ruling out e.g. compile-time execution
of an if statement [Callahan et al. 1986]. End of Example

117

An aggressive approach would be either to inline functions into the caller or to
copy functions according to their use. The latter is also known as procedure cloning
[Cooper et al. 1993,Hall 1991].

We develop a flexible approach where each function is annotated with both context
specific information and a summary. At a later stage the function can then be cloned, if
so desired. We return to this issue in Chapter 6, and postpone the decision whether to
clone a function or not.”

We will assume that a program’s static-call graph is available. Recall that the static-
call graph approximates the invocation of functions, and assigns a wvariant number to
functions according to the call contexts. For example, if a function is called in n contexts,
the function has n variants. Even though function not are textually copied according to
contexts, it is useful to imagine that n variants of the function’s parameters and local
variables exist. We denote by v’ the variable corresponding to the i’th variant.

4.2.5 May or must?

The certainty of a pointer abstraction can be characterized by may or must. A may
point-to analysis computes for every pointer set of abstract locations that the pointer
may point to at runtime. A must point-to analysis computes for every pointer a set of
abstract locations that the pointer must point to.

May and must analysis is also known as existential and universal analysis. In the
former case, there must exists a path where the point-to relation is valid, in the latter
case the point-to relation must be valid on all paths.

Example 4.8 Consider live-variable analysis of the expression ‘x= *p’. Given must
point-to information [p — {y}|, ‘v’ can be marked “live”. On the basis of may point
to information [p — {y, z}], both ‘y and ‘z’ must be marked “live”. End of Example

We shall only consider may point-to analysis in this chapter.

4.3 Pointer analysis of C

In this section we briefly consider pointer analysis of some of the more intricate features
of C such separate compilation, external variables and non-strictly complying expressions,
e.g. type casts, and their interaction with pointer analysis.

4.3.1 Structures and unions

C supports user-defined structures and unions. Recall from Section 2.3.3 that struct
variables sharing a common type definition are separated (are given different names)
during parsing. After parsing, a value-flow analysis unions (the types of) objects that
(may) flow together.

"Relevant information includes number of calls, the size of the function, number of calls in the
functions.

118

Example 4.9 Given definitions ‘struct S { int *p;} s,t,u;’, variants of the struct
type will be assigned to the variables, e.¢g. ‘s’ will be assigned the type ‘struct S1'.
Suppose that the program contains the assignment ‘t = s’. The value-flow analysis will
then merge the type definitions such that ‘s’ and ‘t’ are given the same type (‘struct
S1’, say), whereas ‘u’ is given the type ‘struct S3’, say. End of Example

Observe: struct variables of different type cannot flow together. Struct variables of the
same type may flow together. We exploit this fact the following way.

Point-to information for field members of a struct variable is associated with the
definition of a struct; not the struct objects. For example, the point to information for
member ‘s.p’ (assuming the definitions from the Example above) is represented by ‘S1.p’,
where ‘S1’ is the “definition” of ‘struct S1’. The definition is common for all objects of
that type. An important consequence: in the case of an assignment ‘t = s’, the fields of
‘t’ do not need to be updated with respect to ‘s’ — the value-flow analysis have taken
care of this.

Hence, the pointer analysis is factorized into the two sub-analyses

1. a (struct) value-flow analysis, and
2. a point-to propagation analysis

where this chapter describes the propagation analysis. We will (continue to) use the term
pointer analysis for the propagation analysis.

Recall from Chapter 2 that some initial members of unions are truly shared. This is
of importance for pointer analysis if the member is of pointer type. For simplicity we we
will not take this aspect into account. The extension is straightforward, but tedious to
describe.

4.3.2 Implementation-defined features

A C program can comply to the Standard in two ways. A strictly conforming program
shall not depend on implementation-defined behavior but a conforming program is allowed
to do so. In this section we consider type casts that (in most cases) are non-strictly
conforming.

Example 4.10 Cast of an integral value to a pointer or conversely is an implementation-
defined behaviour. Cast of a pointer to a pointer with less alignment requirement and
back again, is strictly conforming [ISO 1990]. End of Example

Implementation-defined features cannot be described accurately by an architecture-
independent analysis. We will approximate pointers that may point to any object by the
unique abstract location ‘Unknown’.

Definition 4.1 Let p’ be a pointer. If a pointer abstraction maps ‘p’ to Unknown,
[p — Unknown|, when ‘p” may point to all accessible objects at runtime. O

13

The abstract location ‘Unknown’ corresponds to “know nothing”, or “worst-case”.

119

Example 4.11 The goal parameters of a program must be described by ‘Unknown’; e.g.
the ‘main’ function

int main(int argc, char **argv)
is approximated by [argv — {Unknown}]. End of Example

In this chapter we will not consider the setjmp’ and ‘longjmp’ macros.

4.3.3 Dereferencing unknown pointers

Suppose that a program contains an assignment through an Unknown pointer, e.g. “*p
= 2’ where [p — {Unknown}]. In the case of live-variable analysis, this implies that
worst-case assumptions must be made. However, the problem also affects the pointer
analysis.

Consider an assignment ‘*q = &x’, where ‘q’ is unknown. This implies after the as-
signment, all pointers may point to ‘x’. Even worse, an assignment ‘*q = p’ where ‘p’ is
unknown renders all pointers unknown.

We shall proceed as follows. If the analysis reveals that an Unknown pointer may
be dereferenced in the left hand side of an assignment, the analysis stops with “worst-
case” message. This corresponds to the most inaccurate pointer approximation possible.
Analyses depending on pointer information must make worst-case assumptions about the
pointer usage.

For now we will assume that Unknown pointers are not dereferenced in the left hand
side of an assignment. Section 4.8 describes handling of the worst-case behaviour.

4.3.4 Separate translation units

A C program usually consists of a collection of translation units that are compiled sepa-
rately and linked to an executable. Each file may refer to variables defined in other units
by the means of ‘extern’ declarations. Suppose that a pointer analysis is applied to a
single module.

This has two consequences. Potentially, global variables may be modified by assign-
ments in other modules. To be safe, worst-case assumptions, ¢.e. Unknown, about global
variables must be made. Secondly, functions may be called from other modules with
unknown parameters. Thus, to be safe, all functions must be approximated by Unknown.

To obtain results other than trivial we shall avoid separate analysis, and assume that
“relevant” translation units are merged; i.e. we consider solely monolithic programs. The
subject of Chapter 7 is separate program analysis, and it outlines a separate pointer
analysis based on the development in this chapter.

Constraint 4.1 i) No global variables of pointer type may be modified by other units.
i1) Functions are assumed to be static to the translation unit being analyzed.

It is, however, convenient to sustain the notion of an object being “external”. For
example, we will describe the function ‘strdup ()’ as returning a pointer to an ‘Unknown’
object.

120

4.4 Safe pointer abstractions

A pointer abstraction is a map from abstract program objects (variables) to sets of abstract
locations. An abstraction is safe if for every object of pointer type, the set of concrete
addresses it may contain at runtime is safely described by the set of abstract locations.
For example, if a pointer ‘p’ may contain the locations [, (location of ‘x’) and [, (location
of ‘g’) at runtime, a safe abstraction is p — {x, ¢g}.

In this section we define abstract locations and make precise the notion of safety.
We present a specification that can be employed to check the safety of an abstraction.
The specification serves as foundation for the development of a constraint-based pointer
analysis.

4.4.1 Abstract locations

A pointer is a variable containing the distinguished constant ‘NULL’ or an address. Due
to casts, a pointer can (in principle) point to an arbitrary address. An object is a set
of logically related locations, e.g. four bytes representing an integer value, or n bytes
representing a struct value. Since pointers may point to functions, we will also consider
functions as objects.

An object can either be allocated on the program stack (local variables), at a fixed
location (strings and global variables), in the code space (functions), or on the heap
(runtime allocated objects). We shall only be concerned with the run time allocated
objects brought into existence via ‘alloc()’ calls. Assume that all calls are labeled
uniquely.® The label [of an ‘alloc’()’ is used to denote the set of (anonymous) objects
allocated by the ‘alloc'()’ call-site. The label I may be thought of as a pointer of a
relevant type.

Example 4.12 Consider the program lines below.

int x, y, *p, **xq, (*fp)(void);
struct S *ps;

p = &x;
q = &p;
*q = &y;
fp = &foo;
ps = alloc!(S);
We have: [p — {z,y},q— {p}, fo — {foo},ps — {1}]. End of Example

Consider an application of the address operator &. Similar to an ‘alloc()’ call, it
“returns” a pointer to an object. To denote the set of objects the application “returns”,
we assume assume a unique labeling. Thus, in ‘p = &°x’ we have that ‘p’ points to the
same object as the “pointer” ‘2°, that is, x.

Definition 4.2 The set of abstract locations ALoc is defined inductively as follows:

80bjects allocated by the means of ‘malloc’ are considered ‘Unknown’.

121

o [fwv is the name of a global variable: v € AlLoc.
e If v is a parameter of some function with n variants: v' € ALoc,i =1,...,n.
e If v is a local variable in some function with n variants: v' € ALoc,i =1,...,n.

o [fs is a string constant: s € AlLoc.

o If f is the name of a function with n variants: f* € ALoc,i=1,...,n.
o If f is the name of a function with n variants: fi € ALoc,i=1,...,n.
o If1 is the label of an alloc in a function with n variants: I' € ALoc,i =1,....n.

o Ifl is the label of an address operator in a function with n variants: I* € ALoc.
e Ifo € ALoc denotes an object of type “array”: o[] € AlLoc.

e If S is the type name of a struct or union type: S € ALoc.

e If S € ALoc is of type “struct” or “union”: S.i € ALoc for all fields i of S.

e Unknown € AlLoc.

Names are assumed to be unique. O

Clearly, the set ALoc is finite for all programs. The analysis maps a pointer into an
element of the set p(ALoc). The element Unknown denotes an arbitrary (unknown)
address. This means that the analysis abstracts as follows.

Function invocations are collapsed according to the program’s static-call graph (see
Chapter 2). This means for a function f with n variants, only n instances of parameters
and local variables are taken into account. For instance, due to the 1-limit imposed on
recursive functions, all instances of a parameters in a recursive function invocation chain
are identified. The location f, associated with function f denotes an abstract return
location, i.e. a unique location where f “delivers” its result value.

Arrays are treated as aggregates, that is, all entries are merged. Fields of struct
objects of the same name are merged, e.g. given definition ‘struct S { int x;} s,t’,
fields ‘s.x” and ‘t.x’ are collapsed.

Example 4.13 The merging of struct fields may seen excessively conservatively. How-
ever, recall that we assume programs are type-separated during parsing, and that a value-
flow analysis is applied that identifier the type of struct objects that (may) flow together,
see Section 2.3.3. End of Example

The unique abstract location Unknown denotes an arbitrary, unknown address, which
both be valid or illegal.

Even though the definition of abstract locations actually is with respect to a particular
program, we will continue to use ALoc independently of programs. Furthermore, we
will assume that the type of the object, an abstract location denotes, is available. For
example, we write “if S € ALoc is of struct type”, for “if the object S € ALoc denotes
is of struct type”. Finally, we implicitly assume a binding from a function designator to
the parameters. If f is a function identifier, we write f:x; for the parameter x; of f.

122

4.4.2 Pointer abstraction

A pointer abstraction S : ALoc — p(ALoc) is a map from abstract locations to sets of
abstract locations.

Example 4.14 Consider the following assignments.

int *p, *q;

extern int *ep;

p = (int *)Oxabcd;

q = (int *)malloc(100*sizeof (int));
r = ep;

The pointer ‘p’ is assigned a value via a non-portable cast. We will approximate this by
Unknown. Pointer ‘q’ is assigned the result of ‘malloc()’. In general, pointers returned
by external functions are approximated by Unknown. Finally, the pointer ‘r’ is assigned
the value of an external variable. This is also approximated by Unknown.

A refinement would be to approximate the content of external pointers by a unique
value Extern. Since we have no use for this, besides giving more accurate warning mes-
sages, we will not pursue this. End of Example

A pointer abstraction S must fulfill the following requirements which we justify below.

Definition 4.3 A pointer abstraction S : ALoc — ©o(ALoc) is a map satisfying:

If o € ALoc is of base type: S(0) = {Unknown}.
If s € ALoc is of struct/union type: S(s) = {}.
If f € ALoc is a function designator: S(f) = {}.
If a € ALoc is of type array: S(a) = {a[]}.

S(Unknown) = Unknown.

ARSI

O

The first condition requires that objects of base types are abstracted by Unknown.
The motivation is that the value may be cast into a pointer, and is hence Unknown (in
general). The second condition stipulates that the abstract value of a struct object is the
empty set. Notice that a struct object is uniquely identified its type. The fourth condition
requires that an array variable points to the content.” Finally, the content of an unknown
location is unknown.

Define for s € ALoc\ {Unknown} : {s} C {Unknown}. Then two pointer abstractions
are ordered by set inclusion. A program has a minimal pointer abstraction. Given a
program, we desire a minimal safe pointer abstraction.

9In reality, ‘a’ in ‘a[10]’ is not an lvalue. It is, however, convenient to consider ‘a’ to be a pointer to
the content.

123

4.4.3 Safe pointer abstraction

Intuitively, a pointer abstraction for a program is safe if for all input, every object a
pointer may point to at runtime is captured by the abstraction.

Let the abstraction function o : Loc — ALoc be defined the obvious way. For example,
if [, is the location of parameter ‘x’ in an invocation of a function ‘£’ corresponding to
the 7'th variant, then «(l,) = 2. An execution path from the initial program point p
and an initial program store &y is denoted by

<p0a50> — <pn58n>

where §,, is the store at program point p,,.

Let p be a program and Sy an initial store (mapping the program input to the param-
eters of the goal function). Let p, be a program point, and £,, the locations of all visible
variables. A pointer abstraction S is safe with respect to p if

L€ Ly a(S,(1) € S(a(l)

whenever (pg, So) = -+ = (P, Sn).

Every program has a safe pointer abstraction. Define S,riv such that it fulfills Defini-
tion 4.3, and extend it such that for all o € ALoc where o is of pointer type, Stm,(o) =
{Unknown}. Obviously, it is a safe and useless abstraction.

The definition of safety above considers only monolithic programs where no external
functions nor variables exist. We are, however, interested in analysis of translation units
where parts of the program may be undefined.

Example 4.15 Consider the following piece of code.

extern int *o;

int *p, **q;

q = &o;

P = *q;
Even though ‘o’ is an external variable, it can obviously be established that [¢ — {o}].
However, ‘p’ must inevitably be approximated by [p — {Unknown}|. End of Example

Definition 4.4 Letp = my, ..., my, be a program consisting of the modules m;. A pointer
abstraction S 1is sate for m;, if for all program points p, and initial stores Sy where
(po, S) = -+ = (pp, Sy), then:

o forle L,: a(S,(1)) C S(a(l)) ifl is defined in m;,,
o forle L,: S(I) = {Unknown} if | is defined in m; # mi,

where L,, 1s the set of visible variables at program point n. O

For simplicity we regard af], given an array a, to be a “visible variable”, and we regard
the labels of ‘alloc ()’ calls to be “pointer variables.

124

Example 4.16 Suppose that we introduced an abstract location Extern to denote the
contents of external variables. Example 4.15 would then be abstracted by: [p — Extern].
There is no operational difference between Extern and Unknown. End of Example

We will compute an approximation to a safe pointer abstraction. For example, we ab-
stract the result of an implementation-defined cast, e.g. ‘(int *)x’ where ‘x’ is an integer
variable, by Unknown, whereas the definition may allow a more accurate abstraction.

4.4.4 Pointer analysis specification

We specify a flow-insensitive (summary), intra-procedural pointer analysis. We postpone
extension to inter-procedural analysis to Section 4.6.

The specification can be employed to check that a given pointer abstraction S is safe for
a program. Due to lack of space we only present the rules for declarations and expressions
(the interesting cases) and describe the other cases informally. The specification is in the
form of inference rules S+ p : e.

We argue (modulo the omitted part of the specification) that if the program fulfills
the rules in the context of a pointer abstraction S, then S is a safe pointer abstraction.
Actually, the rules will also fail if S is not a pointer abstraction, i.e. does not satisfy
Definition 4.3. Let S be given.

Suppose that d = = : T is a definition (i.e., not an ‘extern’ declaration). The safety
of § with respect to d depends on the type 7.

Lemma 4.1 Let d € Decl be a definition. Then S : ALoc — p(ALoc) is a pointer
abstraction with respect to d if

S pdecl . o

where FP% s defined in Figure 35, and S(Unknown) = {Unknown}.

Proof It is straightforward to verify that Definition 4.3 is fulfilled. O

To the right of Figure 35 the rules for external variables are shown. Let d =z : T
be an (extern) declaration. Then S is a pointer abstraction for d if S FP¢WPe (T'1) : o,
Notice the rules require external pointers to be approximated by Unknown, as stipulated
by Definition 4.4.

The (omitted) rule for function definitions T; f(d;){d; Sk} (would) require S(f) =
(o}

Since we specify a flow-insensitive analysis, the safety of a pointer abstraction with
respect to an expression e is independent of program points. A map S : ALoc — p(ALoc)
is a pointer abstraction with respect to an expression e, if it is a pointer abstraction with
respect to the variables occurring in e.

Lemma 4.2 Let e € Expr be an expression and S a pointer abstraction with respect to
e. Then S is safe provided there exist V € p(ALoc) such

125

Fevre (T, z) - @ . FPetupe (T x) < @ _
[decl] FPTVPE (] : d=wz:T Frdecl oxternaz: T : @ d=z:T
[base] bi(l) = {Unknown} bi(l) = {Unknown}
bj Frtvre ((m) 1) ;@ bj FPetupe (1) 1) - ®
struct] o) = U 5(1) = {Unknown}
S FPtype ((struct S),1) : e S Freture ((struct S),1): e
[union] S ={} S(1) = {Unknown}
S FPtyPe ((union U),l) : e ‘5~‘|—p6type ({union U),l) : e
ptype {(y o S(1) = {Unknown}
[ptr] F ((=)T,1) :) S |-piype () T,1) : .
array] () e S =0} R (1) se SW) = {1}
FPre () T,1) - o Feetvre () T,1) - o
[fun] FPPe (((di)T) 1)« o FPtre (((d)T) 1) : e

Figure 35: Pointer abstraction for declarations

S PP o Y
where FP™P s defined in Figure 36.

Intuitively, the the rules infer the lvalues of the expression e. For example, the lvalue
of a variable v is {v}; recall that we consider intra-procedural analysis only.'”

An informal justification of the lemma is given below. We omit a formal proof.

Justification A formal proof would be by induction after “evaluation length”. We
argue that if S is safe before evaluation of e, it is also safe after.

A constant has an Unknown lvalue, and the lvalue of a string is given by its name. The
motivation for approximating the Ivalue of a constant by Unknown, rather than the empty
set, if obvious from the following example: ‘p = (int *)12’. The lvalue of a variable is
approximated by its name.

Consider a struct indexing e.i. Given the type S of the objects the subexpression
denotes, the lvalues of the fields are S.i. The rules for pointer dereference and array
indexing use the pointer abstraction to describe the lvalue of the dereferenced objects.
Notice: if ‘p’ points to ‘x’, that is S(p) = {z}, when the lvalue of ‘*p’ is the lvalue of
‘x” which is approximated by {«z}. The rule for the address operator uses the label as a
“placeholder” for the indirection created.

The effect of unary and binary operator applications is described by the means of
O : Op x p(ALoc)* — p(ALoc). We omit a formal specification.

Example 4.17 Suppose that ‘p’ and ‘q’ both point to an array and consider pointer
subtraction ‘p - q’.''" We have O(—,intint, {0}, {¢}) = {Unknown} since the result is
an integer. Consider now ‘p = 1’. We then get O(—.intint, {9}, {Unknown}) = {p} since
pointer arithmetic is not allowed to shuffle a pointer outside an array. End of Example

I0That is, there is one “variant” of each function.
HRecall that operator overloading is assumed resolved during parsing.

126

An external function delivers its result in an unknown location (and the result itself
is unknown).

Consider the rules for functions calls. The content of the argument’s abstract lvalue
must be contained in the description of the formal parameters.'?> The result of the appli-
cation is returned in the called function’s abstract return location. In the case of indirect
calls, all possible functions are taken into account.

Example 4.18 In case of the program fragment

int (*fp) (int), x;

fp = &foo;
fp = &bar;
(xfp) (&x)

where ‘foo ()’ and ‘bar()’ are two functions taking an integer pointer as a parameter, we
have:

fp = {foo, bar}]

due to the first two applications of the address operator, and
[foo:x— {z}, bar:z — {z}]

due to the indirect call. The ‘Ivalue’ of the call is {foo,, bary}. End of Example

The rules for pre- and post increment expressions are trivial.

Consider the rule for assignments. The content of locations the left hand side must
contain the content of the right hand side expression. Recall that we assume that no
Unknown pointers are dereferenced.

Example 4.19 Consider the following assignments

extern int *x*q;

int *p;

*q = p;
Since ‘q’ is extern, it is Unknown what it points to. Thus, the assignment may assign
the pointer ‘p’ to an Unknown object (of pointer type). This extension is shown in
Section 4.3.3. End of Example

The abstract lvalue of a comma expression is determined by the second subexpression.
A sizeof expression has no lvalue and is approximated by Unknown.

Finally, consider the rule for casts. It uses the function Cast : Type x Type X
©(ALoc) — p(ALoc) defined as follows.

12Recall that we consider intra-procedural, or sticky analysis.

127

const|
string]
var|

[
[
[
[struct)
[indr]
[array]
[address]

[unary]

[binary]

[alloc]
[extern]
[user]
[call]
[preinc]
[postind]
[assign]

[comma]

[sizeof]

[cast]

S FPeep ¢ {Unknown}

S ppeep g {s}

S kreep gy - v}

S Frep ¢ - O TypOf(o € O1) = (struct S)

SEPerP ey 4 {S.i}
S FPeep ey 1 O

S Freet xey : e, S(0)

S Frezp ¢ - O, S FPeTrr oy Oy
S FPeEP e [es] : erol S(o)
S kPerp gy 2 Oy S(1) D 0y

S Frear gley {1}
S FPerp ¢y Oy

S EPeTP g ey : O(0,01)
S p-pexp €; : Oz

S l_pezp €1 op €y : 0(07 OZ)
S FPerP alloc! (T) : {1}

S p-pexp €; : Oz

SFPeP ef(er,...,e,) : {Unknown}
SFEreev e 1 0; S(f:x;) 2 S(0))

S |-pezp f(e] yeers€n) S(fO)

S FPeTp ¢ - O, Vo € Og : S(o:2;) D S(0;)

S EPP eg(er, ... en) t Uyeo, S(00)

Skreav e, 0,

S FPeP tte; 1 Oy

SEPeap ey 1 Oy

ST eer: O

S FPeep o) 1 Oy S‘ FPETP o5 : Oy Vo € O; 58(0) 2 5(02)

S FPETP ey aop ey : Oo

S FPETP e+ Oy S FPETP ey 1 Oy

S PP eq e 1 Oy

S FP?P gizeof(T) : {Unknown}
S l_pe:cp €1 . 01

S peap (T)e1 : Cast(T, TypOf(el) Ol)

Figure 36: Pointer abstraction for expressions

128

Cas (Ttoanromaofrom) = Case (Tto;Tfrom) of
(1), (7)) : Ofrom

(x) T, (1)) : {Unknown }
(Tp) , (Y T') : {Unknown }
(
(

*

(%) (struct S)) - { {o1]0€ Opom} T type of first member of S

O from Otherwise

(
(
(
(
()T () T7) O

)T
)T
Casts between base types do not change an object’s lvalue. Casts from a pointer type
to an integral type, or the opposite, is implementation-defined, and approximated by
Unknown.

Recall that a pointer to a struct object points, when suitably converted, also to the
first member. This is implemented by the case for cast from struct pointer to pointer.
We denote the name of the first member of S by ‘1’. Other conversions do not change
the lvalue of the referenced objects. This definition is in accordance with the Standard
[ISO 1990, Paragraph 6.3.4]. End of Justification

The specification of statements uses the rules for expressions. Further, in the case of
a ‘return e

SHrer e O S(fy) 2 §(0)

S FPsiml return e : e

which specifies that the abstract return location of function f (encapsulating the state-
ment) must containt the value of the expression e.

We conjecture that given a program p and a map S : ALoc — p(ALoc), then S is a
safe pointer abstraction for p iff the rules are fulfilled.

4.5 Intra-procedural pointer analysis

This section presents a constraint-based formulation of the pointer analysis specification.
The next section extends the analysis to an inter-procedural analysis, and Section 4.7
describes constraint solving.

4.5.1 Pointer types and constraint systems

A constraint system is defined as a set of constraints over pointer types. A solution to a
constraint system is a substitution from pointer type variables to sets of abstract locations,
such that all constraints are satisfied.

The syntax of a pointer type T is defined inductively by the grammar

T == {oj} locations
| *T deference
| T indexing
| (T)—=7T function
| T type variable

129

where 0; € ALoc and 7 is an identifier. A pointer type can be a set of abstract locations,
a dereference type, an indexing type, a function type, or a type variable. Pointer types
{o;} are ground types. We use T to range over pointer types.

To every object o € ALoc of non-functional type we assign a type variable T,; this
includes the abstract return location fy for a function f. To every object f € ALoc of
function type we associate the type (1) — TY,, where Ty are the type variables assigned
to parameters of f. To every type specifier 7 we assign a type variable T,.

The aim of the analysis is to instantiate the type variables with an element from
o(ALoc), such that the map [o — T,] becomes a safe pointer abstraction.

A wariable assignment is a substitution S : TVar — PType from type variables to
ground pointer types. Application of a substitution S to a type 7 is denoted by juxtapo-
sition S - 7. The meaning of a pointer type is defined relatively to a variable assignment.

Definition 4.5 Suppose that S is a variable assignment. The meaning of a pointer type
T is defined by

[O] S = 0
[«T] S = U,ST,, o€][T] S
[T.4 S = U {S(U.9) | TypOf(o) = (struct U)} o€ [T] S
[(T) =T]S = (IT:] 5) =171 S
[T] S = ST
where T, is the unique type variable associated with object o. O

The meaning of a deference type %7 is determined by the variable assignment. Intu-
itively, if 7 denotes objects {o0;}, the meaning is the contents of those objects: ST,,. In
the case of an indexing 7 .i, the meaning equals content of the fields of the object(s) T
denote.

A constraint system is a multi-set of formal inclusion constraints

T2T

over pointer types 7. We use C to denote constraint systems.

A solution to a constraint system C is a substitution S : TVar — PType from type
variables to ground pointer types which is the identity on variables but those occurring
in C, such that all constraints are satisfied.

Definition 4.6 Define the relation 2* by Oy O* Oy iff O1 O Oy for all Oy, 04 € p(ALoc),
and (T;) =T 2*(T) =T iff T; 2* T and T' O* T.

A substitution S : TVar — PType solves a constraint T; O Ty if it is a variable
assignment and [T] S 2* [T] S. 0

Notice that a function type is contra-variant in the result type. The set of solutions
to a constraint system C is denoted by Sol(C). The constraint systems we will consider
all have at least one solution.

Order solutions by subset inclusion. Then a constraint system has a minimal solution,
which is a “most” accurate solution to the pointer analysis problem.

130

4.5.2 Constraint generation

We give a constraint-based formulation of the pointer analysis specification from the
previous section.

Definition 4.7 Let p = (T,D,F) be a program. The pointer-analysis constraint system
Cpym(p) for p is defined by

Cogm(P) = U Cuae (1) U U Caca(d) U U Crun(f) U Cont(p)

teT deD fer

where the constraint generating functions are defined below. O

Below we implicitly assume that the constraint Ty,known 2 {Unknown} is included in
all constraint systems. It implements Condition 5 in Definition 4.3 of pointer abstraction.

Goal parameters

Recall that we assume that only a “goal” function is called from the outside. The content
of the goal function’s parameters is unknown. Hence, we define

Cyoal (D) = U{Tw O {Unknown}}

for the goal parameters x : 1" of the goal function in p.

Example 4.20 For the main function ‘int main(int argc, char **argv)’ we have:
Cyoal = {Turge 2 {Unknown}, T,,4, O {Unknown}}

since the content of both is unknown at program start-up. End of Example

Declaration
Let d € Decl be a declaration. The constraint system Cge(d) for d is defined by Figure 37.
Lemma 4.3 Let d € Decl be a declaration. Then Cgee(d) has a solution S, and
decl .
S\ALOC FPEet d ;o

where FP s defined by Figure 35.
Proof To see that the constraint system Cg.i(d) has a solution, observe that the trivial
substitution S;,;, is a solution.

It is easy to see that a solution to the constraint system is a pointer abstraction, cf.
proof of Lemma 4.1. O

131

Fetpe (T,) : T Feeture (T) - T,

[dect] Fedecl g T Tz {T. 2 Ti} Fedecl extern o : 1 @ T, {T. 2 Ti}

[base] Fe¥Pe (), 1) : T {T D {Unknown}} k¢ (1) 1) : T {T > {Unknown}}
[struct] FetvPe ((struct S),1) : T {T D {}} Feetype ((struct S),1) : T {T D {Unknown}}
[union] F¢%P¢ ((union U),1): T {T D {}} Feetype ((union U), 1) : T {T O {Unknown}}
[ptr] Fetvpe ()T 1) - T Feetype (k) T'1) : T

] LDy Ry

c |_cdecl d7 . Td,- |_cdecl d1 . Tdi

fun] - e @y T T Feetvpe (((d)) T', 1y : T

Figure 37: Constraint generation for declarations

l_cdecl dz - T
[struct] de]

Fettel struct S{ d; }:e
[.] l_cdecl dz - T
union Fetdel union U{ d; }: e
[enum)] Fetdef enum Ee} : o

Figure 38: Constraint generation for type definitions

Type definitions

The constraint generation for a type definition t, Cy4ef(t), is shown in Figure 38.

Lemma 4.4 Lett € TDef be a type definition. Then the constraint system Cyqer(t) has a
solution S, and it is a pointer abstraction with respect to t.

Proof Follows from Lemma 4.3. O

Example 4.21 To implement sharing of common initial members of unions, a suitable
number of inclusion constraints are added to the constraint system. End of Example

Expressions
Let e be an expression in a function f. The constraint system C.,,(e) for e is defined by
Figure 39.

The constraint generating function O, for operators is defined similarly to O used in

the specification for expressions. We omit a formal definition.

Example 4.22 For the application ‘p - q’, where ‘p’ and ‘q’ are pointers, we have
Oc(—wintwint, Te, Te;) = {T. 2 {Unknown}}. In the case of an application ‘p - 17, we
have O (—sint,int: Le. Te,) = {1t 2 T¢, }, cf. Example 4.17. End of Example

132

[const]
[string]
[var]

[struct]
[indr]
[array]
[addr]

[unary]

[binary]

[ecall]

[alloc]
[user]
[call]
[pre]
[post]
[assign]

[comma]

[sizeof]

[cast]

eear ¢ T,
Feear g2 T,
Feerp g - T,

cex .
F p €1 . Tel

Feep e, 4 T,

cex .
F p €1 . Tel

Trcexp o, . T
F p*e1.Te

cex .
F p €; . Tei

Foo ¢ Teal < T

cex .
F p €1 . Tel

Feezp &ley - T,

cex .
F p €1 . Tel

FeerP g ey : T,

cex .
F p €; ! Tei

FeeTP e 0 eq : T,

cex .
F p €; ! Tei

feep ef(ela Tt €n)

Feezp a11o0c! (T) : T,

Cexr .
feeap g, T,

Feerp fller, ... en) : Te
feesp g 1 T,
Feeep el (eq, ... en) : T

Feeap ey 1 T,

CeET .
FeerP ++eq T,

Feeap ey 1 T,

CeET .
FeerP eg++ 0 T,

cex .
F p €; ! Tei

FCeTP ey aop es : T,
cexr .
F p €; ! Tei

FCeTP ey, e9 1 T,

Fee*P sizeof (1) : T,

cex .
F p €1 . Tel

Feee? (Tey : T,

{T. O {Unknown}}
{Te 2 {s}

{Te 2 {v}

{T. DT, .i}

{T. O «T,,}

{Te 2 +T, }

{Te

U

{1}, 71 2 T.}
Oc(o. T, T.,)

Oc(o, T, T.,)

{T. 2 {Unknown}}

{T. 2{T\}}

{={f} 2 Te,) = T, T. 2 {i}}
{xT., 2 (+I0,) = T, T. 2 {1}
{T. 2 T.}

{T. 2 T.}

{+T., 2 +T1.,,T. D T, }

{Te 2 Tez }

{T. O {Unknown}}

Cast (T, TypOf(er), T, Te,)

Figure 39: Constraint generation for expressions

133

To represent the lvalue of the result of a function application, we use a “fresh” variable
T,. For reasons to be seen in the next section, calls are assumed to be labeled.
The function Cast,. implementing constraint generation for casts is defined as follows.

CaStc(Ttoa Tfroma Tea Tel) = Case (Tt07 Tfrom) of

((7) , (7)) . {T.2T.,}

(() T, (7)) . {T. O {Unknown}}

((76) () T) . {T. O {Unknown}}

((*) T, {x) (struct S)) { g: 3 ;:}1} gtthyelzivgiﬁrst member of S
(() T1, () T2) : {T.2T.}

Notice the resemblance with function Cast defined in Section 4.4.

Lemma 4.5 Let e € Expr be an expression. Then Ceypy(€) has a solution S, and
S\ALoc Pt eV

where FP™P s defined by Figure 36.

Proof To see that C.,,(e) has a solution, observe that Sy, is a solution.
That S is a safe pointer abstraction for e follows from definition of pointer types
(Definition 4.5) and solution to constraint systems (Definition 4.6). O

Example 4.23 Consider the call ‘' (&?x)’; a (simplified) constraint system is
{Tew 2 21T 2 {2, Ty 2 {1} T} 2 (+Ter) — T0, Ty 2 {11}

cf. Figure 39. By “natural” rewritings (see Section 4.7) we get
{(T0) = Tpy 2 (+{2)) = T0, T 2 (11}

(where we have used that 7% is bound to (7%,) — T',) which can be rewritten to
{(Ty,) = Ty, 2 (T) = T, Ty 2 {1}}

(where we have used that *{2} = T3) corresponding to
{Ty, 2{x}, Try 2 T}

that is, the parameter of f may point to ‘x’, and f may return the value in location ‘1’.
Notice that use of contra-variant in the last step. End of Example

134

[empty] Fo5 e
-cexp o . Te
[expr] TEestmt . o
' fcezp o . Te |_cstmt SZ ‘e
[if] tmt 5
Festmt if (e) S; else Sy : e
' f-cezp o . Te l_cstmt S] ‘e
[SWltCh] pestmt quitch (e) Sl - e
[Case] l_cstmt Sl c e
l_cstmt case e: S] :e
l_cstmt Sl)
[default] l_cstmt default S] - e
' f-cezp o . Te l_cstmt S:e
[Whlle] Festmt upile (e) S;: e
@ FeT bems
Fesmt 3o S; while (e) : e
[for] et e i T, FOI™ S, s
O cstmi for(€1;€2§63) Sl v e
|-cstmt Sl T e
[label] l_cstmt l - S])
[goto] Festmt goto m : e
FeerP e T,
[return] "CStmt return e: e {Tfo 2 *Te}
l_cstmt -
[block] i

l_cstmt {57} ‘e

Figure 40: Constraint generation for statements

Statements

Suppose s € Stmt is a statement in a function f. The constraint system Cgymi(s) for s is
defined by Figure 40.

The rules basically collect the constraints for contained expressions, and add a con-
straint for the return statement.

Lemma 4.6 Let s € Stmt be a statement in function f. Then Cgpmy(s) has a solution S,

and S is a safe pointer abstraction for s.

Proof Follows from Lemma 4.5. O

Functions

Let f € Fun be a function definition f = (T, Dyy,, Dige, S). Define
Cfun(f) - U Cdecl(d) U U Cdecl(d) U U Cstmt(s)

d€Dpar de€Dype SES

where Cgyer and Cgyyyy are defined above.

135

Lemma 4.7 Let f € Fun be a function. Then Cry,(f) has a solution S, and S is a safe
pointer abstraction for f.

Proof Obvious. O

This completes the specification of constraint generation.

4.5.3 Completeness and soundness

Given a program p. We show that C,g,, has a solution and that the solution is a safe
pointer abstraction.

Lemma 4.8 Let p be a program. The constraint system Cpgm(p) has a solution.
Proof The trivial solution Si.;, solves Cpgm (p)- O

Theorem 4.1 Let p be a program. A solution S € Sol(Cpgm(p)) is a safe pointer abstrac-
tion for p.

Proof Follows from Lemma 4.7, Lemma 4.3 and Lemma 4.4. O

4.6 Inter-procedural pointer analysis

The intra-procedural analysis developed in the previous section sacrifices accuracy at
functions calls: all calls to a function are merged. Consider for an example the following
function:

/* inc_ptr: increment pointer p */
int *inc_ptr(int *q)

{

return q + 1;

}

and suppose there are two calls ‘inc_ptr(a)’ and ‘inc_ptr(b)’, where ‘a’ and ‘b’ are
pointers. The intra-procedural analysis merges the calls and alleges a call to ‘inc_ptr’
yields a pointer to either ‘a’ or ‘b’

With many calls to ‘inc_ptr ()’ spurious point-to information is propagated to unre-
lated call-sites, degrading the accuracy of the analysis. This section remedies the problem
by extending the analysis into an inter-procedural, or context-sensitive point-to analysis.

136

4.6.1 Separating function contexts

The naive approach to inter-procedural analysis is by textual copying of functions before
intra-procedural analysis. Functions called from different contexts are copied, and the call-
sites changed accordingly. Copying may increase the size of the program exponentially,
and henceforth also the generated constraint systems.

Example 4.24 Consider the following program.

int main(void) int *dinc(int *p)
{ {
int *pa,*pb,al10],b[10]; int *pl = inc_ptr(p);
px = dinc(a); int *p2 = int_ptr(pl);
py = dinc(b); return p2;
} }
Copying of function ‘dinc ()’ due to the two calls in ‘main ()’ will create two variants with
4 calls to ‘int_ptr()’. End of Example

The problem with textual copying of functions is that the analysis is slowed down due
to the increased number of constraints, and worse, the copying may be useless: copies of
function may be used in “similar” contexts such that copying does not enhance accuracy.
Ideally, the cloning of functions should be based on the result of the analysis, such that
only functions that gain from copying actually are copied.

Example 4.25 The solution to intra-procedural analysis of Example 4.24 is given below.

Tpa '—> {a7 b}
pr = {U,, b}
T, ~— {a,b}
T, — {a,b}

where the calls to ‘dinc ()’ have been collapsed. By copying of ‘inc_ptr()’ four times,
the pointers ‘a’ and ‘b’ would not be mixed up. End of Example

4.6.2 Context separation via static-call graphs

We employ the program’s static-call graph to differentiate functions in different contexts.
Recall that a program’s static-call graph is a function SCG : Calll.abel x Variant —
Id x Variant mapping a call-site and a variant number of the enclosing function to a
function name and a variant. The static-call graph of the program in Example 4.24 is
shown in Figure 41. Four variants of ‘inc_ptr ()’ exist due to the two call-sites in ‘dinc ()’
which again is called twice from ‘main()’.

Explicit copying of functions amounts to creating the variants as indicated by Fig-
ure 41. However, observe: the constraint systems generated for the variants are identical
except for constraints for calls and return. The idea is to generate constraints over vectors
of pointer types corresponding to the number of variants. For example, the constraint

137

main

/\

dinc, dincy

inc_ptr inc_ptry inc_ptr;y inc_ptry

Figure 41: Static-call graph for the example program

system for ‘inc_ptr ()’ will use vectors of length 5, since there are four variants. Variant
0 is used as a summary variant, and for indirect calls.

After the analysis, procedure cloning can be accomplished on the basis of the computed
pointer information. Insignificant variants can be eliminated and replaced with more
general variants, or possibly with the summary variant 0.

4.6.3 Constraints over variant vectors

Let an extended constraint system be a multi-set of extended constraints
T"o>T"
where 7 range over pointer types. Satisfiability of constraints is defined by component-
wise extension of Definition 4.6.
Instead of assigning a single type variable to objects and expressions, we assign a vector

T of type variables. The length is given as the number of variants of the encapsulating
function (plus the 0 variant) or 1 in the case of global objects.

Example 4.26 Consider again the program in Example 4.24. Variable ‘p’ of ‘dinc’ is
associated with the vector p <T1?=Tpl=sz> corresponding to variant 1 and 2, and the
summary 0. The vector corresponding to the parameter of ‘inc_ptr()’ has five elements
due to the four variants. End of Example

The vector of variables associated with object o is denoted by T, = (T2, T}, ..., T™").
Similarly for expressions and types.

Example 4.27 An inter-procedural solution to the pointer analysis problem in Exam-
ple 4.24:

(18, T1,) ~ ({a}.{a})
(13,75 — ({0, (b))
T;,T;,T;> — ({a,b}, {a}, {b})
T T2 TE T = ({a, b}, {a}, {a}, {b},{b})
where the context numbering is shown in Figure 41. End of Example

In the example above, it would be advantageous to merge variant 1, 2, and 3, 4, respec-
tively.

138

4.6.4 Inter-procedural constraint generation

The inter-procedural constraint generation proceeds almost as in the intra-procedural
analysis, Section 4.5.2, except in the cases of calls and return statements. Consider
constraint generation in a function with n variants.

The rule for constants:

{T. O ({Unknown}, {Unknown},..., {Unknown})}

where the length of the vector is m + 1. The rule for variable references:

{E D {w}, {v} ... {v})} if v is global
{T. O ({o°}, {v'}, ..., {v"}} if v is local

where v’ denote the i’th variant of object v. This rule seems to imply that there exists n
versions of v. We describe a realization below. (The idea is that an object is uniquely iden-
tified by its associated variable, so in practice the rule reads T, O ({T°}, {T}},. ... {T"}).)

Consider a call g'(ey,...,e,,) in function f. The constraint system is
U {75 2+1230 U {7 2 Ty ULT. 2 {I}}
i=1,...,n u=1,...,n

where SCG(1,1) = (g, k').

The rule is justified as follows. The i’th variant of the actual parameters are related
to the corresponding variant k° of the formal parameters, cf. SCG(I,i) = (g, k). Similarly
for the result. The abstract location [abstracts the lvalue(s) of the call.

The rule for an indirect call ey(eq, ..., e,) uses the summary nodes:

(+T8 D (+T7) = T, T. 2 ({1} {I"},.... {i°})}

cf. the rule for intra-procedural analysis. Thus, no context-sensitivity is maintained by
indirect calls.
Finally, for every definition ‘z : 7" that appears in n variants, the constraints

U {21}
i=1,...,n
are added. This assures that variant 0 of a type vector summarizes the variants.

Example 4.28 The first call to ‘inc_ptr()’ in Example 4.24 gives rise to the following
constraints.

1 1 1 1 .
Tiveptr 2 Taines Ty 2 Tiine, variant 1

2 2 2 9 .
Tineptr 2 Taines Ty 2 Taine, variant 2

where we for the sake of presentation have omitted “intermediate” variables, and rewritten
the constraints slightly. End of Example

A constraint system for inter-procedural analysis consists of only a few more con-
straints than in the case of intra-procedural analysis. This does not mean, naturally, that
a inter-procedural solution can be found in the same time as an intra-procedural solu-
tion: the processing of each constraint takes more time. The thesis is the processing of an
extended constraint takes less time than processing of an increased number of constraints.

139

4.6.5 Improved naming convention

As a side-efect, the inter-procedural analysis improves on the accuracy with respect to
heap-allocated objects. Recall that objects allocated from the same call-site are collapsed.
The constraint generation in the inter-procedural analysis for ‘alloc! ()’ calls is

(T2 ({0 A1))}

where [; are n + 1 “fresh” variables.

Example 4.29 An intra-procedural analysis merges the objects allocated in the program
below even though they are unrelated.

int main(void) struct S *allocate(void)
{ {
struct S *s = allocate(); return allocl(S);
struct S *t = allocate(); }
}
The inter-procedural analysis creates two variants of ‘allocate()’, and separates apart
the two invocations. End of Example

This gives the analysis the same accuracy with respect to heap-allocated objects as
other analyses, e.g. various invocations of a function is distinguished [Choi et al. 1993|.

4.7 Constraint solving

This section presents a set of solution-preserving rewrite rules for constraint systems. We
show that repeated application of the rewrite rules brings the system into a form where
a solution can be found easily. We argue that this solution is minimal.

For simplicity we consider intra-procedural constraints only in this section. The
extension to inter-procedural systems is straightforward: pairs of types are processed
component-wise. Notice that the same number of type variables always appear on both
sides of a constraint. In practice, a constraint is annotated with the length of the type
vectors.

4.7.1 Rewrite rules

Let C be a constraint system. The application of rewrite rule [resulting in system C’ is
denoted by C =' C'. Repeated application of rewrite rules is written C = C’. Exhausted
application®® is denoted by C =* C' (we see below that exhausted application makes
sense).

A rewrite rule [is solution preserving if a substitution S is a solution to C if and only
if it is a solution to C', when C =! C'. The aim of constraint rewriting is to propagate
point-to sets through the type variables. The rules are presented in Figure 42, and make
use of an auxiliary function Collect : TVar x CSystem — p(ALoc) defined as follows.

13 Application until the system stabilizes.

140

Type normalization

la C=C'U{T > {s}.i} = CU{T DTs,} TypOf(s) = (struct S)
1.b C=C"U{T 2 *{o}} = CU{TD2T,}

le C=C'U{x{o} DT} = CU{To DT} o—T,

1d Cc=Cu{T)-»T2(T))-T'} = CU{T;D>T7/,T'2>T}

Propagation

2a C=C'U{Ti DT} = CU erCollect(TQ,C){Tl D {o}}

2b C=C"U{T, D Ts.i} = CU erCollect(TQ,C){T D {o}.i}

2.c c=C'U {Tl D) *T2} = CU UoECOH@Ct(TQ,C){Tl D) *{O}}

2d C=C'U{xT DT} = CU UoECOlleCt(T,C){*{O} o7}

Figure 42: Solution preserving rewrite rules

Definition 4.8 Let C be a constraint system. The function Collect : TVar x CSystem —
o(ALoc) is defined inductively by:

Collect(T,C) ={o0; | T 2 {o;} € C} U{o | T 2T, € C,0; € Collect(11,C)}

O

Notice that constraints may be self-dependent, e.g. a constraint system may contain
constraints {TI 2 TQ, T2 2 Tl}

Lemma 4.9 Let C be a constraint system and suppose that T is a variable appearing in

T. Then Sol(C) = Sol(C U {T D Collect(T,C)}).

Proof Obvious. O

For simplicity we have assumed abstract location sets {0} consist of one element only.
The generalization is straightforward. Constraints of the form {o0}.i O 7T can never occur;
hence no rewrite rule.

Lemma 4.10 The rules in Figure 42 are solution preserving.

Proof Assume that C, ='C,. We show: S is a solution to C iff it is a solution to C'.
Cases 1: The rules follow from the definition of pointer types (Definition 4.5). Observe
that due to static well-typedness, “s” in rule 1.a denotes a struct object.

Case 2.a: Due to Lemma 4.9.

Case 2.b: Suppose that S is a solution to C;. By Lemma 4.9 and definition of pointer
types, S is a solution to C; U {T} D {o}.i} for o € Collect(Ty,C;). Suppose that S’ is a
solution to C,. By Lemma 4.9, S’ is a solution to C, U {Ty 2 {o}} for o € Collect(T3,C,).
Case 2.c: Similar to case 2.b.

Case 2.d: Similar to case 2.b. O

141

Lemma 4.11 Consider a constraint system to be a set of constraint. Repeated application
of the rewrite rules in Figure 42 C = C' terminates.

Proof All rules add constraints to the system. This can only be done a finite number
of times. O

Thus, when considered as a set, a constraint system C has a normal form C' which
can be found by exhaustive application C = C’ of the rewrite rules in Figure 42.

Constraint systems in normal form have a desirable property: a solution can be found
directly.

4.7.2 Minimal solutions

The proof of the following theorem gives a constructive (though inefficient) method for
finding a minimal solution to a constraint system.

Theorem 4.2 Let C be a constraint system. Perform the following steps:

1. Apply the rewrite rules in Figure 42 until the system stabilizes as system C'.
2. Remove from C' all constraints but constraints of the form T O {o} giving C".

3. Define the substitution S by S = [T +— Collect(T,C")] for all T in C".

Then S AT1,0¢ € Sol(C), and S is a minimal solution.

Proof Due to Lemma 4.10 and Lemma 4.9 it suffices to show that S is a solution to C’.

Suppose that S is not a solution to C'. Clearly, S is a solution to the constraints added
during rewriting: constraints generated by rule 2.b are solved by 1.a, 2.c by 1.b, and 2.d
by 1.c. Then there exists a constraint ¢ € C \ C' which is not satisfied. Case analysis:

¢ =T, 2 {o}: Impossible due to Lemma 4.9.

¢ =Ty D Ty: Impossible due to exhaustive application of rule 2.a and Lemma 4.9.

c =T, D Ty.2: Impossible due to rewrite rule 2.b and Lemma 4.9.

c =T, D *15: Impossible due to rewrite rule 2.c and Lemma 4.9.

¢ = *T7 O T: Impossible due to rewrite rules 2.d and 1.c, and Lemma 4.9.

Hence, S is a solution to C'.
To see that S is minimal, notice that no inclusion constraints 773 O {0} than needed
are added; thus S must be a minimal solution. O

The next section develops an iterative algorithm for pointer analysis.

142

'
s{ }---> <struct $>

'next{ ‘}> <*x><struct S>

p{' } - <*¥><int>
af{| } -~ <[10]><*><int>
i

Figure 43: Pointer type representation

4.8 Algorithm aspects

In this section we outline an algorithm for pointer analysis. The algorithm is similar to
classical iterative fixed-point solvers [Aho et al. 1986,Kildall 1973]. Further, we describe
a convenient representation.

4.8.1 Representation

To every declarator in the program we associate a pointer type. For abstract locations
that do not have a declarator, e.g. a[| in the case of an array definition ‘int a[10]’, we
create one. A object is uniquely identified by a pointer to the corresponding declarator.
Thus, the constraint 7' D x{o} is represented as T' O {7, } which can be rewritten into
T DO T, in constant time.

Example 4.30 The “solution” to the pointer analysis problem of the program below is
shown in Figure 43.

struct S { int x; struct S *next; } s;
int *p, *al[10];

s.next = &s;

p = all]l = &s.x;

The dotted lines denotes representation of static types.

End of Example

3

To every type variable ‘T’ we associate a set ‘T.incl’ of (pointers to) declarators.
Moreover, a boolean flag ‘T.upd’ is assumed for each type variable. The field ‘T.incl’
is incrementally updated with the set of objects ‘T" includes. The flag ‘T.upd’ indicates
whether a set has changed since “last inspection”.

4.8.2 Iterative constraint solving

Constraints of the form 7" D %{T,} can be “pre-normalized” to T' D T, during constraint
generation, and hence do not exists during the solving process. Similar for constraint
generated for user-function call.

The constraint solving algorithm is given as Algorithm 4.1 below.

143

Algorithm 4.1 Iterative constraint solving.

do
fix = 1;
for (c in clist)
switch (c) {
case T1 DO 0: update(T1,0); break;

case T1 DO T2: update(T1,T2.incl); break;
case T1 D T2.i: update(T1,struct(T2.incl,i)); break;
case T1 D x*T2:

update(T1,indr(T2.incl)));
if (Unknown in T2.incl) abort("Unknown dereferenced") ;
break;
case *xT1 D *T2:

if (T1l.upd || T2.upd) {

for (o in T1.incl)

update (To,indr (T2.incl));
}

break;
case *TO D (*¥T’i)->T’:
if (TO.upd) {
for ((Ti)->T in TO.incl)
clist U= { Ti D *T’i, T D T };
}

break;

}

while (!'fix);

/* update: update content T.incl with O */
update (T,0)

{
}

Functions ‘Aindr () * and ‘struct ()’ are defined the obvious way. For example, ‘indr()’
dereferences (looks up the binding of) a declarator pointer (location name) and returns
the point-to set. O

if (T.incl € 0) { T.incl U= 0; fix = 0; }

Notice case for pointer deference. If Unknown is dereferenced, the algorithm aborts
with a “worst-case” message. This is more strict than needed. For example, the analysis
yields “worst-case” in the case of an assignment ‘p = *q’, where ‘q’ is approximated by
Unknown. In practice, constraints appearing at the left hand side of assignments are
“tagged”, and only those give rise to abortion.

4.8.3 Correctness

Algorithm 4.1 terminates since the ‘incl’ fields only can be update a finite number of
times. Upon termination, the solution is given by S = [T+ T.inc1].

Lemma 4.12 Algorithm 4.1 is correct.

Proof The algorithm implements the rewrite rules in Figure 42. O

144

4.8.4 Complexity

Algorithm 4.1 is polynomial in the size of program (number of declarators). It has been
shown that inter-procedural may-alias in the context of multi-level pointers is P-space
hard [Landi 1992a].'* This indicates the degree of approximation our analysis make. On
the other hand, it is fast and the results seem reasonable.

4.9 Experiments

We have implemented a pointer analysis in the C-Mix system. The analysis is similar to
the one presented in this chapter, but deviates it two ways: it uses a representation which
reduces the number of constraints significantly (see below), and it computes summary
information for all indirections of pointer types.

The former decreases the runtime of the analysis, the latter increases it. Notice that
the analysis of this chapter only computes the lvalues of the first indirection of a pointer;
the other indirections must be computed by inspections of the objects to which a pointer
may point.

The value of maintaining summary information for all indirections depends on the
usage of the analysis. For example with summary information for all indirections, the
side-effect analysis of Chapter 6 does not need to summarize pointers at every indirection
node; this is done during pointer analysis. On the other hand, useless information may
be accumulated. We suspect that the analysis of this chapter is more feasible in practice,
but have at the time of writing no empirical evidence for this.

We have applied the analysis to some test programs. All experiments were conducted
on a Sun SparcStation II with 64 Mbytes of memory. The results are shown below. We
refer to Chapter 9 for a description of the programs.

| Program | Lines | Constraints | Solving |
Gnu strstr 64 17 | =~ 0.0 sec
Ludcmp 67 0 0.0 sec
Ray tracer 1020 157 0.3 sec
ERSEM ~ 5000 465 3.3 sec

As can be seen, the analysis is fast. It should be stressed, however, that none of
the programs use pointers extensively. Still, we believe the analysis of this chapter will
exhibit comparable run times in practice. The quality of the inferred information is good.
That is, pointers are approximated accurately (modulo flow-insensitivity). In average,
the points-to sets for a pointer are small.

Remark: The number of constraints reported above seems impossible! The point is
that most of the superset constraints generated can be solved by equality. All of these
constraints are pre-normalized, and hence the constraint system basically contains only
constraints for assignments (calls) involving pointers.

14This has only been shown for programs exhibiting more than four levels of indirection.

145

4.10 Towards program-point pointer analysis

The analysis developed in this chapter is flow-insensitive: it produces a summary for the
entire body of a function. This benefits efficiency at the price of precision, as illustrated
by the (contrived) function to the left.

int foo(void) int bar(void)
{ {
if (test) { p = &x;
p = &x; foobar(p);
foobar (p) ; p = &y;
} else { foobar(p);
P = &y; }
foobar (p);
}

The analysis ignores the branch and information from one branch may influence the other.
In this example the loss of accuracy is manifested by the propagation of the point-to
information [p — {z,y}] to both calls.

The example to the right illustrates lack of program-point specific information. A
program-point specific analysis will record that ‘p’ will point to ‘x” at the first call, and
to ‘y’ at the second call. In this section we consider program-point specific, flow-sensitive
pointer analysis based on constraint solving.

4.10.1 Program point is sequence point

The aim is to compute a pointer abstraction for each program point, mapping pointers
to the sets of objects they may point to at that particular program point. Normally,
a program point is defined to be “between two statements”, but in the case of C, the
notion coincides with sequence points [ISO 1990, Paragraph 5.1.2.3]. At a sequence point,
all side-effects between the previous and the current point shall have completed, i.e. the
store updated, and no subsequent side-effects have taken place. Further, an object shall
be accessed at most once to have its value determined. Finally, an object shall be accessed
only to determine the value to be stored. The sequence points are defined in Annex C of
the Standard [ISO 1990].

Example 4.31 The definition renders undefined an expression such as ‘p = p++ + 1’
since ‘p’ is “updated” twice between two sequence points.

Many analyses rely on programs being transformed into a simpler form, e.g. ‘e; = ey =
e3’ to ‘es = e3; €1 = ey’. Thisintroduces new sequence points and may turn an undefined
expression into a defined expression, for example ‘p = q = p++'. End of Example

In the following we for simplicity ignore sequence points in expressions, and use
the convention that if S is a statement, then m is the program immediately before
S, and n is the program after. For instance, for a sequence of statements, we have
mySinymaSong ... My Spny,.

146

4.10.2 Program-point constraint-based program analysis

This section briefly recapitulates constraint-based, or set-based program analysis of im-
perative language, as developed by Heintze [Heintze 1992].

To every program points m, assign a vector of type variables T representing the
abstract store.

Example 4.32 Below the result of a program-point specific analysis is shown.

int main(void)

{

int x, y, *p;

/* 1: <T;T1/1T1}> = (AL

p = &x;
/x 20 (T3, 77, 17) = ({}.{}{z}) «/
P = &y;
/x 3: (T7.T0.T7) = ({3 {h{vh) +/
X = 4;
/x4 (T, T).T) = {1 {h{yh) «/
}
Notice that T} does not contain {x}. End of Example

The corresponding constraint systems resemble those introduced in Section 4.5. How-
ever, extra constraints are needed to propagate the abstract state through the program
points. For example, at program point 4, the variable T; assumes the same value as Ts,
since it is not updated.

Example 4.33 Let T D T [x — O] be a short hand for T D T/ for all o except =,
and T7' O O. Then the following constraints abstracts the pointer usage in the previous
example:

2. T°OT'[pr {z}]
3: T 2T [pw {y}]
4: T OT [— {}]

End of Example

The constraint systems can be solved by the rewrite rules in Figure 42, but unfortu-
nately the analysis cannot cope with multi-level pointers.

4.10.3 Why Heintze’s set-based analysis fails

Consider the following program fragment.

147

int x, y, *p, **q;

/x 1 (T Ty, T, 1) = (L AL D 7

p = &x;
/* 2: <T§,T5,T5,Tf) = {1z} {)) */
q = &p;
/* 32 (13,715,715, 77) = ({3, {}. {z}. {p}) =/
*q = &y;

/x 4: (T}, T, T, T) = ({},{}, {y}, {p}) */

The assignment between program point 3 and 4 updates the abstract location p, but
‘p’ does not occur syntactically in the expression ‘*q = &y’. Generating the constraints
T D 73[*Tq3 — {y}] will incorrectly leads to T,} O {z, y}.

There are two problems. First, the values to be propagated through states are not
syntactically given by an expression, e.g. that ‘p” will be updated between program points
3 and 4. Secondly, the indirect assignment will be modeled by a constraint of the form
«T D {y} saying that the indirection of ‘q’ (that is, ‘p’) should be updated to contain
‘y’. However, given T; — {p}, it is not apparent from the constraint that >1<T(;1 > {y}
should be rewritten to T; D {y}; program points are not a part of a constraint (how is
the “right” type variable for ‘p’ chosen?).

To solve the latter problem, constraints generated due to assignments can be equipped
with program points: 7" O™ T meaning that program point n is updated from state m.
For example, T * D% {y} would be rewritten to T, 2 {y}, since T,) — {p}, and the
update happens at program point 4.

The former problem is more intricate. The variables not to be updated depend on
the solution to T;. Due to loops in the program and self-dependences, the solution to Tq4
may depend on the variables propagated through program points 3 and 4.

Currently, we have no good solution to this problem.

4.11 Related work

We consider three areas of related work: alias analysis of Fortran and C, the point-to
analysis developed by Emami which is the closest related work, and approximation of
heap-allocated data structures.

4.11.1 Alias analysis

The literature contains much work on alias analysis of Fortran-like languages. Fortran
differs from C in several aspects: dynamic aliases can only be created due to reference
parameters, and program’s have a purely static call graph.

Banning devised an efficient inter-procedural algorithm for determining the set of
aliases of variables, and the side-effects of functions [Banning 1979]. The analysis has two
steps. First all trivial aliases are found, and next the alias sets are propagated through
the call graph to determine all non-trivial aliases. Cooper and Kennedy improved the
complexity of the algorithm by separating the treatment of global variables from reference

148

parameters [Cooper and Kennedy 1989]. Chow has designed an inter-procedural data flow
analysis for general single-level pointers [Chow and Rudmik 1982].

Weihl has studied inter-procedural flow analysis in the presence of pointers and pro-
cedure variables [Weihl 1980]. The analysis approximates the set of procedures to which
a procedure variable may be bound to. Only single-level pointers are treated which is a
simpler problem than multi-level pointers, see below. Recently, Mayer and Wolfe have im-
plemented an inter-procedural alias analysis for Fortran based on Cooper and Kennedy’s
algorithm, and report empirical results [Mayer and Wolfe 1993]. They conclude that the
cost of alias analysis is cheap compared to the possible gains. Richardson and Ganap-
athi have conducted a similar experiment, and conclude that aliases only rarely occur
in “realistic” programs [Richardson and Ganapathi 1989]. They also observe that even
though inter-procedural analysis theoretically improves the precision of traditional data
flow analyses, only a little gain is obtained in actual runtime performance.

Bourdoncle has developed an analysis based on abstract interpretation for computing
assertions about scalar variables in a language with nested procedures, aliasing and re-
cursion [Bourdoncle 1990]. The analysis is somewhat complex since the various aspects of
interest are computed in parallel, and are not been factored out. Larus et al. used a similar
machinery to compute inter-procedural alias information [Larus and Hilfinger 1988]. The
analysis proceeds by propagating alias information over an extended control-flow graph.
Notice that this approach requires the control-flow graph to be statically computable,
which is not the case with C. Sagiv et al. computes pointer equalities using a similar
method [Sagiv and Francez 1990]. Their analysis tracks both universal (must) and exis-
tential (may) pointer equalities, and is thus more precise than our analysis. It remains to
extend these methods to the full C programming language. Harrison et al. use abstract
interpretation to analyze program in an intermediate language Mil into which C programs
are compiled [Harrison IIT and Ammarguellat 1992]. Yi has developed a system for auto-
matic generation of program analyses [Yi 1993]. It automatically converts a specification
of an abstract interpretation into an implementation.

Landi has developed an inter-procedural alias analysis for a subset of the C language
[Landi and Ryder 1992, Landi 1992a]. The algorithm computes flow-sensitive, conditional
may-alias information that is used to approximate inter-procedural aliases. The analysis
cannot cope with casts and function pointers. Furthermore, its performance is not im-
pressive: 396s to analyze a 3.631 line program is reported.'® Choi el al. have improved
on the analysis, and obtained an algorithm that is both more precise and efficient. They
use a naming technique for heap-allocated objects similar to the one we have employed.
Cytron and Gershbein have developed a similar algorithm for analysis of programs in
static single-assignment form [Cytron and Gershbein 1993].

Landi has shown that the problem of finding aliases in a language with more than
four levels of pointer indirection, runtime memory allocation and recursive data struc-
tures is P-space hard [Landi and Ryder 1991,Landi 1992a]. The proof is by reduction of
the set of regular languages, which is known to be P-space complete [Aho et al. 1974],
to the alias problem [Landi 1992a, Theorem 4.8.1]. Recently it has been shown that
intra-procedural may-alias analysis under the same conditions actually not is recursive

15To the author knowledge, a new implementation has improved the performance substantially.

149

[Landi 1992b]. Thus, approximating algorithms are always needed in the case of lan-
guages like C.

4.11.2 Points-to analysis

Our initial attempt at pointer analysis was based on abstract interpretation implemented
via a (naive) standard iterative fixed-point algorithm. We abandoned this approach since
experiments showed that the analysis was far to slow to be feasible. Independently, Emami
has developed a point-to analysis based on traditional gen-kill data-flow equations, solved
via an iterative algorithm [Emami 1993,Emami et al. 1993].

Her analysis computes the same kind of information as our analysis, but is more
precise: it is flow-sensitive and program-point specific, computes both may and must
point-to information, and approximates calls via functions pointers more accurately than
our analysis.

The analysis takes as input programs in a language resembling three address code
[Aho et al. 1986]. For example, a complex statement as x = a.b[i].c.d[2][j].e is
converted to

temp0 = &a.b;
templ = &tempO[i];
temp2 = &(*templ).c.d;

temp3 = &temp2[2][j];
x = (*temp3).e;

where the temp’s are compile-time introduced variables [Emami 1993, Page 21]. A Simple
language may be suitable for machine code generation, but is unacceptably for commu-
nication of feedback.

The intra-procedural analysis of statement proceeds by a standard gen-kill approach,
where both may and must point-to information is propagated through the control-flow
graph. Loops are approximated by a fixed-point algorithm.'® Heap allocation is approxi-
mated very rudely using a single variable “Heap” to represent all heap allocated objects.

We have deliberately chosen to approximate function calls via pointers conservatively,
the objective being that more accurate information in the most cases (and definitely for
our purpose) is useless. Ghiya and Emami have taken a more advanced approach by using
the point-to analysis to perform inter-procedural analysis of calls via pointers. When it
has been determined that a function pointer may point to a function f, the call-graph
is updated to reflect this, and the (relevant part of the) point-to analysis is repeated
[Ghiya 1992].

The inter-procedural analysis is implemented via the program’s extended control-flow
graph. However, where our technique only increases the number of constraints slightly,
Emami’s procedure essentially corresponds to copying of the data-flow equations; in prac-
tise, the algorithm traverses the (representation) of functions repeatedly. Naturally, this
causes the efficiency to degenerate. Unfortunately, we are not aware of any runtime
benchmarks, so we can not compare the efficiency of our analysis to Emami’s analysis.

16Unconditional jumps are removed by a preprocess.

150

4.11.3 Approximation of data structures

Closely related to analysis of pointers is analysis of heap-allocated data structures. In
this chapter we have mainly been concerned with stack-allocated variables, approximating
runtime allocated data structures with a 1-limit methods.

Jones and Munchnick have developed a data-flow analysis for inter-procedural analysis
of programs with recursive data structures (essentially Lisp S-expressions). The analysis
outputs for every program point and variable a regular tree grammar, that includes all
the values the variable may assume at runtime. Chase el al. improve the analysis by using
a more efficient summary technique [Chase et al. 1990]. Furthermore, the analysis can
discover “true” trees and lists, 4.e. data structures that contain no aliases between its
elements. Larus and Hilfinger have developed a flow analysis that builds an alias graph
which illustrates the structure of heap-allocated data [Larus and Hilfinger 1988].

4.12 Further work and conclusion

We have in this chapter developed an inter-procedural point-to analysis for the C pro-
gramming language, and given a constraint-based implementation. The analysis has been
integrated into the C-Mix system and proved its usefulness. However, several areas for
future work remain to be investigated.

4.12.1 Future work

Practical experiments with the pointer analysis described in this chapter have convincingly
demonstrated the feasibility of the analysis, especially with regard to efficiency. The
question is whether it is worthwhile to sacrifice some efficiency for the benefit of improved
precision. The present analysis approximates as follows:

e flow-insensitive/summary analysis of function bodies,

e arrays are treated as aggregates,

e recursive data structures are collapsed,

e heap-allocated objects are merged according to their birth-place,

e function pointers are not handled in a proper inter-procedurally way.

Consider each in turn.

We considered program-specific pointer analysis in Section 4.10. However, as apparent
from the description, the amount of information both during the analysis and in the final
result may be too big for practical purposes. For example, in the case of a 1,000 line
program with 10 global variables, say, the output will be more than 100,000 state variables
(estimating the number of local variables to be 10). Even in the (typical) case of a sparse
state description, the total memory usage may easily exceed 1M byte. We identify the
main problem to be the following: too much irrelevant information is maintained by the

151

constraint-based analysis. For example, in the state corresponding to the statement ‘xp =
1" the only information of interest is that regarding ‘p’. However, all other state variables
are propagated since they may be used at later program points.

We suspect that the extra information contributes only little on realistic programs,
but experiments are needed to clarify this. Our belief is that the poor man’s approach
described in Section 4.2 provides the desired degree of precision, but we have not yet
made empirical test that can support this.

Our analysis treats arrays as aggregates. Program using tables of pointers may suffer
from this. Dependence analysis developed for parallelizing Fortran compilers has made
some progress in this area [Gross and Steenkiste 1990]. The C language is considerably
harder to analyze: pointers may be used to reference array elements. We see this as the
most promising extension (and the biggest challenge).

The analysis in this chapter merges recursive data structures.'” In our experience
elements in a recursive data structure is used “the same way”, but naturally, exceptions
may be constructed. Again, practical experiments are needed to evaluate the loss of
precision.

Furthermore, the analysis is mainly geared toward analysis of pointers to stack-
allocated objects, using a simple notion of (inter-procedural) birth-place to describe
heap-allocated objects. Use of birth-time instead of birth-place may be an improvement
[Harrison IIT and Ammarguellat 1992]. In the author’s opinion discovery of for instance
singly-linked lists, binary trees etc. may find substantial use in program transformation
and optimization, but we have not investigated inference of such information in detail.

Finally, consider function pointers. The present analysis does not track down inter-
procedurally use of function pointers, but uses a sticky treatment. This greatly simplifies
the analysis, since otherwise the program’s call graph becomes dynamic. The use of static-
call graphs is only feasible when most of the calls are static. In our experience, function
pointers are only rarely used which justifies our coarse approximation, but naturally some
programming styles may fail. The approach taken by Ghiya [Ghiya 1992] appears to be
expensive, though.

Finally, the relation and benefits of procedure cloning and polymorphic-based analysis
should be investigated. The k-limit notions in static-call graphs give a flexible way of
adjusting the precision with respect to recursive calls. Polymorphic analyses are less
flexible but seem to handle program with dynamic call graphs more easily.

7

4.12.2 Conclusion

We have reported on an inter-procedural, flow-insensitive point-to analysis for the entire
C programming language. The analysis is founded on constraint-based program analysis,
which allows a clean separation between specification and implementation. We have
devised a technique for inter-procedural analysis which prevents copying of constraints.
Furthermore we have given an efficient algorithm.

17This happens as a side-effect of the program representation, but the k-limit can easily be increased.

152

