
Program Analysis and Specializationforthe C Programming LanguagePh.D. ThesisLars Ole AndersenDIKU, University of CopenhagenUniversitetsparken 1DK-2100 Copenhagen �Denmarkemail: lars@diku.dkMay 1994



Chapter 4Pointer AnalysisWe develop an e�cient, inter-procedural pointer analysis for the C programming language.The analysis approximates for every variable of pointer type the set of objects it may pointto during program execution. This information can be used to improve the accuracy ofother analyses.The C language is considerably harder to analyze than for example Fortran and Pas-cal. Pointers are allowed to point to both stack and heap allocated objects; the addressoperator can be employed to compute the address of an object with an lvalue; type castsenable pointers to change type; pointers can point to members of structs; and pointers tofunctions can be de�ned.Traditional pointer analysis is equivalent to alias analysis. For example, after anassignment `p = &x', `*p' is aliased with `x', as denoted by the alias pair h�p; xi. In thischapter we take another approach. For an object of pointer type, the set of objects thepointer may point to is approximated. For example, if in the case of the assignments `p= &x; p = &y', the result of the analysis will be a map [p 7! fx; yg]. This is a moreeconomical representation that requires less storage, and is suitable for many analyses.We specify the analysis by the means of a non-standard type inference system, which isrelated to the standard semantics. From the speci�cation, a constraint-based formulationis derived and an e�cient inference algorithm developed. The use of non-standard typeinference provides a clean separation between speci�cation and implementation, and givesa considerably simpler analysis than previously reported in the literature.This chapter also presents a technique for inter-procedural constraint-based programanalysis. Often, context-sensitive analysis of functions is achieved by copying of con-straints. This increases the number of constraints exponentially, and slows down thesolving. We present a method where constraints over vectors of pointer types are solved.This way, only a few more constraint are generated than in the intra-procedural case.Pointer analysis is employed in the C-Mix system to determine side-e�ects, which isthen used by binding-time analysis.
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4.1 IntroductionWhen the lvalue of two objects coincides the objects are said to be aliased. An alias isfor instance introduced when a pointer to a global variable is created by the means ofthe address operator. The aim of alias analysis is to approximate the set of aliases atruntime. In this chapter we present a related but somewhat di�erent pointer analysis forthe C programming language. For every pointer variable it computes the set of abstractlocations the pointer may point to.In languages with pointers and/or call-by-reference parameters, alias analysis is thecore part of most other data ow analyses. For example, live-variable analysis of anexpression `*p = 13' must make worst-case assumptions without pointer information:`p' may reference all (visible) objects, which then subsequently must be marked \live".Clearly, this renders live-variable analysis nearly useless. On the other hand, if it is knownthat only the aliases fh�p; xi ; h�p; yig are possible, only `x' and `y' need to be marked\live".Traditionally, aliases are represented as an equivalence relation over abstract locations[Aho et al. 1986]. For example, the alias introduced due to the expression `p = &x' is rep-resented by the alias set fh�p; xig. Suppose that the expressions `q = &p; *q = &y' areadded to the program. The alias set then becomes fh�p; xi ; h�q; pi ; h� � q; xi ; h� � q; yig,where the latter aliases are induced aliases. Apparently, the size of an alias set may evolverather quickly in a language with multi-level pointers such as C. Some experimental ev-idence: Landi's alias analysis reports more than 2,000,000 program-point speci�c aliasesin a 3,000 line program [Landi 1992a].Moreover, alias sets seem excessively general for many applications. What needed isan answer to \which objects may this pointer point to"? The analysis of this chapteranswer this question.4.1.1 What makes C harder to analyze?The literature contains a substantial amount of work on alias analysis of Fortran-likelanguages, see Section 4.11. However, the C programming language is considerably moredi�cult to analyze; some reasons for this include: multi-level pointers and the address op-erator `&', structs and unions, runtime memory allocations, type casts, function pointers,and separate compilation.As an example, consider an assignment `*q = &y' which adds a point-to relation to p(assuming `q' points to `p') even though `p' is not syntactically present in the expression.With only single-level pointers, the variable to be updated is syntactically present in theexpression.1 Further, in C it is possible to have pointers to both heap and stack allocatedobjects, as opposed to Pascal that abandon the latter. We shall mainly be concerned withanalysis of pointers to stack allocated objects, due to our speci�c application.A special characteristic of the C language is that implementation-de�ned features aresupported by the Standard. An example of this is cast of integral values to pointers.21It can easily be shown that call-by-reference and single-level pointers can simulate multi-level pointers.2Recall that programs relying on implementation-de�ned features are non-strictly conforming.112



Suppose that `long table[]' is an array of addresses. A cast `q = (int **)table[1]'renders `q' to be implementation-de�ned, and accordingly worst-case assumptions mustbe made in the case of `*q = 2'.4.1.2 Points-to analysisFor every object of pointer type we determine a safe approximation to the set of locationsthe pointer may contain during program execution, for all possible input. A special caseis function pointers. The result of the analysis is the set of functions the pointer mayinvoke.Example 4.1 We represent point-to information as a map from program variables tosets of object \names". Consider the following program.int main(void)f int x, y, *p, **q, (*fp)(char *, char *);p = &x;q = &p;*q = &y;fp = &strcmp;gA safe point-to map is[p 7! fx; yg; q 7! fpg; fp 7! fstrcmpg]and it is also a minimal map. End of ExampleA point-to relation can be classi�ed static or dynamic depending on its creation. In thecase of an array `int a[10]', the name `a' statically points to the object `a[]' representingthe content of the array.3 Moreover, a pointer to a struct points, when suitable converted,to the initial member [ISO 1990]. Accurate static point-to information can be collectedduring a single pass of the program.Point-to relations created during program execution are called dynamic. Examplesinclude `p = &x', that creates a point-to relation between `p' and `x'; an `alloc()' callthat returns a pointer to an object, and `strdup()' that returns a pointer to a string.More general, value setting functions may create a dynamic point-to relation.Example 4.2 A point-to analysis of the following programchar *compare(int first, char *s, char c)f char (*fp)(char *, char);fp = first? &strchr : &strrchr;return (*fp)(s,c);gwill reveal [fp 7! fstrchr; strrchrg]. End of ExampleIt is easy to see that a point-to map carries the same information as an alias set, butit is a more compact representation.3We treat arrays as aggregates. 113



4.1.3 Set-based pointer analysisIn this chapter we develop a ow-insensitive set-based point-to analysis implemented viaconstraint solving. A set-based analysis consists of two parts: a speci�cation and aninference algorithm.The speci�cation describes the safety of a pointer approximation. We present a setof inference rules such that a pointer abstraction map ful�lls the rules only if the map issafe. This gives an algorithm-independent characterization of the problem.Next, we present a constraint-based characterization of the speci�cation, and give aconstraint-solving algorithm. The constraint-based analysis works in two phases. First,a constraint system is generated, capturing dependencies between pointers and abstractlocations. Next, a solution to the constraints is found via an iterative solving procedure.Example 4.3 Consider again the program fragment in Example 4.1. Writing Tp for theabstraction of `p', the following constraint system could be generated:fTp � fxg; Tq � fpg; �Tq � fyg; Tfp � fstrcmpggwith the interpretation of the constraint �Tq � fyg: \the objects `q' may point to containy". End of ExampleConstraint-based analysis resembles classical data-ow analysis, but has a strongersemantical foundation. We shall borrow techniques for iterative data-ow analysis tosolve constraint systems with �nite solutions [Kildall 1973].4.1.4 Overview of the chapterThis chapter develops a ow-insensitive, context-sensitive constraint-based point-to anal-ysis for the C programming language, and is structured as follows.In Section 4.2 we discuss various degrees of accuracy a value-ow analysis can im-plement: intra- and inter-procedural analysis, and ow-sensitive versus ow-insensitiveanalysis. Section 4.3 considers some aspects of pointer analysis of C.Section 4.4 speci�es a sticky, ow-insensitive pointer analysis for C, and de�nes thenotion of safety. In Section 4.5 we give a constraint-based characterization of the problem,and prove its correctness.Section 4.6 extends the analysis into a context-sensitive inter-procedural analysis. Asticky analysis merges all calls to a function, resulting in loss of precision. We present atechnique for context-sensitive constraint-based analysis based on static-call graphs.Section 4.7 presents a constraint-solving algorithm. In Section 4.8 we discuss algorith-mic aspects with emphasis on e�ciency, and Section 4.9 documents the usefulness of theanalysis by providing some benchmarks from an existing implementation.Flow-sensitive analyses are more precise than ow-insensitive analyses. In Section 4.10we investigate program-point, constraint-based pointer analysis of C. We show why multi-level pointers render this kind of analysis di�cult.Finally, Section 4.11 describe related work, and Section 4.12 presents topics for futurework and concludes. 114



4.2 Pointer analysis: accuracy and e�ciencyThe precision of a value-ow analysis can roughly be characterized by two properties:ow-sensitivity and whether it is inter-procedural vs. intra-procedural. Improved accuracynormally implies less e�ciency and more storage usage. In this section we discuss thevarious degrees of accuracy and their relevance with respect to C programs.4.2.1 Flow-insensitive versus ow-sensitive analysisA data-ow analysis that takes control-ow into account is called ow-sensitive. Otherwiseit is ow-insensitive. The di�erence between the two is most conspicuous by the treatmentof if statements. Consider the following lines of code.int x, y, *p;if ( test ) p = &x; else p = &y;A ow-sensitive analysis records that in the branches, `p' is assigned the address of `x' and`y', respectively. After the branch, the information is merged and `p' is mapped to both`x' and `y'. The discrimination between the branches is important if they for instancecontain function calls `foo(p)' and `bar(p)', respectively.A ow-insensitive analysis summarizes the pointer usage and states that `p' may pointto `x' and `y' in both branches. In this case, spurious point-to information would bepropagated to `foo()' and `bar()'.The notion of ow-insensitive and ow-sensitive analysis is intimately related with thenotion of program-point speci�c versus summary analysis. An analysis is program-pointspeci�c is if it computes point-to information for each program point.4 An analysis thatmaintains a summary for each variable, valid for all program points of the function (or aprogram, in the case of a global variable), is termed a summary analysis. Flow-sensitiveanalyses must inevitably be program-point speci�c.Flow-sensitive versus in-sensitive analysis is a trade o� between accuracy and e�-ciency: a ow-sensitive analysis is more precise, but uses more space and is slower.Example 4.4 Flow-insensitive and ow-sensitive analysis./* Flow-insensitive */ /* Flow-sensitive */int main(void) int main(void)f fint x, y, *p; int x, y, *p;p = &x; p = &x;/* p 7! f x; y g * / /* p 7! fxg */foo(p); foo(p);p = &y; p = &y;/* p 7! f x; y g */ /* p 7! fyg */g g4The analysis does not necessarily have to compute the complete set of pointer variable bindings; onlyat \interesting" program points. 115



Notice that in the ow-insensitive case, the spurious point-to information p 7! fyg ispropagated into the function `foo()'. End of ExampleWe focus on ow-insensitive (summary) pointer analysis for the following reasons.First, in our experience, most C programs consist of many small functions.5 Thus, the ex-tra approximation introduced by summarizing all program points appears to be of minorimportance. Secondly, program-point speci�c analyses may use an unacceptable amountof storage. This, pragmatic argument matters when large programs are analyzed. Thirdly,our application of the analysis does not accommodate program-point speci�c information,e.g. the binding-time analysis is program-point insensitive. Thus, ow-sensitive pointeranalysis will not improve upon binding-time separation (modulo the propagation of spu-rious information | which we believe to be negligible).We investigate program-point speci�c pointer analysis in Section 4.10.4.2.2 Poor man's program-point analysisBy a simple transformation it is possible to recover some of the accuracy of a program-point speci�c analysis, without actually collecting information at each program point.Let an assignment e1 = e2, where e1 is a variable and e2 is independent from pointervariables, be called an initialization assignment. The idea is to rename pointer variableswhen they are initialized.Example 4.5 Poor man's ow-sensitive analysis of Example 4.4. The variable `p' hasbeen \copied" to `p1' and `p2'.int main(void)f int x, y, *p1, *p2;p1 = &x;/* p1 7! fxg */foo(p1);p2 = &y;/* p2 7! fyg */gRenaming of variables can clearly be done automatically. End of ExampleThe transformation fails on indirect initializations, e.g. an assignment `*q = &x;',where `q' points to a pointer variable.64.2.3 Intra- and inter-procedural analysisIntra-procedural analysis is concerned with the data ow in function bodies, and makesworst-call assumption about function calls. In this chapter we shall use `intra-procedural'in a more strict meaning: functions are analysed context-independently. Inter-procedural5As opposed to Fortran, that tends to use \long" functions.6All ow-sensitive analyses will gain from this transformation, including binding-time analysis.116



???
??� ??�main(void)px = foo(&x)py = foo(&y)return 0

foo(int *p)...return
Figure 34: Inter-procedural call graph for program in Example 4.6analysis infers information under consideration of call contexts. Intra-procedural anal-ysis is also called monovariant or sticky, and inter-procedural analysis is also known aspolyvariant.Example 4.6 Consider the following program.int main(void) int *foo(int *p)f fint x,y,*px,*py; ...px = foo(&x); return p;py = foo(&y); greturn 0;gAn intra-procedural analysis merges the contexts of the two calls and computes the point-to information [px; py 7! fx; yg]. An inter-procedural analysis di�erentiates between totwo calls. Figure 34 illustrates the inter-procedural call graph. End of ExampleInter-procedural analysis improves the precision of intra-procedural analysis by pre-venting calls to interfere. Consider Figure 34 that depicts the inter-procedural call graphsof the program in Example 4.6. The goal is that the value returned by the �rst call is noterroneous propagated to the second call, and vice versa. Information must only be propa-gated through valid or realizable program paths [Sharir and Pnueli 1981]. A control-pathis realizable when the inter-procedural exit-path corresponds to the entry path.4.2.4 Use of inter-procedural informationInter-procedural analysis is mainly concerned with the propagation of value-ow infor-mation through functions. Another aspect is the use of the inferred information, e.g.for optimization, or to drive other analyses. Classical inter-procedural analyses producea summary for each function, that is, all calls are merged. Clearly, this degrades thenumber of possible optimizations.Example 4.7 Suppose we apply inter-procedural constant propagation to a programcontaining the calls `bar(0)' and `bar(1)'. Classical analysis will merge the two calls andhenceforth classify the parameter for `non-const', ruling out e.g. compile-time executionof an if statement [Callahan et al. 1986]. End of Example117



An aggressive approach would be either to inline functions into the caller or tocopy functions according to their use. The latter is also known as procedure cloning[Cooper et al. 1993,Hall 1991].We develop a exible approach where each function is annotated with both contextspeci�c information and a summary. At a later stage the function can then be cloned, ifso desired. We return to this issue in Chapter 6, and postpone the decision whether toclone a function or not.7We will assume that a program's static-call graph is available. Recall that the static-call graph approximates the invocation of functions, and assigns a variant number tofunctions according to the call contexts. For example, if a function is called in n contexts,the function has n variants. Even though function not are textually copied according tocontexts, it is useful to imagine that n variants of the function's parameters and localvariables exist. We denote by vi the variable corresponding to the i'th variant.4.2.5 May or must?The certainty of a pointer abstraction can be characterized by may or must. A maypoint-to analysis computes for every pointer set of abstract locations that the pointermay point to at runtime. A must point-to analysis computes for every pointer a set ofabstract locations that the pointer must point to.May and must analysis is also known as existential and universal analysis. In theformer case, there must exists a path where the point-to relation is valid, in the lattercase the point-to relation must be valid on all paths.Example 4.8 Consider live-variable analysis of the expression `x= *p'. Given mustpoint-to information [p 7! fyg], `y' can be marked \live". On the basis of may pointto information [p 7! fy; zg], both `y and `z' must be marked \live". End of ExampleWe shall only consider may point-to analysis in this chapter.4.3 Pointer analysis of CIn this section we briey consider pointer analysis of some of the more intricate featuresof C such separate compilation, external variables and non-strictly complying expressions,e.g. type casts, and their interaction with pointer analysis.4.3.1 Structures and unionsC supports user-de�ned structures and unions. Recall from Section 2.3.3 that structvariables sharing a common type de�nition are separated (are given di�erent names)during parsing. After parsing, a value-ow analysis unions (the types of) objects that(may) ow together.7Relevant information includes number of calls, the size of the function, number of calls in thefunctions. 118



Example 4.9 Given de�nitions `struct S f int *p;g s,t,u;', variants of the structtype will be assigned to the variables, e.g. `s' will be assigned the type `struct S1'.Suppose that the program contains the assignment `t = s'. The value-ow analysis willthen merge the type de�nitions such that `s' and `t' are given the same type (`structS1', say), whereas `u' is given the type `struct S3', say. End of ExampleObserve: struct variables of di�erent type cannot ow together. Struct variables of thesame type may ow together. We exploit this fact the following way.Point-to information for �eld members of a struct variable is associated with thede�nition of a struct; not the struct objects. For example, the point to information formember `s.p' (assuming the de�nitions from the Example above) is represented by `S1.p',where `S1' is the \de�nition" of `struct S1'. The de�nition is common for all objects ofthat type. An important consequence: in the case of an assignment `t = s', the �elds of`t' do not need to be updated with respect to `s' | the value-ow analysis have takencare of this.Hence, the pointer analysis is factorized into the two sub-analyses1. a (struct) value-ow analysis, and2. a point-to propagation analysiswhere this chapter describes the propagation analysis. We will (continue to) use the termpointer analysis for the propagation analysis.Recall from Chapter 2 that some initial members of unions are truly shared. This isof importance for pointer analysis if the member is of pointer type. For simplicity we wewill not take this aspect into account. The extension is straightforward, but tedious todescribe.4.3.2 Implementation-de�ned featuresA C program can comply to the Standard in two ways. A strictly conforming programshall not depend on implementation-de�ned behavior but a conforming program is allowedto do so. In this section we consider type casts that (in most cases) are non-strictlyconforming.Example 4.10 Cast of an integral value to a pointer or conversely is an implementation-de�ned behaviour. Cast of a pointer to a pointer with less alignment requirement andback again, is strictly conforming [ISO 1990]. End of ExampleImplementation-de�ned features cannot be described accurately by an architecture-independent analysis. We will approximate pointers that may point to any object by theunique abstract location `Unknown'.De�nition 4.1 Let `p' be a pointer. If a pointer abstraction maps `p' to Unknown,[p 7! Unknown], when `p' may point to all accessible objects at runtime. 2The abstract location `Unknown' corresponds to \know nothing", or \worst-case".119



Example 4.11 The goal parameters of a program must be described by `Unknown', e.g.the `main' functionint main(int argc, char **argv)f ... gis approximated by [argv 7! fUnknowng]. End of ExampleIn this chapter we will not consider the setjmp' and `longjmp' macros.4.3.3 Dereferencing unknown pointersSuppose that a program contains an assignment through an Unknown pointer, e.g. `*p= 2', where [p 7! fUnknowng]. In the case of live-variable analysis, this implies thatworst-case assumptions must be made. However, the problem also a�ects the pointeranalysis.Consider an assignment `*q = &x', where `q' is unknown. This implies after the as-signment, all pointers may point to `x'. Even worse, an assignment `*q = p' where `p' isunknown renders all pointers unknown.We shall proceed as follows. If the analysis reveals that an Unknown pointer maybe dereferenced in the left hand side of an assignment, the analysis stops with \worst-case" message. This corresponds to the most inaccurate pointer approximation possible.Analyses depending on pointer information must make worst-case assumptions about thepointer usage.For now we will assume that Unknown pointers are not dereferenced in the left handside of an assignment. Section 4.8 describes handling of the worst-case behaviour.4.3.4 Separate translation unitsA C program usually consists of a collection of translation units that are compiled sepa-rately and linked to an executable. Each �le may refer to variables de�ned in other unitsby the means of `extern' declarations. Suppose that a pointer analysis is applied to asingle module.This has two consequences. Potentially, global variables may be modi�ed by assign-ments in other modules. To be safe, worst-case assumptions, i.e. Unknown, about globalvariables must be made. Secondly, functions may be called from other modules withunknown parameters. Thus, to be safe, all functions must be approximated by Unknown.To obtain results other than trivial we shall avoid separate analysis, and assume that\relevant" translation units are merged; i.e. we consider solely monolithic programs. Thesubject of Chapter 7 is separate program analysis, and it outlines a separate pointeranalysis based on the development in this chapter.Constraint 4.1 i) No global variables of pointer type may be modi�ed by other units.ii) Functions are assumed to be static to the translation unit being analyzed.It is, however, convenient to sustain the notion of an object being \external". Forexample, we will describe the function `strdup()' as returning a pointer to an `Unknown'object. 120



4.4 Safe pointer abstractionsA pointer abstraction is a map from abstract program objects (variables) to sets of abstractlocations. An abstraction is safe if for every object of pointer type, the set of concreteaddresses it may contain at runtime is safely described by the set of abstract locations.For example, if a pointer `p' may contain the locations lx (location of `x') and lg (locationof `g') at runtime, a safe abstraction is p 7! fx; gg.In this section we de�ne abstract locations and make precise the notion of safety.We present a speci�cation that can be employed to check the safety of an abstraction.The speci�cation serves as foundation for the development of a constraint-based pointeranalysis.4.4.1 Abstract locationsA pointer is a variable containing the distinguished constant `NULL' or an address. Dueto casts, a pointer can (in principle) point to an arbitrary address. An object is a setof logically related locations, e.g. four bytes representing an integer value, or n bytesrepresenting a struct value. Since pointers may point to functions, we will also considerfunctions as objects.An object can either be allocated on the program stack (local variables), at a �xedlocation (strings and global variables), in the code space (functions), or on the heap(runtime allocated objects). We shall only be concerned with the run time allocatedobjects brought into existence via `alloc()' calls. Assume that all calls are labeleduniquely.8 The label l of an `allocl()' is used to denote the set of (anonymous) objectsallocated by the `allocl()' call-site. The label l may be thought of as a pointer of arelevant type.Example 4.12 Consider the program lines below.int x, y, *p, **q, (*fp)(void);struct S *ps;p = &x;q = &p;*q = &y;fp = &foo;ps = alloc1(S);We have: [p 7! fx; yg; q 7! fpg; fp 7! ffoog; ps 7! f1g]. End of ExampleConsider an application of the address operator &. Similar to an `alloc()' call, it\returns" a pointer to an object. To denote the set of objects the application \returns",we assume assume a unique labeling. Thus, in `p = &2x' we have that `p' points to thesame object as the \pointer" `2', that is, x.De�nition 4.2 The set of abstract locations ALoc is de�ned inductively as follows:8Objects allocated by the means of `malloc' are considered `Unknown'.121



� If v is the name of a global variable: v 2 ALoc.� If v is a parameter of some function with n variants: vi 2 ALoc; i = 1; . . . ; n.� If v is a local variable in some function with n variants: vi 2 ALoc; i = 1; . . . ; n.� If s is a string constant: s 2 ALoc.� If f is the name of a function with n variants: f i 2 ALoc; i = 1; . . . ; n.� If f is the name of a function with n variants: f i0 2 ALoc; i = 1; . . . ; n.� If l is the label of an alloc in a function with n variants: li 2 ALoc; i = 1; . . . ; n.� If l is the label of an address operator in a function with n variants: li 2 ALoc.� If o 2 ALoc denotes an object of type \array": o[] 2 ALoc.� If S is the type name of a struct or union type: S 2 ALoc.� If S 2 ALoc is of type \struct" or \union": S:i 2 ALoc for all �elds i of S.� Unknown 2 ALoc.Names are assumed to be unique. 2Clearly, the set ALoc is �nite for all programs. The analysis maps a pointer into anelement of the set }(ALoc). The element Unknown denotes an arbitrary (unknown)address. This means that the analysis abstracts as follows.Function invocations are collapsed according to the program's static-call graph (seeChapter 2). This means for a function f with n variants, only n instances of parametersand local variables are taken into account. For instance, due to the 1-limit imposed onrecursive functions, all instances of a parameters in a recursive function invocation chainare identi�ed. The location f0 associated with function f denotes an abstract returnlocation, i.e. a unique location where f \delivers" its result value.Arrays are treated as aggregates, that is, all entries are merged. Fields of structobjects of the same name are merged, e.g. given de�nition `struct S f int x;g s,t',�elds `s.x' and `t.x' are collapsed.Example 4.13 The merging of struct �elds may seen excessively conservatively. How-ever, recall that we assume programs are type-separated during parsing, and that a value-ow analysis is applied that identi�er the type of struct objects that (may) ow together,see Section 2.3.3. End of ExampleThe unique abstract location Unknown denotes an arbitrary, unknown address, whichboth be valid or illegal.Even though the de�nition of abstract locations actually is with respect to a particularprogram, we will continue to use ALoc independently of programs. Furthermore, wewill assume that the type of the object, an abstract location denotes, is available. Forexample, we write \if S 2 ALoc is of struct type", for \if the object S 2 ALoc denotesis of struct type". Finally, we implicitly assume a binding from a function designator tothe parameters. If f is a function identi�er, we write f :xi for the parameter xi of f .122



4.4.2 Pointer abstractionA pointer abstraction ~S : ALoc ! }(ALoc) is a map from abstract locations to sets ofabstract locations.Example 4.14 Consider the following assignments.int *p, *q;extern int *ep;p = (int *)0xabcd;q = (int *)malloc(100*sizeof(int));r = ep;The pointer `p' is assigned a value via a non-portable cast. We will approximate this byUnknown. Pointer `q' is assigned the result of `malloc()'. In general, pointers returnedby external functions are approximated by Unknown. Finally, the pointer `r' is assignedthe value of an external variable. This is also approximated by Unknown.A re�nement would be to approximate the content of external pointers by a uniquevalue Extern. Since we have no use for this, besides giving more accurate warning mes-sages, we will not pursue this. End of ExampleA pointer abstraction ~S must ful�ll the following requirements which we justify below.De�nition 4.3 A pointer abstraction ~S : ALoc! }(ALoc) is a map satisfying:1. If o 2 ALoc is of base type: ~S(o) = fUnknowng.2. If s 2 ALoc is of struct/union type: ~S(s) = fg.3. If f 2 ALoc is a function designator: ~S(f) = fg.4. If a 2 ALoc is of type array: ~S(a) = fa[]g.5. ~S(Unknown) = Unknown. 2The �rst condition requires that objects of base types are abstracted by Unknown.The motivation is that the value may be cast into a pointer, and is hence Unknown (ingeneral). The second condition stipulates that the abstract value of a struct object is theempty set. Notice that a struct object is uniquely identi�ed its type. The fourth conditionrequires that an array variable points to the content.9 Finally, the content of an unknownlocation is unknown.De�ne for s 2 ALocnfUnknowng : fsg � fUnknowng. Then two pointer abstractionsare ordered by set inclusion. A program has a minimal pointer abstraction. Given aprogram, we desire a minimal safe pointer abstraction.9In reality, `a' in `a[10]' is not an lvalue. It is, however, convenient to consider `a' to be a pointer tothe content.
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4.4.3 Safe pointer abstractionIntuitively, a pointer abstraction for a program is safe if for all input, every object apointer may point to at runtime is captured by the abstraction.Let the abstraction function � : Loc! ALoc be de�ned the obvious way. For example,if lx is the location of parameter `x' in an invocation of a function `f' corresponding tothe i'th variant, then �(lx) = xi. An execution path from the initial program point p0and an initial program store S0 is denoted byhp0;S0i ! � � � ! hpn;Sniwhere Sn is the store at program point pn.Let p be a program and S0 an initial store (mapping the program input to the param-eters of the goal function). Let pn be a program point, and Ln the locations of all visiblevariables. A pointer abstraction ~S is safe with respect to p ifl 2 Ln : �(Sn(l)) � ~S(�(l))whenever hp0;S0i ! � � � ! hpn;Sni.Every program has a safe pointer abstraction. De�ne ~Striv such that it ful�lls De�ni-tion 4.3, and extend it such that for all o 2 ALoc where o is of pointer type, ~Striv(o) =fUnknowng. Obviously, it is a safe | and useless | abstraction.The de�nition of safety above considers only monolithic programs where no externalfunctions nor variables exist. We are, however, interested in analysis of translation unitswhere parts of the program may be unde�ned.Example 4.15 Consider the following piece of code.extern int *o;int *p, **q;q = &o;p = *q;Even though `o' is an external variable, it can obviously be established that [q 7! fog].However, `p' must inevitably be approximated by [p 7! fUnknowng]. End of ExampleDe�nition 4.4 Let p � m1; . . . ; mm be a program consisting of the modules mi. A pointerabstraction ~S is safe for mi0 if for all program points pn and initial stores S0 wherehp0;Si ! � � � ! hpn;Sni, then:� for l 2 Ln: �(Sn(l)) � ~S(�(l)) if l is de�ned in mi0 ,� for l 2 Ln: ~S(l) = fUnknowng if l is de�ned in mi 6= mi0where Ln is the set of visible variables at program point n. 2For simplicity we regard a[], given an array a, to be a \visible variable", and we regardthe labels of `alloc()' calls to be \pointer variables.124



Example 4.16 Suppose that we introduced an abstract location Extern to denote thecontents of external variables. Example 4.15 would then be abstracted by: [p 7! Extern].There is no operational di�erence between Extern and Unknown. End of ExampleWe will compute an approximation to a safe pointer abstraction. For example, we ab-stract the result of an implementation-de�ned cast, e.g. `(int *)x' where `x' is an integervariable, by Unknown, whereas the de�nition may allow a more accurate abstraction.4.4.4 Pointer analysis speci�cationWe specify a ow-insensitive (summary), intra-procedural pointer analysis. We postponeextension to inter-procedural analysis to Section 4.6.The speci�cation can be employed to check that a given pointer abstraction ~S is safe fora program. Due to lack of space we only present the rules for declarations and expressions(the interesting cases) and describe the other cases informally. The speci�cation is in theform of inference rules ~S ` p : �.We argue (modulo the omitted part of the speci�cation) that if the program ful�llsthe rules in the context of a pointer abstraction ~S, then ~S is a safe pointer abstraction.Actually, the rules will also fail if ~S is not a pointer abstraction, i.e. does not satisfyDe�nition 4.3. Let ~S be given.Suppose that d � x : T is a de�nition (i.e., not an `extern' declaration). The safetyof ~S with respect to d depends on the type T .Lemma 4.1 Let d 2 Decl be a de�nition. Then ~S : ALoc ! }(ALoc) is a pointerabstraction with respect to d if~S `pdecl d : �where `pdecl is de�ned in Figure 35, and ~S(Unknown) = fUnknowng.Proof It is straightforward to verify that De�nition 4.3 is ful�lled. 2To the right of Figure 35 the rules for external variables are shown. Let d � x : Tbe an (extern) declaration. Then ~S is a pointer abstraction for d if ~S `petype hT; li : �.Notice the rules require external pointers to be approximated by Unknown, as stipulatedby De�nition 4.4.The (omitted) rule for function de�nitions Tf f(di)fdj Skg (would) require ~S(f) =ff0g.Since we specify a ow-insensitive analysis, the safety of a pointer abstraction withrespect to an expression e is independent of program points. A map ~S : ALoc! }(ALoc)is a pointer abstraction with respect to an expression e, if it is a pointer abstraction withrespect to the variables occurring in e.Lemma 4.2 Let e 2 Expr be an expression and ~S a pointer abstraction with respect toe. Then ~S is safe provided there exist V 2 }(ALoc) such125



[decl] `ctype hT; xi : �`ptype d : � d � x : T `petype hT; xi : �`pdecl extern x : T : � d � x : T[base] ~S(l) = fUnknowng~S `ptype hh�bi ; li : � ~S(l) = fUnknowng~S `petype hh�bi ; li : �[struct] ~S(l) = fg~S `ptype hhstruct Si ; li : � ~S(l) = fUnknowng~S `petype hhstruct Si ; li : �[union] ~S(l) = fg~S `ptype hhunion Ui ; li : � ~S(l) = fUnknowng~S `petype hhunion Ui ; li : �[ptr] `ptype hh�iT; li : � ~S(l) = fUnknowng~S `ptype hh�iT; li : �[array] `ptype hT; l[]i : � ~S(l) = fl[]g`ptype hh[n]iT; li : � `petype hT; l[]i : � ~S(l) = fl[]g`petype hh[n]iT; li : �[fun] `ptype hh(di)T i ; li : � `ptype hh(di)T i ; li : �Figure 35: Pointer abstraction for declarations~S `pexp e : Vwhere `pexp is de�ned in Figure 36.Intuitively, the the rules infer the lvalues of the expression e. For example, the lvalueof a variable v is fvg; recall that we consider intra-procedural analysis only.10An informal justi�cation of the lemma is given below. We omit a formal proof.Justi�cation A formal proof would be by induction after \evaluation length". Weargue that if ~S is safe before evaluation of e, it is also safe after.A constant has an Unknown lvalue, and the lvalue of a string is given by its name. Themotivation for approximating the lvalue of a constant by Unknown, rather than the emptyset, if obvious from the following example: `p = (int *)12'. The lvalue of a variable isapproximated by its name.Consider a struct indexing e:i. Given the type S of the objects the subexpressiondenotes, the lvalues of the �elds are S:i. The rules for pointer dereference and arrayindexing use the pointer abstraction to describe the lvalue of the dereferenced objects.Notice: if `p' points to `x', that is ~S(p) = fxg, when the lvalue of `*p' is the lvalue of`x' which is approximated by fxg. The rule for the address operator uses the label as a\placeholder" for the indirection created.The e�ect of unary and binary operator applications is described by the means of~O : Op� }(ALoc)� ! }(ALoc). We omit a formal speci�cation.Example 4.17 Suppose that `p' and `q' both point to an array and consider pointersubtraction `p - q'.11 We have ~O(��int;�int; fpg; fqg) = fUnknowng since the result isan integer. Consider now `p - 1'. We then get ~O(��int;int; fpg; fUnknowng) = fpg sincepointer arithmetic is not allowed to shu�e a pointer outside an array. End of Example10That is, there is one \variant" of each function.11Recall that operator overloading is assumed resolved during parsing.126



An external function delivers its result in an unknown location (and the result itselfis unknown).Consider the rules for functions calls. The content of the argument's abstract lvaluemust be contained in the description of the formal parameters.12 The result of the appli-cation is returned in the called function's abstract return location. In the case of indirectcalls, all possible functions are taken into account.Example 4.18 In case of the program fragmentint (*fp)(int), x;fp = &foo;fp = &bar;(*fp)(&x)where `foo()' and `bar()' are two functions taking an integer pointer as a parameter, wehave: [fp 7! ffoo; barg]due to the �rst two applications of the address operator, and[foo:x 7! fxg; bar:x 7! fxg]due to the indirect call. The `lvalue' of the call is ffoo0; bar0g. End of ExampleThe rules for pre- and post increment expressions are trivial.Consider the rule for assignments. The content of locations the left hand side mustcontain the content of the right hand side expression. Recall that we assume that noUnknown pointers are dereferenced.Example 4.19 Consider the following assignmentsextern int **q;int *p;*q = p;Since `q' is extern, it is Unknown what it points to. Thus, the assignment may assignthe pointer `p' to an Unknown object (of pointer type). This extension is shown inSection 4.3.3. End of ExampleThe abstract lvalue of a comma expression is determined by the second subexpression.A sizeof expression has no lvalue and is approximated by Unknown.Finally, consider the rule for casts. It uses the function Cast : Type � Type �}(ALoc)! }(ALoc) de�ned as follows.
12Recall that we consider intra-procedural, or sticky analysis.127



[const] ~S `pexp c : fUnknowng[string] ~S `pexp s : fsg[var] ~S `pexp v : fvg[struct] ~S `pexp e1 : O1 TypOf(o 2 O1) = hstruct Si~S `pexp e1:i : fS:ig[indr] ~S `pexp e1 : O1~S `pexp *e1 : So2O1 ~S(o)[array] ~S `pexp e1 : O1 ~S `pexpr e2 : O2~S `pexp e1[e2] : So2O1 ~S(o)[address] ~S `pexp e1 : O1 ~S(l) � O1~S `pexp &le1 : flg[unary] ~S `pexp e1 : O1~S `pexp o e1 : ~O(o;O1)[binary] ~S `pexp ei : Oi~S `pexp e1 op e2 : ~O(o;Oi)[alloc] ~S `pexp allocl(T ) : flg[extern] ~S `pexp ei : Oi~S `pexp ef(e1,. . .,en) : fUnknowng[user] ~S `pexp ei : Oi ~S(f :xi) � ~S(Oi)~S `pexp f(e1,. . .,en) : ~S(f0)[call] ~S `pexp e0 : O0 8o 2 O0 : ~S(o :xi) � ~S(Oi)~S `pexp e0(e1; . . . ; en) : So2O0 ~S(o0)[preinc] ~S `pexp e1 : O1~S `pexp ++e1 : O1[postinc] ~S `pexp e1 : O1~S `pexp e1++ : O1[assign] ~S `pexp e1 : O1 ~S `pexp e2 : O2 8o 2 O1 : ~S(o) � ~S(O2)~S `pexp e1 aop e2 : O2[comma] ~S `pexp e1 : O1 ~S `pexp e2 : O2~S `pexp e1; e2 : O2[sizeof] ~S `pexp sizeof(T ) : fUnknowng[cast] ~S `pexp e1 : O1~S `pexp (T )e1 : Cast(T;TypOf(e1); O1)Figure 36: Pointer abstraction for expressions
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Cast(Tto; Tfrom; Ofrom) = case (Tto; Tfrom) of(h�bi ; h� 0bi) : Ofrom(h�iT; h�bi) : fUnknowng(h�bi ; h�iT ) : fUnknowng(h�iT; h�i hstruct Si) : ( fo:1 j o 2 Ofromg T type of �rst member of SOfrom Otherwise(h�iT 0; h�iT 00) : OfromCasts between base types do not change an object's lvalue. Casts from a pointer typeto an integral type, or the opposite, is implementation-de�ned, and approximated byUnknown.Recall that a pointer to a struct object points, when suitably converted, also to the�rst member. This is implemented by the case for cast from struct pointer to pointer.We denote the name of the �rst member of S by `1'. Other conversions do not changethe lvalue of the referenced objects. This de�nition is in accordance with the Standard[ISO 1990, Paragraph 6.3.4]. End of Justi�cationThe speci�cation of statements uses the rules for expressions. Further, in the case ofa `return e':~S `pexp e : O ~S(f0) � ~S(O)~S `pstmt return e : �which speci�es that the abstract return location of function f (encapsulating the state-ment) must containt the value of the expression e.We conjecture that given a program p and a map ~S : ALoc ! }(ALoc), then ~S is asafe pointer abstraction for p i� the rules are ful�lled.4.5 Intra-procedural pointer analysisThis section presents a constraint-based formulation of the pointer analysis speci�cation.The next section extends the analysis to an inter-procedural analysis, and Section 4.7describes constraint solving.4.5.1 Pointer types and constraint systemsA constraint system is de�ned as a set of constraints over pointer types. A solution to aconstraint system is a substitution from pointer type variables to sets of abstract locations,such that all constraints are satis�ed.The syntax of a pointer type T is de�ned inductively by the grammarT ::= fojg locationsj �T deferencej T :i indexingj (T )! T functionj T type variable 129



where oj 2 ALoc and i is an identi�er. A pointer type can be a set of abstract locations,a dereference type, an indexing type, a function type, or a type variable. Pointer typesfojg are ground types. We use T to range over pointer types.To every object o 2 ALoc of non-functional type we assign a type variable To; thisincludes the abstract return location f0 for a function f . To every object f 2 ALoc offunction type we associate the type (Td)! Tf0 , where Td are the type variables assignedto parameters of f . To every type speci�er � we assign a type variable T� .The aim of the analysis is to instantiate the type variables with an element from}(ALoc), such that the map [o 7! To] becomes a safe pointer abstraction.A variable assignment is a substitution S : TVar ! PType from type variables toground pointer types. Application of a substitution S to a type T is denoted by juxtapo-sition S � T . The meaning of a pointer type is de�ned relatively to a variable assignment.De�nition 4.5 Suppose that S is a variable assignment. The meaning of a pointer typeT is de�ned by[[O]] S = O[[�T ]] S = So STo; o 2 [[T ]] S[[T :i]] S = SofS(U:i) j TypOf(o) = hstruct Uig o 2 [[T ]] S[[(Ti)! T ]] S = ([[Ti]] S)! [[T ]] S[[T ]] S = STwhere To is the unique type variable associated with object o. 2The meaning of a deference type �T is determined by the variable assignment. Intu-itively, if T denotes objects foig, the meaning is the contents of those objects: SToi . Inthe case of an indexing T :i, the meaning equals content of the �elds of the object(s) Tdenote.A constraint system is a multi-set of formal inclusion constraintsT � Tover pointer types T . We use C to denote constraint systems.A solution to a constraint system C is a substitution S : TVar ! PType from typevariables to ground pointer types which is the identity on variables but those occurringin C, such that all constraints are satis�ed.De�nition 4.6 De�ne the relation �� by O1 �� O2 i� O1 � O2 for all O1; O2 2 }(ALoc),and (Ti)! T �� (T 0i )! T 0 i� Ti �� T 0i and T 0 �� T .A substitution S : TVar ! PType solves a constraint T1 � T2 if it is a variableassignment and [[T ]] S �� [[T ]] S. 2Notice that a function type is contra-variant in the result type. The set of solutionsto a constraint system C is denoted by Sol(C). The constraint systems we will considerall have at least one solution.Order solutions by subset inclusion. Then a constraint system has a minimal solution,which is a \most" accurate solution to the pointer analysis problem.130



4.5.2 Constraint generationWe give a constraint-based formulation of the pointer analysis speci�cation from theprevious section.De�nition 4.7 Let p = hT ;D;Fi be a program. The pointer-analysis constraint systemCpgm(p) for p is de�ned byCpgm(p) = [t2T Ctdef (t) [ [d2D Cdecl(d) [ [f2F Cfun(f) [ Cgoal(p)where the constraint generating functions are de�ned below. 2Below we implicitly assume that the constraint Tunknown � fUnknowng is included inall constraint systems. It implements Condition 5 in De�nition 4.3 of pointer abstraction.Goal parametersRecall that we assume that only a \goal" function is called from the outside. The contentof the goal function's parameters is unknown. Hence, we de�neCgoal(p) = [fTx � fUnknownggfor the goal parameters x : T of the goal function in p.Example 4.20 For the main function `int main(int argc, char **argv)' we have:Cgoal = fTargc � fUnknowng; Targv � fUnknownggsince the content of both is unknown at program start-up. End of ExampleDeclarationLet d 2 Decl be a declaration. The constraint system Cdecl(d) for d is de�ned by Figure 37.Lemma 4.3 Let d 2 Decl be a declaration. Then Cdecl(d) has a solution S, andSjALoc `pdecl d : �where `pdecl is de�ned by Figure 35.Proof To see that the constraint system Cdecl(d) has a solution, observe that the trivialsubstitution Striv is a solution.It is easy to see that a solution to the constraint system is a pointer abstraction, cf.proof of Lemma 4.1. 2
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[decl] `ctype hT; xi : Tt`cdecl x : T : Tx fTx � Ttg `cetype hT; xi : Tt`cdecl extern x : T : Tx fTx � Ttg[base] `ctype hh�bi ; li : T fT � fUnknowngg `cetype hh�bi ; li : T fT � fUnknowngg[struct] `ctype hhstruct Si ; li : T fT � fgg `cetype hhstruct Si ; li : T fT � fUnknowngg[union] `ctype hhunion Ui ; li : T fT � fgg `cetype hhunion Ui ; li : T fT � fUnknowngg[ptr] `ctype hh�iT 0; li : T `cetype hh�iT 0; li : T[array] `ctype hT 0; l[]i : T1`ctype hh[n]iT 0; li : T fT � fl[]gg `cetype hT 0; l[]i : T1`cetype h[n]T 0; li : T fT � fl[]gg[fun] `cdecl di : Tdi`ctype hh(di)i T 0; li : T `cdecl di : Tdi`cetype hh(di)iT 0; li : TFigure 37: Constraint generation for declarations[struct] `cdecl di : T`ctdef struct Sf di g : �[union] `cdecl di : T`ctdef union Uf di g : �[enum] `ctdef enum Efeg : �Figure 38: Constraint generation for type de�nitionsType de�nitionsThe constraint generation for a type de�nition t, Ctdef (t), is shown in Figure 38.Lemma 4.4 Let t 2 TDef be a type de�nition. Then the constraint system Ctdef (t) has asolution S, and it is a pointer abstraction with respect to t.Proof Follows from Lemma 4.3. 2Example 4.21 To implement sharing of common initial members of unions, a suitablenumber of inclusion constraints are added to the constraint system. End of ExampleExpressionsLet e be an expression in a function f . The constraint system Cexp(e) for e is de�ned byFigure 39.The constraint generating function Oc for operators is de�ned similarly to O used inthe speci�cation for expressions. We omit a formal de�nition.Example 4.22 For the application `p - q', where `p' and `q' are pointers, we haveOc(��int;�int; Te; Tei) = fTe � fUnknowngg. In the case of an application `p - 1', wehave Oc(��int;int; Te; Tei) = fTe � Te1g, cf. Example 4.17. End of Example132



[const] `cexp c : Te fTe � fUnknowngg[string] `cexp s : Te fTe � fsg[var] `cexp v : Te fTe � fvg[struct] `cexp e1 : Te1`cexp e1:i : Te fTe � Te1 :ig[indr] `cexp e1 : Te1`cexp �e1 : Te fTe � �Te1g[array] `cexp ei : Tei`cexp e1[e2] : Te fTe � �Te1g[addr] `cexp e1 : Te1`cexp &le1 : Te fTe � flg; Tl � Teg[unary] `cexp e1 : Te1`cexp o e1 : Te Oc(o; Te; Te1)[binary] `cexp ei : Tei`cexp e1 o e2 : Te Oc(o; Te; Tei)[ecall] `cexp ei : Tei`cexp ef(e1; . . . ; en) fTe � fUnknowngg[alloc] `cexp allocl(T) : Te fTe � fTlgg[user] `cexp ei : Tei`cexp f l(e1; . . . ; en) : Te f�ffg � (�Tei) ! Tl; Te � flgg[call] `cexp ei : Tei`cexp el0(e1; . . . ; en) : Te f�Te0 � (�Tei) ! Tl; Te � flgg[pre] `cexp e1 : Te1`cexp ++e1 : Te fTe � Te1g[post] `cexp e1 : Te1`cexp e1++ : Te fTe � Te1g[assign] `cexp ei : Tei`cexp e1 aop e2 : Te f�Te1 � �Te2 ; Te � Te2g[comma] `cexp ei : Tei`cexp e1; e2 : Te fTe � Te2g[sizeof] `cexp sizeof(T) : Te fTe � fUnknowngg[cast] `cexp e1 : Te1`cexp (T )e1 : Te Castc(T;TypOf(e1); Te; Te1)Figure 39: Constraint generation for expressions
133



To represent the lvalue of the result of a function application, we use a \fresh" variableTl. For reasons to be seen in the next section, calls are assumed to be labeled.The function Castc implementing constraint generation for casts is de�ned as follows.Castc(Tto; Tfrom; Te; Te1) = case (Tto; Tfrom) of(h�bi ; h�bi) : fTe � Te1g(h�iT; h�bi) : fTe � fUnknowngg(h�bi ; h�iT ) : fTe � fUnknowngg(h�iT; h�i hstruct Si) : ( fTe � Te1 :1g T type of �rst member of SfTe � Te1g Otherwise(h�iT1; h�iT2) : fTe � Te1gNotice the resemblance with function Cast de�ned in Section 4.4.Lemma 4.5 Let e 2 Expr be an expression. Then Cexp(e) has a solution S, andSjALoc `pexp e : Vwhere `pexp is de�ned by Figure 36.Proof To see that Cexp(e) has a solution, observe that Striv is a solution.That S is a safe pointer abstraction for e follows from de�nition of pointer types(De�nition 4.5) and solution to constraint systems (De�nition 4.6). 2Example 4.23 Consider the call `f1(&2x)'; a (simpli�ed) constraint system isfT&x � f2g; T2 � fxg; Tf � ffg; �Tf � (�T&x)! T1; Tf() � f1ggcf. Figure 39. By \natural" rewritings (see Section 4.7) we getf(Tf1)! Tf0 � (�f2g)! T1; Tf() � f1gg(where we have used that Tf is bound to (Tf1)! Tf0) which can be rewritten tof(Tf1)! Tf0 � (T2)! T1; Tf() � f1gg(where we have used that �f2g ) T2) corresponding tofTf1 � fxg; Tf() � T1gthat is, the parameter of f may point to `x', and f may return the value in location `1'.Notice that use of contra-variant in the last step. End of Example
134



[empty] `cstmt; : �[expr] `cexp e : Te`cstmt e : �[if] `cexp e : Te `cstmt Si : �`cstmt if (e) S1 else S2 : �[switch] `cexp e : Te `cstmt S1 : �`cstmt switch (e) S1 : �[case] `cstmt S1 : �`cstmt case e: S1 : �[default] `cstmt S1 : �`cstmt default S1 : �[while] `cexp e : Te `cstmt S : �`cstmt while (e) S1 : �[do] `cexp e : Te `cstmt S1 : �`csmt do S1 while (e) : �[for] `cexp ei : Tei `cstmt S1 : �`cstmt for(e1;e2;e3) S1 : �[label] `cstmt S1 : �`cstmt l : S1 : �[goto] `cstmt goto m : �[return] `cexp e : Te`cstmt return e : � fTf0 � �Teg[block] `cstmt Si : �`cstmt fSig : �Figure 40: Constraint generation for statementsStatementsSuppose s 2 Stmt is a statement in a function f . The constraint system Cstmt(s) for s isde�ned by Figure 40.The rules basically collect the constraints for contained expressions, and add a con-straint for the return statement.Lemma 4.6 Let s 2 Stmt be a statement in function f . Then Cstmt(s) has a solution S,and S is a safe pointer abstraction for s.Proof Follows from Lemma 4.5. 2FunctionsLet f 2 Fun be a function de�nition f = hT;Dpar;Dloc;Si. De�neCfun(f) = [d2Dpar Cdecl(d) [ [d2Dloc Cdecl(d) [ [s2S Cstmt(s)where Cdecl and Cstmt are de�ned above. 135



Lemma 4.7 Let f 2 Fun be a function. Then Cfun(f) has a solution S, and S is a safepointer abstraction for f .Proof Obvious. 2This completes the speci�cation of constraint generation.4.5.3 Completeness and soundnessGiven a program p. We show that Cpgm has a solution and that the solution is a safepointer abstraction.Lemma 4.8 Let p be a program. The constraint system Cpgm(p) has a solution.Proof The trivial solution Striv solves Cpgm(p). 2Theorem 4.1 Let p be a program. A solution S 2 Sol(Cpgm(p)) is a safe pointer abstrac-tion for p.Proof Follows from Lemma 4.7, Lemma 4.3 and Lemma 4.4. 24.6 Inter-procedural pointer analysisThe intra-procedural analysis developed in the previous section sacri�ces accuracy atfunctions calls: all calls to a function are merged. Consider for an example the followingfunction:/* inc ptr: increment pointer p */int *inc_ptr(int *q)f return q + 1;gand suppose there are two calls `inc ptr(a)' and `inc ptr(b)', where `a' and `b' arepointers. The intra-procedural analysis merges the calls and alleges a call to `inc ptr'yields a pointer to either `a' or `b'With many calls to `inc ptr()' spurious point-to information is propagated to unre-lated call-sites, degrading the accuracy of the analysis. This section remedies the problemby extending the analysis into an inter-procedural, or context-sensitive point-to analysis.
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4.6.1 Separating function contextsThe naive approach to inter-procedural analysis is by textual copying of functions beforeintra-procedural analysis. Functions called from di�erent contexts are copied, and the call-sites changed accordingly. Copying may increase the size of the program exponentially,and henceforth also the generated constraint systems.Example 4.24 Consider the following program.int main(void) int *dinc(int *p)f fint *pa,*pb,a[10],b[10]; int *p1 = inc_ptr(p);px = dinc(a); int *p2 = int_ptr(p1);py = dinc(b); return p2;g gCopying of function `dinc()' due to the two calls in `main()' will create two variants with4 calls to `int ptr()'. End of ExampleThe problem with textual copying of functions is that the analysis is slowed down dueto the increased number of constraints, and worse, the copying may be useless: copies offunction may be used in \similar" contexts such that copying does not enhance accuracy.Ideally, the cloning of functions should be based on the result of the analysis, such thatonly functions that gain from copying actually are copied.Example 4.25 The solution to intra-procedural analysis of Example 4.24 is given below.Tpa 7! fa; bgTpb 7! fa; bgTp 7! fa; bgTq 7! fa; bgwhere the calls to `dinc()' have been collapsed. By copying of `inc ptr()' four times,the pointers `a' and `b' would not be mixed up. End of Example4.6.2 Context separation via static-call graphsWe employ the program's static-call graph to di�erentiate functions in di�erent contexts.Recall that a program's static-call graph is a function SCG : CallLabel � Variant !Id � Variant mapping a call-site and a variant number of the enclosing function to afunction name and a variant. The static-call graph of the program in Example 4.24 isshown in Figure 41. Four variants of `inc ptr()' exist due to the two call-sites in `dinc()'which again is called twice from `main()'.Explicit copying of functions amounts to creating the variants as indicated by Fig-ure 41. However, observe: the constraint systems generated for the variants are identicalexcept for constraints for calls and return. The idea is to generate constraints over vectorsof pointer types corresponding to the number of variants. For example, the constraint137



��������9������) PPPPPPq ������) PPPPPPqXXXXXXXXzmaindinc1 dinc2inc ptr1 inc ptr3 inc ptr4inc ptr2Figure 41: Static-call graph for the example programsystem for `inc ptr()' will use vectors of length 5, since there are four variants. Variant0 is used as a summary variant, and for indirect calls.After the analysis, procedure cloning can be accomplished on the basis of the computedpointer information. Insigni�cant variants can be eliminated and replaced with moregeneral variants, or possibly with the summary variant 0.4.6.3 Constraints over variant vectorsLet an extended constraint system be a multi-set of extended constraintsT n � T nwhere T range over pointer types. Satis�ability of constraints is de�ned by component-wise extension of De�nition 4.6.Instead of assigning a single type variable to objects and expressions, we assign a vectorT of type variables. The length is given as the number of variants of the encapsulatingfunction (plus the 0 variant) or 1 in the case of global objects.Example 4.26 Consider again the program in Example 4.24. Variable `p' of `dinc' isassociated with the vector p 7! DT 0p ; T 1p ; T 2p E corresponding to variant 1 and 2, and thesummary 0. The vector corresponding to the parameter of `inc ptr()' has �ve elementsdue to the four variants. End of ExampleThe vector of variables associated with object o is denoted by To = hT 0o ; T 1o ; . . . ; T no i.Similarly for expressions and types.Example 4.27 An inter-procedural solution to the pointer analysis problem in Exam-ple 4.24:DT 0pa; T 1paE 7! hfag; fagiDT 0pb; T 1pbE 7! hfbg; fbgiDT 0p ; T 1p ; T 2p E 7! hfa; bg; fag; fbgiDT 0q ; T 1q ; T 2q ; T 3q ; T 4q E 7! hfa; bg; fag; fag; fbg; fbgiwhere the context numbering is shown in Figure 41. End of ExampleIn the example above, it would be advantageous to merge variant 1, 2, and 3, 4, respec-tively. 138



4.6.4 Inter-procedural constraint generationThe inter-procedural constraint generation proceeds almost as in the intra-proceduralanalysis, Section 4.5.2, except in the cases of calls and return statements. Considerconstraint generation in a function with n variants.The rule for constants:fTe � hfUnknowng; fUnknowng; . . . ; fUnknowngigwhere the length of the vector is n+ 1. The rule for variable references:fTe � hfvg; fvg; . . . ; fvgig if v is globalfTe � hfv0g; fv1g; . . . ; fvngig if v is localwhere vi denote the i'th variant of object v. This rule seems to imply that there exists nversions of v. We describe a realization below. (The idea is that an object is uniquely iden-ti�ed by its associated variable, so in practice the rule reads Te � hfT 0v g; fT 1v g; . . . ; fT nv gi.)Consider a call gl(e1; . . . ; em) in function f . The constraint system is[i=1;...;nfT kigj � �T iejg [ [u=1;...;nfTli � T kig0 g [ fTe � fliggwhere SCG(l; i) = hg; kii.The rule is justi�ed as follows. The i'th variant of the actual parameters are relatedto the corresponding variant ki of the formal parameters, cf. SCG(l; i) = hg; kii. Similarlyfor the result. The abstract location l abstracts the lvalue(s) of the call.The rule for an indirect call e0(e1; . . . ; en) uses the summary nodes:f�T 0e0 � (�T 0ei)! T 0l ; Te � Dfl0g; fl0g; . . . ; fl0gEgcf. the rule for intra-procedural analysis. Thus, no context-sensitivity is maintained byindirect calls.Finally, for every de�nition `x : T ' that appears in n variants, the constraints[i=1;...;nfT 0x � T ixgare added. This assures that variant 0 of a type vector summarizes the variants.Example 4.28 The �rst call to `inc ptr()' in Example 4.24 gives rise to the followingconstraints.T 1inc ptr � T 1dinc; T 1p � T 1dinc0 variant 1T 2inc ptr � T 2dinc; T 2p � T 2dinc0 variant 2where we for the sake of presentation have omitted \intermediate" variables, and rewrittenthe constraints slightly. End of ExampleA constraint system for inter-procedural analysis consists of only a few more con-straints than in the case of intra-procedural analysis. This does not mean, naturally, thata inter-procedural solution can be found in the same time as an intra-procedural solu-tion: the processing of each constraint takes more time. The thesis is the processing of anextended constraint takes less time than processing of an increased number of constraints.139



4.6.5 Improved naming conventionAs a side-efect, the inter-procedural analysis improves on the accuracy with respect toheap-allocated objects. Recall that objects allocated from the same call-site are collapsed.The constraint generation in the inter-procedural analysis for `allocl()' calls isfTe � Dfl0g; fl1g; . . . ; flngEgwhere li are n+ 1 \fresh" variables.Example 4.29 An intra-procedural analysis merges the objects allocated in the programbelow even though they are unrelated.int main(void) struct S *allocate(void)f fstruct S *s = allocate(); return alloc1(S);struct S *t = allocate(); ggThe inter-procedural analysis creates two variants of `allocate()', and separates apartthe two invocations. End of ExampleThis gives the analysis the same accuracy with respect to heap-allocated objects asother analyses, e.g. various invocations of a function is distinguished [Choi et al. 1993].4.7 Constraint solvingThis section presents a set of solution-preserving rewrite rules for constraint systems. Weshow that repeated application of the rewrite rules brings the system into a form wherea solution can be found easily. We argue that this solution is minimal.For simplicity we consider intra-procedural constraints only in this section. Theextension to inter-procedural systems is straightforward: pairs of types are processedcomponent-wise. Notice that the same number of type variables always appear on bothsides of a constraint. In practice, a constraint is annotated with the length of the typevectors.4.7.1 Rewrite rulesLet C be a constraint system. The application of rewrite rule l resulting in system C 0 isdenoted by C )l C 0. Repeated application of rewrite rules is written C ) C 0. Exhaustedapplication13 is denoted by C )� C 0 (we see below that exhausted application makessense).A rewrite rule l is solution preserving if a substitution S is a solution to C if and onlyif it is a solution to C 0, when C )l C 0. The aim of constraint rewriting is to propagatepoint-to sets through the type variables. The rules are presented in Figure 42, and makeuse of an auxiliary function Collect : TVar� CSystem! }(ALoc) de�ned as follows.13Application until the system stabilizes. 140



Type normalization1.a C � C0 [ fT � fsg:ig ) C [ fT � TSig TypOf(s) = hstruct Si1.b C � C0 [ fT � �fogg ) C [ fT � Tog1.c C � C0 [ f�fog � T g ) C [ fT0 � T g o 7! To1.d C � C0 [ f(Ti) ! T � (T 0i )! T 0g ) C [ fTi � T 0i ; T 0 � TgPropagation2.a C � C0 [ fT1 � T2g ) C [So2Collect(T2;C)fT1 � fogg2.b C � C0 [ fT1 � T2:ig ) C [So2Collect(T2;C)fT � fog:ig2.c C � C0 [ fT1 � �T2g ) C [So2Collect(T2;C)fT1 � �fogg2.d C � C0 [ f�T � T g ) C [So2Collect(T;C)f�fog � T gFigure 42: Solution preserving rewrite rulesDe�nition 4.8 Let C be a constraint system. The function Collect : TVar�CSystem!}(ALoc) is de�ned inductively by:Collect(T; C) = foi j T � foig 2 Cg [ fo j T � T1 2 C; oi 2 Collect(T1; C)g 2Notice that constraints may be self-dependent, e.g. a constraint system may containconstraints fT1 � T2; T2 � T1g.Lemma 4.9 Let C be a constraint system and suppose that T is a variable appearing inT . Then Sol(C) = Sol(C [ fT � Collect(T; C)g).Proof Obvious. 2For simplicity we have assumed abstract location sets fog consist of one element only.The generalization is straightforward. Constraints of the form fog:i � T can never occur;hence no rewrite rule.Lemma 4.10 The rules in Figure 42 are solution preserving.Proof Assume that Cl )l Cr. We show: S is a solution to C i� it is a solution to C 0.Cases 1: The rules follow from the de�nition of pointer types (De�nition 4.5). Observethat due to static well-typedness, \s" in rule 1.a denotes a struct object.Case 2.a: Due to Lemma 4.9.Case 2.b: Suppose that S is a solution to Cl. By Lemma 4.9 and de�nition of pointertypes, S is a solution to Cl [ fT1 � fog:ig for o 2 Collect(T2; Cl). Suppose that S 0 is asolution to Cr. By Lemma 4.9, S 0 is a solution to Cr [ fT2 � fogg for o 2 Collect(T2; Cr).Case 2.c: Similar to case 2.b.Case 2.d: Similar to case 2.b. 2141



Lemma 4.11 Consider a constraint system to be a set of constraint. Repeated applicationof the rewrite rules in Figure 42 C ) C 0 terminates.Proof All rules add constraints to the system. This can only be done a �nite numberof times. 2Thus, when considered as a set, a constraint system C has a normal form C 0 whichcan be found by exhaustive application C ) C 0 of the rewrite rules in Figure 42.Constraint systems in normal form have a desirable property: a solution can be founddirectly.4.7.2 Minimal solutionsThe proof of the following theorem gives a constructive (though ine�cient) method for�nding a minimal solution to a constraint system.Theorem 4.2 Let C be a constraint system. Perform the following steps:1. Apply the rewrite rules in Figure 42 until the system stabilizes as system C 0.2. Remove from C 0 all constraints but constraints of the form T � fog giving C 00.3. De�ne the substitution S by S = [T 7! Collect(T; C 00)] for all T in C 00.Then SjALoc 2 Sol(C), and S is a minimal solution.Proof Due to Lemma 4.10 and Lemma 4.9 it su�ces to show that S is a solution to C 0.Suppose that S is not a solution to C 0. Clearly, S is a solution to the constraints addedduring rewriting: constraints generated by rule 2.b are solved by 1.a, 2.c by 1.b, and 2.dby 1.c. Then there exists a constraint c 2 C n C 0 which is not satis�ed. Case analysis:� c = T1 � fog: Impossible due to Lemma 4.9.� c = T1 � T2: Impossible due to exhaustive application of rule 2.a and Lemma 4.9.� c = T1 � T2:i: Impossible due to rewrite rule 2.b and Lemma 4.9.� c = T1 � �T2: Impossible due to rewrite rule 2.c and Lemma 4.9.� c = �T1 � T : Impossible due to rewrite rules 2.d and 1.c, and Lemma 4.9.Hence, S is a solution to C 0.To see that S is minimal, notice that no inclusion constraints T1 � fog than neededare added; thus S must be a minimal solution. 2The next section develops an iterative algorithm for pointer analysis.142
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6-- --- ???-sf g <struct S>xf g <int>nextf g <*><struct S>pf g <*><int>af g <[10]><*><int>a[]f gFigure 43: Pointer type representation4.8 Algorithm aspectsIn this section we outline an algorithm for pointer analysis. The algorithm is similar toclassical iterative �xed-point solvers [Aho et al. 1986,Kildall 1973]. Further, we describea convenient representation.4.8.1 RepresentationTo every declarator in the program we associate a pointer type. For abstract locationsthat do not have a declarator, e.g. a[] in the case of an array de�nition `int a[10]', wecreate one. A object is uniquely identi�ed by a pointer to the corresponding declarator.Thus, the constraint T � �fog is represented as T � �fTog which can be rewritten intoT � To in constant time.Example 4.30 The \solution" to the pointer analysis problem of the program below isshown in Figure 43.struct S f int x; struct S *next; g s;int *p, *a[10];s.next = &s;p = a[1] = &s.x;The dotted lines denotes representation of static types. End of ExampleTo every type variable `T' we associate a set `T.incl' of (pointers to) declarators.Moreover, a boolean ag `T.upd' is assumed for each type variable. The �eld `T.incl'is incrementally updated with the set of objects `T' includes. The ag `T.upd' indicateswhether a set has changed since \last inspection".4.8.2 Iterative constraint solvingConstraints of the form T � �fTog can be \pre-normalized" to T � To during constraintgeneration, and hence do not exists during the solving process. Similar for constraintgenerated for user-function call.The constraint solving algorithm is given as Algorithm 4.1 below.143



Algorithm 4.1 Iterative constraint solving.do fix = 1;for (c in clist)switch (c) fcase T1 � O: update(T1,O); break;case T1 � T2: update(T1,T2.incl); break;case T1 � T2.i: update(T1,struct(T2.incl,i)); break;case T1 � *T2:update(T1,indr(T2.incl)));if (Unknown in T2.incl) abort("Unknown dereferenced");break;case *T1 � *T2:if (T1.upd || T2.upd) ffor (o in T1.incl)update(To,indr(T2.incl));gbreak;case *T0 � (*T'i)->T':if (T0.upd) ffor ((Ti)->T in T0.incl)clist [= f Ti � *T'i, T' � T g;gbreak;gwhile (!fix);/* update: update content T.incl with O */update(T,O)f if (T.incl 6� O) f T.incl [= O; fix = 0; ggFunctions `indr()' and `struct()' are de�ned the obvious way. For example, `indr()'dereferences (looks up the binding of) a declarator pointer (location name) and returnsthe point-to set. 2Notice case for pointer deference. If Unknown is dereferenced, the algorithm abortswith a \worst-case" message. This is more strict than needed. For example, the analysisyields \worst-case" in the case of an assignment `p = *q', where `q' is approximated byUnknown. In practice, constraints appearing at the left hand side of assignments are\tagged", and only those give rise to abortion.4.8.3 CorrectnessAlgorithm 4.1 terminates since the `incl' �elds only can be update a �nite number oftimes. Upon termination, the solution is given by S = [T 7! T:incl].Lemma 4.12 Algorithm 4.1 is correct.Proof The algorithm implements the rewrite rules in Figure 42. 2144



4.8.4 ComplexityAlgorithm 4.1 is polynomial in the size of program (number of declarators). It has beenshown that inter-procedural may-alias in the context of multi-level pointers is P-spacehard [Landi 1992a].14 This indicates the degree of approximation our analysis make. Onthe other hand, it is fast and the results seem reasonable.4.9 ExperimentsWe have implemented a pointer analysis in the C-Mix system. The analysis is similar tothe one presented in this chapter, but deviates it two ways: it uses a representation whichreduces the number of constraints signi�cantly (see below), and it computes summaryinformation for all indirections of pointer types.The former decreases the runtime of the analysis, the latter increases it. Notice thatthe analysis of this chapter only computes the lvalues of the �rst indirection of a pointer;the other indirections must be computed by inspections of the objects to which a pointermay point.The value of maintaining summary information for all indirections depends on theusage of the analysis. For example with summary information for all indirections, theside-e�ect analysis of Chapter 6 does not need to summarize pointers at every indirectionnode; this is done during pointer analysis. On the other hand, useless information maybe accumulated. We suspect that the analysis of this chapter is more feasible in practice,but have at the time of writing no empirical evidence for this.We have applied the analysis to some test programs. All experiments were conductedon a Sun SparcStation II with 64 Mbytes of memory. The results are shown below. Werefer to Chapter 9 for a description of the programs.Program Lines Constraints SolvingGnu strstr 64 17 � 0.0 secLudcmp 67 0 0.0 secRay tracer 1020 157 0.3 secERSEM � 5000 465 3.3 secAs can be seen, the analysis is fast. It should be stressed, however, that none ofthe programs use pointers extensively. Still, we believe the analysis of this chapter willexhibit comparable run times in practice. The quality of the inferred information is good.That is, pointers are approximated accurately (modulo ow-insensitivity). In average,the points-to sets for a pointer are small.Remark: The number of constraints reported above seems impossible! The point isthat most of the superset constraints generated can be solved by equality. All of theseconstraints are pre-normalized, and hence the constraint system basically contains onlyconstraints for assignments (calls) involving pointers.14This has only been shown for programs exhibiting more than four levels of indirection.145



4.10 Towards program-point pointer analysisThe analysis developed in this chapter is ow-insensitive: it produces a summary for theentire body of a function. This bene�ts e�ciency at the price of precision, as illustratedby the (contrived) function to the left.int foo(void) int bar(void)f fif (test) f p = &x;p = &x; foobar(p);foobar(p); p = &y;g else f foobar(p);p = &y; gfoobar(p);ggThe analysis ignores the branch and information from one branch may inuence the other.In this example the loss of accuracy is manifested by the propagation of the point-toinformation [p 7! fx; yg] to both calls.The example to the right illustrates lack of program-point speci�c information. Aprogram-point speci�c analysis will record that `p' will point to `x' at the �rst call, andto `y' at the second call. In this section we consider program-point speci�c, ow-sensitivepointer analysis based on constraint solving.4.10.1 Program point is sequence pointThe aim is to compute a pointer abstraction for each program point, mapping pointersto the sets of objects they may point to at that particular program point. Normally,a program point is de�ned to be \between two statements", but in the case of C, thenotion coincides with sequence points [ISO 1990, Paragraph 5.1.2.3]. At a sequence point,all side-e�ects between the previous and the current point shall have completed, i.e. thestore updated, and no subsequent side-e�ects have taken place. Further, an object shallbe accessed at most once to have its value determined. Finally, an object shall be accessedonly to determine the value to be stored. The sequence points are de�ned in Annex C ofthe Standard [ISO 1990].Example 4.31 The de�nition renders unde�ned an expression such as `p = p++ + 1'since `p' is \updated" twice between two sequence points.Many analyses rely on programs being transformed into a simpler form, e.g. `e1 = e2 =e3' to `e2 = e3; e1 = e2'. This introduces new sequence points and may turn an unde�nedexpression into a de�ned expression, for example `p = q = p++'. End of ExampleIn the following we for simplicity ignore sequence points in expressions, and usethe convention that if S is a statement, then m is the program immediately beforeS, and n is the program after. For instance, for a sequence of statements, we havem1S1n1m2S2n2 . . .mnSnnn. 146



4.10.2 Program-point constraint-based program analysisThis section briey recapitulates constraint-based, or set-based program analysis of im-perative language, as developed by Heintze [Heintze 1992].To every program points m, assign a vector of type variables Tm representing theabstract store.Example 4.32 Below the result of a program-point speci�c analysis is shown.int main(void)f int x, y, *p;/* 1: 
T 1x ; T 1y ; T 1p � 7! hfg; fg; fgi */p = &x;/* 2: 
T 2x ; T 2y ; T 2p � 7! hfg; fg; fxgi */p = &y;/* 3: 
T 3x ; T 3y ; T 3p � 7! hfg; fg; fygi */x = 4;/* 4: 
T 4x ; T 4y ; T 4p � 7! hfg; fg; fygi */gNotice that T 3p does not contain fxg. End of ExampleThe corresponding constraint systems resemble those introduced in Section 4.5. How-ever, extra constraints are needed to propagate the abstract state through the programpoints. For example, at program point 4, the variable T 4p assumes the same value as T 3p ,since it is not updated.Example 4.33 Let T n � Tm[x 7! O] be a short hand for T no � Tmo for all o except x,and T nx � O. Then the following constraints abstracts the pointer usage in the previousexample:2 : T 2 � T 1[p 7! fxg]3 : T 3 � T 2[p 7! fyg]4 : T 4 � T 3[x 7! fg] End of ExampleThe constraint systems can be solved by the rewrite rules in Figure 42, but unfortu-nately the analysis cannot cope with multi-level pointers.4.10.3 Why Heintze's set-based analysis failsConsider the following program fragment.
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int x, y, *p, **q;/* 1: 
T 1x ; T 1y ; T 1p ; T 1q � 7! hfg; fg; fg; fgi */p = &x;/* 2: 
T 2x ; T 2y ; T 2p ; T 2q � 7! hfg; fg; fxg; fgi */q = &p;/* 3: 
T 3x ; T 3y ; T 3p ; T 3q � 7! hfg; fg; fxg; fpgi */*q = &y;/* 4: 
T 4x ; T 4y ; T 4p ; T 4q � 7! hfg; fg; fyg; fpgi */The assignment between program point 3 and 4 updates the abstract location p, but`p' does not occur syntactically in the expression `*q = &y'. Generating the constraintsT 4 � T 3[�T 3q 7! fyg] will incorrectly leads to T 4p � fx; yg.There are two problems. First, the values to be propagated through states are notsyntactically given by an expression, e.g. that `p' will be updated between program points3 and 4. Secondly, the indirect assignment will be modeled by a constraint of the form�T 4q � fyg saying that the indirection of `q' (that is, `p') should be updated to contain`y'. However, given T 4q 7! fpg, it is not apparent from the constraint that �T 4q � fygshould be rewritten to T 4p � fyg; program points are not a part of a constraint (how isthe \right" type variable for `p' chosen?).To solve the latter problem, constraints generated due to assignments can be equippedwith program points: T n �m T meaning that program point n is updated from state m.For example, �T 4q 4 �3 fyg would be rewritten to T 4p � fyg, since T 4q 7! fpg, and theupdate happens at program point 4.The former problem is more intricate. The variables not to be updated depend onthe solution to T 4q . Due to loops in the program and self-dependences, the solution to T 4qmay depend on the variables propagated through program points 3 and 4.Currently, we have no good solution to this problem.4.11 Related workWe consider three areas of related work: alias analysis of Fortran and C, the point-toanalysis developed by Emami which is the closest related work, and approximation ofheap-allocated data structures.4.11.1 Alias analysisThe literature contains much work on alias analysis of Fortran-like languages. Fortrandi�ers from C in several aspects: dynamic aliases can only be created due to referenceparameters, and program's have a purely static call graph.Banning devised an e�cient inter-procedural algorithm for determining the set ofaliases of variables, and the side-e�ects of functions [Banning 1979]. The analysis has twosteps. First all trivial aliases are found, and next the alias sets are propagated throughthe call graph to determine all non-trivial aliases. Cooper and Kennedy improved thecomplexity of the algorithm by separating the treatment of global variables from reference148



parameters [Cooper and Kennedy 1989]. Chow has designed an inter-procedural data owanalysis for general single-level pointers [Chow and Rudmik 1982].Weihl has studied inter-procedural ow analysis in the presence of pointers and pro-cedure variables [Weihl 1980]. The analysis approximates the set of procedures to whicha procedure variable may be bound to. Only single-level pointers are treated which is asimpler problem than multi-level pointers, see below. Recently, Mayer and Wolfe have im-plemented an inter-procedural alias analysis for Fortran based on Cooper and Kennedy'salgorithm, and report empirical results [Mayer and Wolfe 1993]. They conclude that thecost of alias analysis is cheap compared to the possible gains. Richardson and Ganap-athi have conducted a similar experiment, and conclude that aliases only rarely occurin \realistic" programs [Richardson and Ganapathi 1989]. They also observe that eventhough inter-procedural analysis theoretically improves the precision of traditional dataow analyses, only a little gain is obtained in actual runtime performance.Bourdoncle has developed an analysis based on abstract interpretation for computingassertions about scalar variables in a language with nested procedures, aliasing and re-cursion [Bourdoncle 1990]. The analysis is somewhat complex since the various aspects ofinterest are computed in parallel, and are not been factored out. Larus et al. used a similarmachinery to compute inter-procedural alias information [Larus and Hil�nger 1988]. Theanalysis proceeds by propagating alias information over an extended control-ow graph.Notice that this approach requires the control-ow graph to be statically computable,which is not the case with C. Sagiv et al. computes pointer equalities using a similarmethod [Sagiv and Francez 1990]. Their analysis tracks both universal (must) and exis-tential (may) pointer equalities, and is thus more precise than our analysis. It remains toextend these methods to the full C programming language. Harrison et al. use abstractinterpretation to analyze program in an intermediate language Mil into which C programsare compiled [Harrison III and Ammarguellat 1992]. Yi has developed a system for auto-matic generation of program analyses [Yi 1993]. It automatically converts a speci�cationof an abstract interpretation into an implementation.Landi has developed an inter-procedural alias analysis for a subset of the C language[Landi and Ryder 1992,Landi 1992a]. The algorithm computes ow-sensitive, conditionalmay-alias information that is used to approximate inter-procedural aliases. The analysiscannot cope with casts and function pointers. Furthermore, its performance is not im-pressive: 396s to analyze a 3.631 line program is reported.15 Choi el al. have improvedon the analysis, and obtained an algorithm that is both more precise and e�cient. Theyuse a naming technique for heap-allocated objects similar to the one we have employed.Cytron and Gershbein have developed a similar algorithm for analysis of programs instatic single-assignment form [Cytron and Gershbein 1993].Landi has shown that the problem of �nding aliases in a language with more thanfour levels of pointer indirection, runtime memory allocation and recursive data struc-tures is P-space hard [Landi and Ryder 1991,Landi 1992a]. The proof is by reduction ofthe set of regular languages, which is known to be P-space complete [Aho et al. 1974],to the alias problem [Landi 1992a, Theorem 4.8.1]. Recently it has been shown thatintra-procedural may-alias analysis under the same conditions actually not is recursive15To the author knowledge, a new implementation has improved the performance substantially.149



[Landi 1992b]. Thus, approximating algorithms are always needed in the case of lan-guages like C.4.11.2 Points-to analysisOur initial attempt at pointer analysis was based on abstract interpretation implementedvia a (naive) standard iterative �xed-point algorithm. We abandoned this approach sinceexperiments showed that the analysis was far to slow to be feasible. Independently, Emamihas developed a point-to analysis based on traditional gen-kill data-ow equations, solvedvia an iterative algorithm [Emami 1993,Emami et al. 1993].Her analysis computes the same kind of information as our analysis, but is moreprecise: it is ow-sensitive and program-point speci�c, computes both may and mustpoint-to information, and approximates calls via functions pointers more accurately thanour analysis.The analysis takes as input programs in a language resembling three address code[Aho et al. 1986]. For example, a complex statement as x = a.b[i].c.d[2][j].e isconverted totemp0 = &a.b;temp1 = &temp0[i];temp2 = &(*temp1).c.d;temp3 = &temp2[2][j];x = (*temp3).e;where the temp's are compile-time introduced variables [Emami 1993, Page 21]. A Simplelanguage may be suitable for machine code generation, but is unacceptably for commu-nication of feedback.The intra-procedural analysis of statement proceeds by a standard gen-kill approach,where both may and must point-to information is propagated through the control-owgraph. Loops are approximated by a �xed-point algorithm.16 Heap allocation is approxi-mated very rudely using a single variable \Heap" to represent all heap allocated objects.We have deliberately chosen to approximate function calls via pointers conservatively,the objective being that more accurate information in the most cases (and de�nitely forour purpose) is useless. Ghiya and Emami have taken a more advanced approach by usingthe point-to analysis to perform inter-procedural analysis of calls via pointers. When ithas been determined that a function pointer may point to a function f , the call-graphis updated to reect this, and the (relevant part of the) point-to analysis is repeated[Ghiya 1992].The inter-procedural analysis is implemented via the program's extended control-owgraph. However, where our technique only increases the number of constraints slightly,Emami's procedure essentially corresponds to copying of the data-ow equations; in prac-tise, the algorithm traverses the (representation) of functions repeatedly. Naturally, thiscauses the e�ciency to degenerate. Unfortunately, we are not aware of any runtimebenchmarks, so we can not compare the e�ciency of our analysis to Emami's analysis.16Unconditional jumps are removed by a preprocess.150



4.11.3 Approximation of data structuresClosely related to analysis of pointers is analysis of heap-allocated data structures. Inthis chapter we have mainly been concerned with stack-allocated variables, approximatingruntime allocated data structures with a 1-limit methods.Jones and Munchnick have developed a data-ow analysis for inter-procedural analysisof programs with recursive data structures (essentially Lisp S-expressions). The analysisoutputs for every program point and variable a regular tree grammar, that includes allthe values the variable may assume at runtime. Chase el al. improve the analysis by usinga more e�cient summary technique [Chase et al. 1990]. Furthermore, the analysis candiscover \true" trees and lists, i.e. data structures that contain no aliases between itselements. Larus and Hil�nger have developed a ow analysis that builds an alias graphwhich illustrates the structure of heap-allocated data [Larus and Hil�nger 1988].4.12 Further work and conclusionWe have in this chapter developed an inter-procedural point-to analysis for the C pro-gramming language, and given a constraint-based implementation. The analysis has beenintegrated into the C-Mix system and proved its usefulness. However, several areas forfuture work remain to be investigated.4.12.1 Future workPractical experiments with the pointer analysis described in this chapter have convincinglydemonstrated the feasibility of the analysis, especially with regard to e�ciency. Thequestion is whether it is worthwhile to sacri�ce some e�ciency for the bene�t of improvedprecision. The present analysis approximates as follows:� ow-insensitive/summary analysis of function bodies,� arrays are treated as aggregates,� recursive data structures are collapsed,� heap-allocated objects are merged according to their birth-place,� function pointers are not handled in a proper inter-procedurally way.Consider each in turn.We considered program-speci�c pointer analysis in Section 4.10. However, as apparentfrom the description, the amount of information both during the analysis and in the �nalresult may be too big for practical purposes. For example, in the case of a 1,000 lineprogram with 10 global variables, say, the output will be more than 100,000 state variables(estimating the number of local variables to be 10). Even in the (typical) case of a sparsestate description, the total memory usage may easily exceed 1M byte. We identify themain problem to be the following: too much irrelevant information is maintained by the151



constraint-based analysis. For example, in the state corresponding to the statement `*p =1' the only information of interest is that regarding `p'. However, all other state variablesare propagated since they may be used at later program points.We suspect that the extra information contributes only little on realistic programs,but experiments are needed to clarify this. Our belief is that the poor man's approachdescribed in Section 4.2 provides the desired degree of precision, but we have not yetmade empirical test that can support this.Our analysis treats arrays as aggregates. Program using tables of pointers may su�erfrom this. Dependence analysis developed for parallelizing Fortran compilers has madesome progress in this area [Gross and Steenkiste 1990]. The C language is considerablyharder to analyze: pointers may be used to reference array elements. We see this as themost promising extension (and the biggest challenge).The analysis in this chapter merges recursive data structures.17 In our experienceelements in a recursive data structure is used \the same way", but naturally, exceptionsmay be constructed. Again, practical experiments are needed to evaluate the loss ofprecision.Furthermore, the analysis is mainly geared toward analysis of pointers to stack-allocated objects, using a simple notion of (inter-procedural) birth-place to describeheap-allocated objects. Use of birth-time instead of birth-place may be an improvement[Harrison III and Ammarguellat 1992]. In the author's opinion discovery of for instancesingly-linked lists, binary trees etc. may �nd substantial use in program transformationand optimization, but we have not investigated inference of such information in detail.Finally, consider function pointers. The present analysis does not track down inter-procedurally use of function pointers, but uses a sticky treatment. This greatly simpli�esthe analysis, since otherwise the program's call graph becomes dynamic. The use of static-call graphs is only feasible when most of the calls are static. In our experience, functionpointers are only rarely used which justi�es our coarse approximation, but naturally someprogramming styles may fail. The approach taken by Ghiya [Ghiya 1992] appears to beexpensive, though.Finally, the relation and bene�ts of procedure cloning and polymorphic-based analysisshould be investigated. The k-limit notions in static-call graphs give a exible way ofadjusting the precision with respect to recursive calls. Polymorphic analyses are lessexible but seem to handle program with dynamic call graphs more easily.4.12.2 ConclusionWe have reported on an inter-procedural, ow-insensitive point-to analysis for the entireC programming language. The analysis is founded on constraint-based program analysis,which allows a clean separation between speci�cation and implementation. We havedevised a technique for inter-procedural analysis which prevents copying of constraints.Furthermore we have given an e�cient algorithm.17This happens as a side-e�ect of the program representation, but the k-limit can easily be increased.152


