
Program Analysis, January–April 2014

Project 1, 5 March 2014
Due Friday, 4 April 2014

Instructions for submitting solutions

Please submit your solutions electronically by email to facilitate evaluation.

Preferrably, send an electronic document in PDF (you can generate it in LATEX or
OpenOffice or Word or whatever, but send only PDF). If you can’t do this, send
scanned copies of handwritten pages.

Detection of information leakage

Sensitive information is often stored in databases and processed by programs. For ex-
ample, passwords, credit card information etc. are routinely stored and processed. The
problem is to ensure that such sensitive information is not accessible from outside a set of
“trusted” functions/procedures/methods – in other words to prevent leakage of sensitive
information.

Assume that the programming language under consideration has the following features:

• The usual control constructs such as sequencing, if-then-else, while loops and func-
tions.

• Value and reference parameter passing.

• Data types including int, String and simple classes/records/structures (without sub-
typing/inheritance).

• Each field of a class can optionally be tagged as a sensitive field.

• Each class has a set of associated ‘methods’ – only these methods are meant to access
the sensitive fields. Any potential access of a sensitive field outside of a method is
an information leakage.

A trivial example with an information leak is:

class Account {
...

String owner;

sensitive String password;

...

}

void Account:getDetails (ref String s1, ref String s2, ...)

{
s1 = owner;

s2 = password;

...

}

1

main ()

{
Account ac;

String nm, pwd;

...

ac = getAcFromDataBase ("name1");

...

ac.getDetails (nm, pwd, ...);

print ("Account info:\n\tName:$nm\n\tPassword:$pwd\n);
/* This is an obvious leakage!! */

}

Devise a program analysis that will help detect all such possible leaks of sensitive
information. Note that the results of the analysis need not by itself point out the sources
of information leakage, but it should be possible to easily compute such sources of leakage
from the result of the analysis1.

You are free to choose any technique of analysis, but make sure the following are
covered:

1. The information structure (lattice or type system), its ordering etc.

2. The semantic functions or type inference rules.

3. A justification, preferably with a worst case complexity, as to why the analysis would
terminate for any program in the given language.

4. A justification why the computed information is sound and consistent with the
semantics of the language.

5. How can the result of this analysis be used to identify sources of information leakage.

1For example, interval analysis by itself does not help in detecting array index bounds violations, but
given the results of interval analysis and sizes of each array, it is trivial to determine likely array bound
violations.

2

