Software Verification and Abstraction

Rupak Majumdar

Lecture 1: Model Checking Basic Concepts

Rupak Majumdar

Model checking, generally interpreted:

Automatic algorithmic techniques for system verification which operate on a system model (semantics)

Somewhat General View

Model checking, narrowly interpreted:

Decision procedures for checking if a given Kripke structure is a model for a given formula of a modal logic (CTL or LTL).

Our view includes

- Dataflow analysis in compilers
- Symbolic execution based methods

Our view excludes

- Language design for ensuring properties
- Proof calculi and interactive theorem proving

There are many different model checking algorithms, depending on

- The system model
- The specification formalism

Discrete Systems Theory

Trajectory: dynamic evolution of state

sequence of states

→

Model: generates a set of trajectories

transition graph

***** **

Property: assigns boolean values to trajectories

temporal logic formula

"red and green alternate"

Algorithm: compute values of the trajectories

generated by a model

Paradigmatic Example: Mutual Exclusion

Property: It is never the case that P1 and P2 are both at 'in'

System Modeling

- Various factors influence choice of model
 - State based vs event based
 - Concurrency model
- While the choice of system model is important for ease of modeling in a given situation,

the only thing that is important for model checking is that the system model can be translated into some form of state-transition graph.

• So: Will not focus much on syntactic constructs

Syntax: Finite State Programs

- Parallel composition of C programs, without function calls
- Each variable has a finite range
- We'll write such programs as guarded commands

Semantics: State Transition Graph

Important Restriction

Until notified, restrict attention to finite-state transition systems

Q is finite

Example: Mutual Exclusion

State Explosion Problem

The translation from a system description to a state-transition graph usually involves an exponential blow-up !!!

e.g., n boolean variables \Rightarrow 2ⁿ states

System Verification Problem

System Properties

Some orthogonal dimensions in choosing specification formalisms

1 operational vs. declarative:

automata vs. logic

2 may vs. must:

branching vs. linear time

2 prohibiting bad vs. desiring good behavior:

safety vs. liveness

The three decisions are orthogonal, and they lead to substantially different model-checking problems

Safety vs Liveness

- Safety: Something "bad" will never happen
 - Program does not produce bad result "partial correctness"
 - Example: Mutual exclusion
- Liveness: Something "good" eventually happens
 - The program produces a result "termination"
 - Example: A process wanting to go to the critical section eventually gets in

Safety vs Liveness Contd.

- Safety: those properties whose violation always has a finite witness
 - "if something bad happens on an infinite run, then it happens already on some finite prefix" --- Can be checked on finite runs
- Liveness: those properties whose violation never has a finite witness
 - "no matter what happens along a finite run, something good could still happen later" -- Must be checked on infinite runs

Two Remarks

1. The vast majority of properties to be verified are safety

2. While nobody will ever observe the violation of a true liveness property, liveness is a useful abstraction that turns complicated safety into simple liveness

Accordingly, we focus on safety for most of the lectures

Safety Model Checking

- Requirement: The system should always stay within some safe region
- Input: A state transition graph
- Input: A set of good states "invariants"
- Output: "Safe" if all executions maintain the invariant, "Unsafe" otherwise (and a trace)

From Safety to Reachability

- Input: A state transition graph
- Input: A set of bad states
- Output: "Safe" if there is no run from an initial state to any bad state, "Unsafe" otherwise (and a trace)

Model Checking Algorithm

- Graph Search
 - Linear time in the size of the graph
 - Exponential time in the size of the program

Enumerative Model Checking

- Provide access to each state
- For each state, provide access to neighboring states

- Implement classical graph algorithms
 - Depth-first or breadth-first search
 - Starting from initial states and searching forward for bad states
 - Or starting from bad states and searching backward for initial states

State Space Explosion

- Biggest problem is state space explosion
 - N bits \Rightarrow 2^N states
- Many heuristics
 - Search on-the-fly,
 - partial order and symmetry reduction
 - Do not store dead variables

- Many successful implementations
 - Spin, Murphi, Verisoft, ... [Protocol verification]

Symbolic Model Checking

 Idea: Work with sets of states, rather than individual states

```
Given: Transition graph G, target states \sigma^T begin

- \sigma^R = set of Initial states

- repeat forever

if \sigma^R \cap \sigma^T \neq \emptysetthen return "yes"

if \mathsf{Post}(\sigma^R) \subseteq \sigma^R then return "no"

\sigma^R := \sigma^R \cup \mathsf{Post}(\sigma^R)

end

Here, \mathsf{Post}(\sigma) = \{s' \mid \exists s \in \sigma. \ s \to s'\}
```

Encoding Sets through Formulas

- Idea: Represent sets of states symbolically, using constraints
- E.g., 1 ≤ x ≤ 100 represents the 100 states x =1, x =2, ..., x =100
- Represent both sets of initial states and transition relation implicitly

Representing States as Formulas

<pre>[F] states satisfying F {s s = F}</pre>	F FO fmla over prog. vars
$[F_1] \cap [F_2]$	$F_1 \wedge F_2$
$[F_1] \cup [F_2]$	$F_1 \vee F_2$
<u>[F]</u>	¬ F
$[F_1] \subseteq [F_2]$	F_1 implies F_2
	i.e. $F_1 \land \neg F_2$ unsatisfiable

Symbolic Transition Graph

- A transition graph
 - A Formula Init(x) representing initial states
 - A Formula TR(x,x') representing the transition relation

Example: C program

```
x:=e TR(x,x'): loc=pc\landloc'=pc'\landx' = e\land{ y'=y|y\neqx} Assume(p) TR(x,x'): loc=pc\landloc'=pc'\landp
```

Symbolic Transition Graph

• Operations:

- Post(X) = {s' |
$$\exists$$
s∈X. s \rightarrow s'}
= \exists s. X(s) \land TR(s,s')

- Pre(X) = {s |
$$\exists$$
s' \in X. s \rightarrow s'}
= \exists s'. TR(s,s') \land X(s')

• Can implement using formula manipulations

Symbolic Model Checking

```
Given: Transition graph G, target states \sigma^T begin

- \sigma^R = Formula representing set of Initial states

- repeat forever

if \sigma^R \wedge \sigma^T is satisfiable then return "yes"

if Post(\sigma^R) \Rightarrow \sigma^R then return "no"

\sigma^R := \sigma^R \vee Post(\sigma^R)

end

Here, Post(\sigma)(s') = \exists s. \ \sigma(s) \wedge TR(s,s')
```

Can be implemented using decision procedures for the language of formulas

Finite State Systems

- Symbolic representation in propositional logic
- State described by n bits X
- A region is a propositional formula with free variables in X
- Can implement symbolic operations using propositional formula manipulations

Example: Mutual Exclusion

Symbolic representation has variables

Initial states:

pc1=out
$$\land$$
 pc2=out \land x1=0 \land x2=0 No constraint on last

Transition relation:

```
pc1=out∧ x1'=1∧ last'=1∧ pc2'=pc2∧ x2'=x2
∨ ...
```

Additional Desirable Properties

- All operations must be efficient in practice
- Should maintain compactness whenever possible
- Canonical representations
- Representing initial states and transition relation from the program description should be efficient

Binary Decision Diagrams

- Efficient representations of boolean functions [Bryant86]
- Share commonalities
- Ordered BDDs:
 - Fix a linear ordering of the variables in X
 - BDD = DAG, with nodes labeled with boolean variables
 - Each variable occurs 0 or 1 times along a path
 - Paths in the DAG encode assignments to variables
- Extremely successful in hardware verification

More on Safety Properties

- Not all safety properties can be written as invariants on the program state space
- For example, if correctness depends on the order of events
 - Locks can be acquired and released in alternation, it is an error to acquire/release a lock twice in succession without an intermediate release / acquire

Monitors

- Write the ordering of events as an automaton (called the monitor)
- Take the product of the system with the monitor
 - The monitor tracks the sequence of events
 - It goes to a special "bad" state if a bad sequence occurs
- Now we can express the property as an invariant: the monitor state is never bad

Symbolic Search

- Guaranteed to terminate for finite state systems
- And can be applied to infinite state systems as well
 - Although without guarantees of termination in general
 - Application to infinite state requires richer languages for formulas and associated decision procedures

What about Software?

- Can construct an infinite state transition system from a program
- States: The state of the program
 - (stack, heap, pc location)
- Transitions: q→ q' iff in the operational semantics, there is a transition of the program from q to q'
- Initial state: Initial state of the program

Termination

- Each operation can be computed
- But iterating Pre or Post operations may not terminate
- What do we do now?

Observation

- Often, we do not need the exact set of reachable states
 - We need a set of states that separates the reachable states from the bad states

One Possibility

- User gives an estimate (inductive invariant)
 A set of states Inv such that
 - $lnit \subseteq lnv lnv \cap bad = \emptyset$ $lnv \cap bad = \emptyset$
- * Can show that this implies system is safe (How?)
- * Given Inv, and decision procedures, this procedure is guaranteed to terminate
- This is the idea of classical loop invariants
 - Problem: In general, it can be hard to manually construct Inv

Before we proceed

• What is the sign of the following product:

- 12433454628 * 94329545771 ?

Idea

 One can "abstract" the behavior of the system, and yet reason about certain aspects of the program

• Abstraction:

Model Checking Algorithm

• Graph Search

Abstract Interpretation

- The state transition graph is large/infinite
- Suppose we put a finite grid on top

Existential Abstraction

- Every time s \rightarrow s', we put [s] \rightarrow [s']
- This allows more behaviors

Abstract Model Checking

- Search the abstract graph until fixpoint
 - Can be much smaller than original graph
 - Can be finite, when original is infinite

Simulation Relations

- A relation $\preceq \subseteq Q \times Q$ is a simulation relation if $s \preceq s'$ implies
 - Observation(s) = Observation(s')
 - For all t such that s→ t there exists t' such that s'→ t' and s' ≤ t'

Formally captures notion of "more behaviors" Implies containment of reachable behaviors

Main Theorem

- $s \leq [s]$ is a simulation relation
- If an error is unreachable in Abs(G) then it is unreachable in G
- Plan:
- Find a suitable grid to make the graph finite state
- 2. Run the finite-state model checking algorithm on this abstract graph
- 3. If abstract graph is safe, say "safe" and stop

What if the Abstract Graph says Unsafe?

- The error may or may not be reachable in the actual system
 - Stop and say "Don't know"

What if the Abstract Graph says Unsafe?

- Or, put a finer grid on the state space
- And try again
 - The set of abstract reachable states is smaller.

- Where do these grids come from?

Grids: Predicate Abstraction

- Suppose we fix a set of facts about program variables
 - E.g., old = new, lock = 0, lock = 1
- Grid: Two states of the program are equivalent if they agree on the values of all predicates
 - N predicates = 2^N abstract states
- How do we compute the grid from the program?

Predicate Abstraction

Region Representation: formulas over predicates

$$\exists B_4^3 \quad \neg B_4^3 \quad B_4^3 \quad \neg B_4^3$$

Karnaugh Map

$$P_1: x = y$$
 $P_2: z = t + y$

$$P_2: z = t + y$$

$$P_3: x \le z+1 \quad P_4: *u = x$$

$$P_4$$
: *u = x

Set of states

Abstract Set: P₁P₂P₄ $\vee \neg$ P₁ P₂ P₃ P₄

Predicate Abstraction

$$P_1: x = y$$
 $P_2: z = t + y$
 $P_3: x \le z+1$ $P_4: *u = x$

- Box: abstract variable valuation
- BoxCover(S): Set of boxes covering S
- Theorem prover used to compute BoxCover

Post[#], Pre

- pre(S,op) = { s | \exists s' \in S. s \rightarrow op s'} (Weakest Precondition)
- post(S,op) = { s | \exists s' \in S. s' \rightarrow op s} (Strongest Postcondition)
- Abstract Operators: post[#]
 post(S,op) ⊆ post[#](S,op)

Computing Post#

- · For each predicate p, check if
 - $S \Rightarrow Pre(p, op)$ then have a conjunct p
 - $S \Rightarrow Pre(\neg p, op)$ then have a conjunct $\neg p$
 - Else have no conjunct corresponding to p
- Use a theorem prover for these queries

Example

- I have predicates
 - lock=0, new=old, lock=1
- My current region is lock = 0 ∧ new= old
- Consider the assignment new = new+1
- What is abstract post?

Example

```
• WP(new:=new+1, lock=0) is lock=0
```

- WP(new:=new+1, lock=1) is lock=1
- WP(new:=new+1, new=old) is new+1=old

```
    lock=0∧ new=old ⇒ lock = 0
    lock=0∧ new=old ⇒ lock ≠ 0
    lock=0∧ new=old ⇒ lock = 1
    lock=0∧ new=old ⇒ lock ≠ 1
    lock=0∧ new=old ⇒ new+1=old
    lock=0∧ new=old⇒ new+1≠ old
```

So post is lock = 0 ∧ lock≠ 1 ∧ new≠ old

Symbolic Search with Predicates

Symbolic representation: Boolean formulas of (fixed set of) predicates

- Boolean operations: easy
- Emptiness check: Decision procedures
- Post: The abstract post computation algorithm
- Can now implement symbolic reachability search!

Big Question

Who gives us these predicates?

- Answer 1: The user
 - Manual abstractions
 - Given a program and property, the user figures out what are the interesting predicates
 - Dataflow analysis
 - For "generic" properties, come up with a family of predicates that are likely to be sufficient for most programs

Abstract Interpretation

- Abstract model checking is formalized through abstract interpretation
 - Formalizes and unifies semantics-based program analysis

More Approximations

- Many program dataflow analyses do not perform exact reachability analysis on the abstract state space
- Instead, use the structure of the control flow graph to further approximate the result

Example: Flow Sensitive Analysis

- For each control flow node, keep track of the set of reachable states (along any program path) to that node
 - Information may be lost at merge points by abstracting v by something coarser
- Assumption: All paths of the control flow graph can be executed
 - Ignore conditional statements

Flow Insensitive Analysis

- Even more approximate
- Disregard the order of operations in the program!
- Much faster analysis than abstract model checking
 - But results are much cruder of course!
 - Can still be useful: e.g., primary way to perform alias analysis

When I run a model checker, it goes to compute the result and never comes back. When I run a dataflow analysis, it comes back immediately and says "Don't know"!

- Patrick Cousot

Lecture 2: Software Model Checking and Counterexample-Guided Refinement

Rupak Majumdar

Recap

- Model checking is an algorithmic technique to verify properties of systems
- In conjunction with abstractions, can be effective in proving subtle properties

 Today: Consider the problem of abstract model checking of (sequential) software implementations

Setting: Property Checking

- Programmer gives partial specifications
- Code checked for consistency w/ spec

- Different from program correctness
 - Specifications are not complete
 - Is there a complete spec for Word? Emacs?

Interface Usage Rules

- Rules in documentation
- Order of operations & data access
- Resource management
- Incomplete, unenforced, wordy
- Violated rules ⇒ bad behavior
- System crash or deadlock
- Unexpected exceptions
- Failed runtime checks

Property 1: Double Locking

"An attempt to re-acquire an acquired lock or release a released lock will cause a deadlock."

Calls to lock and unlock must alternate.

Property 2: Drop Root Privilege

[Chen-Dean-Wagner '02]

"User applications must not run with root privilege"

When execv is called, must have suid $\neq 0$

Property 3: IRP Handler

Does a given usage rule hold?

- Undecidable!
 - Equivalent to the halting problem
- Restricted computable versions are prohibitively expensive (PSPACE)
- Why bother?
 - Just because a problem is undecidable, it doesn't go away!

Example

```
Example ( ) {
1: do{
      lock();
      old = new;
      q = q - \text{next};
2:
    if (q != NULL){
3:
         q->data = new;
         unlock();
         new ++;
4: } while(new != old);
5:
   unlock ();
    return;
```


What a program really is...

The Safety Verification Problem

Is there a path from an initial to an error state?

Problem: Infinite state graph

Solution: Set of states \simeq logical formula

Idea 1: Predicate Abstraction

Predicates on program state:
 lock
 old = new

- States satisfying same predicates are equivalent
 - Merged into one abstract state
- #abstract states is finite

Abstract States and Transitions

Abstraction

Abstraction

Analyze Abstraction

Analyze finite graph

Over Approximate:

 $Safe \Rightarrow System Safe$

No false negatives

Problem

Spurious counterexamples

Idea 2: Counterex.-Guided Refinement

Solution

Use spurious counterexamples to refine abstraction!

Idea 2: Counterex.-Guided Refinement

Solution

Use spurious counterexamples to refine abstraction

 Add predicates to distinguish states across cut

Impried ision education ge

Iterative Abstraction-Refinement

[Kurshan et al 93] [Clarke et al 00] [Ball-Rajamani 01]

Solution

Use spurious counterexamples to refine abstraction

- Add predicates to distinguish states across cut
- 2. Build **refined** abstraction -eliminates counterexample
- Repeat search
 Till real counterexample or system proved safe

Unroll Abstraction

- 1. Pick tree-node (=abs. state)
- 2. Add children (=abs. successors)
- 3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

Error Free

Unroll Abstraction

- 1. Pick tree-node (=abs. state)
- 2. Add children (=abs. successors)
- 3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

Unroll

- 1. Pick tree-node (=abs. state)
- 2. Add children (=abs. successors)
- 3. On re-visiting abs. state, cut-off

Find min spurious suffix

- Learn new predicates
- Rebuild subtree with new preds.

Error Free

\$1: Only Abstract Reachable States

S2: Don't refine error-free regions

Predicates: LOCK

```
Example ( ) {
    i do{
        lock();
        old = new;
        q = q->next;

    2: if (q != NULL) {
        q ->data = new;
        unlock();
        new ++;
    }

4:}while(new != old);

5: unlock ();
}
```


Predicates: LOCK

```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;

    2: if (q != NULL) {
    3: q->data = new;
        unlock();
        new ++;
    }

4:}while(new != old);

5: unlock ();
}
```


Predicates: LOCK

```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;
    2: if (q != NULL) {
        3: q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
    5: unlock ();
}
```


Predicates: LOCK

```
Example ( ) {
    I: do{
        lock();
        old = new;
        q = q->next;
    2: if (q != NULL) {
    3: q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
}
```


Predicates: LOCK


```
Example ( ) {
    I: do{
        lock();
        old = new;
        q = q->next;
    2: if (q != NULL) {
    3:        q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
}
```


Predicates: LOCK

Reachability Tree

Analyze Counterexample

```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;
    2: if (q != NULL){
    3:        q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
    5: unlock ();
}
```


Predicates: LOCK

Analyze Counterexample

```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;
2: if (q != NULL) {
    3:        q->data = new;
        unlock();
        new ++;
    }
4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK

Reachability Tree

```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;
2: if (q != NULL) {
    3:        q->data = new;
        unlock();
        new ++;
    }
} 4:}while(new != old);
5: unlock ();
}
```

```
1 ¬LOCK
```


Predicates: LOCK, new==old

```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;
    2: if (q != NULL) {
        3: q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
    5: unlock ();
}
```


Predicates: LOCK, new==old

```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;
    2: if (q != NULL) {
        3: q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
    5: unlock ();
}
```


Predicates: LOCK, new==old

```
Example
1: do{
     lock();
     old = new;
                                                             ¬ LOCK
     q = q->next;
    if (q != NULL) {
3:
       q->data = new;
                                     LOCK, new==old
       unlock();
       new ++;
4: }while(new != old);
                              LOCK, new==old 3
5: unlock ();
                           \neg LOCK . \neg new = old
                                              [new==old]
```

Predicates: LOCK, new==old

Predicates: LOCK, new==old

Reachability Tree

Predicates: LOCK, new==old

Unroll

- 1. Pick tree-node (=abs. state)
- 2. Add children (=abs. successors)
- 3. On re-visiting abs. state, cut-off

Find min spurious suffix

- Learn new predicates
- Rebuild subtree with new preds.

Error Free

\$1: Only Abstract Reachable States

S2: Don't refine error-free regions

Technical Details

- Q: How to compute "successors"?
- Q: How to find predicates? [Interpolation]
- Q: How to analyze (recursive) procedures? [Context-free reachability]

Technical Details

#Predicates grows with program size

```
While(1) {
T ● 1: if (p₁) lock();
F if (p₁) unlock();
...
T ● 2: if (p₂) lock();
if (p₂) unlock();
...
n: if (pₙ) lock();
if (pₙ) unlock();
}
```

Tracking lock not enough

Problem:

 $p_1,...,p_n$ needed for verification Exponential reachable abstract states

#Predicates grows with program size

```
while(1) {
    if (p<sub>1</sub>) lock();
        if (p<sub>1</sub>) unlock();
    ...
    : if (p<sub>2</sub>) lock();
        if (p<sub>2</sub>) unlock();
    ...
    n: if (p<sub>n</sub>) lock();
        if (p<sub>n</sub>) unlock();
}
```


2ⁿ Abstract States

Problem:

 $p_1,...,p_n$ needed for verification Exponential reachable abstract states

Predicates useful *locally*

```
\begin{array}{c} \text{while(1)} \{ \\ \mathbf{p_1} \{ \begin{array}{c} \mathbf{1:} \text{ if } (\mathbf{p_1}) \text{ lock() }; \\ \text{ if } (\mathbf{p_1}) \text{ unlock() }; \\ \end{array} \\ \mathbf{p_2} \{ \begin{array}{c} \mathbf{2:} \text{ if } (\mathbf{p_2}) \text{ lock() }; \\ \text{ if } (\mathbf{p_2}) \text{ unlock() }; \\ \end{array} \\ \mathbf{m} \\ \mathbf{p_n} \{ \begin{array}{c} \mathbf{n:} \text{ if } (\mathbf{p_n}) \text{ lock() }; \\ \text{ if } (\mathbf{p_n}) \text{ unlock() }; \\ \end{array} \\ \} \end{array} \\ \end{array}
```


2n Abstract States

Solution: Use predicates only where needed Using Counterexamples:

- Q1. Find predicates
- Q2. Find where predicates are needed

Counterexample Traces

```
lock()
                           lock_1 = 1
                                                            lock_1 = 1 /
 old = new
                                                            old_1 = new_0 \Lambda
                           old_1 = new_0
 q=q->next
                           q_1 = q_0->next
                                                            q_1 = q_0->next /
                           assume(q_1 != NULL)
                                                            q, != NULL /
[q!=NULL]
                           (q_1 \rightarrow data)_1 = new_0
                                                            (q_1 \rightarrow data)_1 = new_0 \wedge
 q->data = new
                           lock_2 = 0
                                                            lock_2 = 0 /
 unlock()
                           new_1 = new_0 + 1
                                                            new_1 = new_0 + 1 /
 new++
[new==old]
                           assume(new,=old,)
                                                            new,=old,
                           assert(lock<sub>2</sub>=1)
unlock()
```

Trace

SSA Trace

Trace Feasibility
Formula

Thm: Trace is feasible

⇒ TF is satisfiable

Proof of Unsatisfiability

new1=old1

Proof of Unsatisfiability

```
Predicates: old=new, new=new+1, new=old
```

Add: old=new

[HenzingerJhalaM.Sutre02]

Counterexample Traces: Take 2

```
1: x = ctr;

2: ctr = ctr + 1;

3: y = ctr;

4: if (x = i-1) {

5: if (y != i) {

ERROR: }
```

```
1: x = ctr

2: ctr = ctr + 1

3: y = ctr

4: assume(x = i-1)

5: assume(y \neq i)
```

Trace Formulas

```
1: x = ctr
                           1: \mathbf{x}_1 = \mathbf{ctr}_0
                                                            x_1 = ctr_0
                                                        \wedge ctr<sub>1</sub> = ctr<sub>0</sub>+ 1
2: ctr = ctr+1
                           2: ctr_1 = ctr_0 + 1
3: y = ctr
                           3: y_1 = ctr_1
                                                        \wedge y_1 = ctr_1
                                                        4: assume(x_1=i_0-1)
4: assume(x=i-1)
5: assume(y≠i)
                                                        \Lambda y_1 \neq i_0
                           5: assume(y_1 \neq i_0)
        Trace
                                                       Trace Feasibility
                                  SSA Trace
                                                            Formula
```

Proof of Unsatisfiability

$$x_{1} = ctr_{0}$$

$$\wedge ctr_{1} = ctr_{0} + 3$$

$$\wedge y_{1} = ctr_{1}$$

$$\wedge x_{1} = i_{0} - 1$$

$$\wedge y_{1} \neq i_{0}$$

Trace Formula

$$\frac{x_1 = ctr_0 \quad x_1 = i_0 - 1}{ctr_0 = i_0 - 1} \frac{ctr_1 = ctr_0 + 1}{ctr_1 = i_0 \quad y_1 = ctr_1}$$

$$\frac{y_1 = i_0 \quad y_1 \neq i_0}{q_1 = i_0 \quad y_1 \neq i_0}$$

Proof of Unsatisfiability

The Present State...

Trace

```
1: x = ctr

2: ctr = ctr + 1 ... is all the information the executing program has here

4: assume(x = i-1)

5: assume(y \neq i)
```

State...

- 1. ... after executing trace past (prefix)
- 2. ... knows present values of variables
- 3. ... makes trace future (suffix) infeasible

At *pc*₄, which predicate on *present state* shows infeasibility of *future*?

```
Trace Trace Formula (TF)

1: x = ctr

2: ctr = ctr + 1

3: y = ctr

4: assume(x = i-1)

5: assume(y \neq i)

Trace Formula (TF)

x_1 = ctr_0

x_1 = ctr_0 + 1

x_1 = i_0 - 1
```

Trace

```
2: ctr = ctr + 1
```

1: x = etr

$$4: assume(x = i-1)$$

$$5: assume(y \neq i)$$

Relevant Information

1. ... after executing trace prefix

Trace Formula (TF)

$$x_1 = ctr_0$$

$$A \qquad x_1 = i_0 - 1$$

$$\Lambda \quad y_1 \neq i_0$$

Predicate ...

... implied by TF prefix

Trace

```
2: ctr = ctr + 1
```

1: x = ctx

$$4: assume(x = i-1)$$

$$5: assume(y \neq i)$$

Relevant Information

1. ... after executing trace prefix

2. ... has present values of variables

Trace Formula (TF)

$$\mathbf{x_1} = ctr_0$$

$$\Lambda$$
 ctr₁ = ctr₀+ 1

$$\Lambda$$
 $\mathbf{y}_1 = ctr_1$

$$A \qquad \mathbf{x_1} = \mathbf{i_0} - \mathbf{1}$$

$$A$$
 $y_1 \neq i_0$

Predicate ...

... implied by TF prefix

... on common variables

Trace

```
2: ctr = ctr + 1
```

$$3: v = ctr$$

1: x = ctx

$$4: assume(x = i-1)$$

$$5: assume(y \neq i)$$

Relevant Information

- 1. ... after executing trace prefix
- 2. ... has present values of variables
- 3. ... makes trace suffix infeasible

Trace Formula (TF)

$$x_1 = ctr_0$$

$$\wedge$$
 $ctr_1 = ctr_0 + 1$

$$\Lambda$$
 $y_1 = ctr_1$

$$\Lambda$$
 $\mathbf{y}_1 \neq \mathbf{i}_0$

Predicate ...

- ... implied by TF prefix
- ... on common variables
- ... & TF suffix is unsatisfiable

Interpolant = Predicate!

Another interpretation ...

Unsat = Empty Intersection = Trace Infeasible Interpolant Φ =

Overapproximation of states after prefix that cannot execute suffix

Main Questions

Q. How to find good predicates?
Where to track each predicate?

Q: How to compute interpolants? (And do they always exist?)

Another Proof of Unsatisfiability

$$x_{1} = ctr_{0} \quad x_{1} = i_{0} - 1$$

$$x_{1} - ctr_{0} = 0 \quad x_{1} - i_{0} + 1 = 0$$

$$ctr_{0} = i_{0} - 1 \quad ctr_{1} = ctr_{0} + 1$$

$$ctr_{1} = i_{0} \quad y_{1} = ctr_{1}$$

$$y_{1} = i_{0} \quad y_{1} \neq i_{0}$$

$$y_{1} - i_{0} = 0 \quad y_{1} - i_{0} \neq 0$$

$$y_{1} - i_{0} = 0 \quad y_{1} - i_{0} \neq 0$$

$$0 \neq 0$$

Proof of Unsatisfiability

Rewritten Proof

Interpolant from Rewritten Proof?

$$x_{1} = ctr_{0}$$

$$\wedge ctr_{1} = ctr_{0} + 1$$

$$x_{1} - ctr_{0} = 0$$

$$x_{1} - i_{0} + 1 = 0$$

$$x_{1} - ctr_{0} = 0$$

$$x_{1} - i_{0} + 1 = 0$$

$$x_{1} - ctr_{0} - i_{0} + 1 = 0$$

$$x_{1} - ctr_{0} - i_{0} + 1 = 0$$

$$x_{1} - ctr_{1} - ctr_{1} - 0$$

$$x_{1} - ctr_{1} - 0$$

$$x_{1$$

Trace Formula

Rewritten Proof

Interpolant from Rewritten Proof?

$$x_{1} = ctr_{0}$$

$$\wedge ctr_{1} = ctr_{0} + 1$$

$$\wedge y_{1} = ctr_{1}$$

$$\wedge x_{1} = i_{0} - 1$$

$$\wedge y_{1} \neq i_{0}$$

$$\text{Interpolate}$$

Trace Formula

$$x_{1}-ctr_{0}=0 \qquad \boxed{\times (\cdot 1)}$$

$$ctr_{1}-ctr_{0}-1=0 \qquad \boxed{\times 1}$$

$$y_{1}-ctr_{1}=0 \qquad \boxed{\times 1}$$

$$yy_{1}=0 \qquad \boxed{\times 1}$$

$$yy_{1}=0 \qquad \boxed{\times 1}$$

Interpolant!

```
Trace Trace Formula

1: x = ctr

2: ctr = ctr + 1

3: y = ctr

4: assume(x = i-1)

x_1 = ctr_0

x_2 = ctr_0

x_3 = ctr_0

x_4 = ctr_0

x_5 = ctr_0

x_7 = ctr_0

x_7 = ctr_0

x_7 = ctr_0
```

- •Cut + Interpolate at each point
- Pred. Map: pc_i □ Interpolant from cut i

```
Trace Trace Formula

Predicate Map

2: x = ctr

3: x = ctr - 1

x_1 = ctr_0

x_1 = ctr_0

x_1 = ctr_0

x_2 = ctr + 1

x_2 = ctr + 1

x_3 = ctr_1

x_4 = ctr_1

x_5 = ctr_1

x_7 = ctr_1
```

- •Cut + Interpolate at each point
- Pred. Map: pc; ☐ Interpolant from cut i

```
Trace Trace Formula

1: x = ctr

2: ctr = ctr + 1

3: y = ctr

4: assume(x = i-1)

x_1 = i_0 - 1

y_1 \neq i_0

Predicate Map

2: x = ctr

3: x = ctr - 1

4: y = x + 1

Predicate Map

2: x = ctr

3: x = ctr - 1

4: y = x + 1

x_1 = i_0 - 1

y_1 \neq i_0
```

- •Cut + Interpolate at each point
- Pred. Map: pc_i □ Interpolant from cut i

```
Trace Trace Formula

1: x = ctr

2: ctr = ctr + 1

3: y = ctr

4: assume(x = i-1)

x_1 = i_0 - 1

Predicate Map

2: x = ctr

3: x = ctr - 1

4: y = x + 1

5: y = i

Interpolate

y_1 = i_0

y_1 \neq i_0
```

- •Cut + Interpolate at each point
- Pred. Map: pc; ☐ Interpolant from cut i

Local Predicate Use

Use predicates needed at location

- #Preds. grows with program size
- **#Preds per location small**

Predicate Map 2: x = ctr

3: x = ctr - 1

4: y = x + 1

5: y = i

Global Predicate use

Ex: 2ⁿ states

Local Predicate use

Ex: 2n states

Question: When Do Interpolants Exist?

- Craig's Theorem guarantees existence for first order logic
- But we are interpreting formulas over theories (arithmetic, theories of data structures)

The Good News

- Interpolants always exist for recursively enumerable theories
 - The proof is a simple application of compactness
- So: interpolants exist for Presburger arithmetic, sets with cardinality constraints, theory of lists, (quantifier-free) theory of arrays, multisets, ...

The Bad News

- "The proof is a simple application of compactness"
 - May be algorithmically inefficient
 - Daunting engineering task to construct interpolating decision procedure for each individual theory

An Alternate Path: Reduction

- Want to compile formulas in a new theory to formulas in an old theory such that interpolation in the old theory imply interpolation in the new theory
- T reduces to R: can compile formulas in theory T to formulas in theory R
 - And use decision procedures for R to answer decision questions for T
- Technically: Given theories T and R, with R⊆ T, a reduction is a computable map µ from T formulas to R formulas such that for any T-formula φ:
 - ϕ and $\mu(\phi)$ are T-equivalent
 - ϕ is T-satisfiable iff $\mu(\phi)$ is R-satisfiable

Example: Theory of Sets

Theory of sets reduces to theory of equality with uninterpreted functions

```
 \begin{array}{lll} x = y & \forall \ e. \ e \in x \Leftrightarrow e \in y \\ x = \emptyset & \forall \ e. e \notin x \\ x = U & \forall \ e. e \in x \\ x = \{e\} & e \in x \land \forall \ e'. e' \in x \Rightarrow e = e' \\ x = y \cup z & \forall \ e. e \in x \Leftrightarrow e \in y \lor e \in z \\ x = y \cap z & \forall \ e. e \in x \Leftrightarrow e \in y \land e \in z \\ \end{array}
```

Example: Theory of Multisets

Theory of multisets reduces to the combination theory of equality with uninterpreted functions and linear arithmetic

```
x = y \forall e. count(x,e) = count(y,e)

x=\emptyset \forall e. count(x,e) = 0

x=[(e,n)] count(x,e)=max(0,n)

\land \forall e'.e'\neq e \Rightarrow count(x,e')=0

x=y \uplus z \forall e. count(x,e)=count(y,e)+count(z,e)

x=y \cup z \forall e. count(x,e)=max(count(y,e), count(z,e))

x=y \cap z \forall e. count(x,e)=min(count(y,e), count(z,e))
```

Reduction and Interpolation

```
\Psi and \Psi in Theory T
\Phi and \Phi in Theory R
             Interpolate in R
Interpolant \alpha in
Theory R as well as T
                Eliminate quantifiers in T or R
  Quantifier-free
  interpolant
```

Reduction Theorem

- Interpolants for the theory of arrays, sets, and multisets can be computed by reduction to the combination theory of linear arithmetic and equality with uninterpreted functions
 - We already have interpolating decision procedures for this latter theory

Lazy Abstraction

Problem: #Preds grows w/ Program Size

Solution: Localize pred. use, find where preds. needed

Refinement Failure: Unrolling Loops

```
x = 0; y = 50;
while ( x<100 ) {
  if ( x>=50 ) y = y+1;
  x = x+1;
}
assert( y==100 );
```

```
    counterexample:
        x=0; y=50; x>=100; y==100
        refinement: x==0
    counterexample:
        x=0; y=50; x<100; x=x+1; x>=100; y==100
        refinement: x==1
    counterexample:
        x=0; y=50; x<100; x=x+1; x<100; x=x+1;
        x>=100; y==100
        refinement: x==2
```

Refinement Failure: Unfolding Arrays

```
for (i=0; i<n; i++) {
    a[i]=i;
}
for (j=0; j<n; j++) {
    assert( a[j]==j );
}</pre>
```

· counterexample:

```
i=0; i<n; a[i]=i; i++; i>=n;
j=0; j<n; a[j]!=j
refinement: a[0]==0</pre>
```

· counterexample:

```
i=0; i<n; a[i]=i; i++; i<n; a[i]=i; i++; i>=n;
j=0; j<n; a[j]==j; j++; j<n; a[j]!=j
refinement: a[1]==1</pre>
```

• ...

What went Wrong?

- Consider all unrolled counterexamples at once
 - Convergence of abstraction discovery
- Inspect families of counterexamples of unbounded length
 - Justification for unbounded universal quantification
- Looking at one counterexample path at a time is too weak [JhalaMcMillan05,JhalaMcMillan06]

Path Programs

Treat counterexamples as programs

Meaning of Path Programs

Path program ' (Possibly unbounded) sets of counterexamples:

Unbounded counterexamples

- · Property-determined fragment of original program
 - Can be analyzed independently to find good abstractions

Path Invariants

- Invariant for path programs 'path invariant
- Abstraction refinement using path invariants
 - Elimination of all counterexamples within path program
 - Justification for unbounded quantification

Invariant Generation

- Given a path program, with a designated error location, find an invariant that demonstrates error is not reachable
 - Can scale: Reduced obligation to program fragment
 - Outer model checking loop integrates path invariants into program invariant
- Can use any technique
- We use constraint-based invariant generation [SankaranarayananSipmaManna04, BeyerHenzingerM. Rybalchenko07]

Lecture 3:
Technical Extensions
and
Termination

Rupak Majumdar

Technical Details

Q. How to analyze recursive procedures?

An example

```
main(){
1: if (flag){
2: y = inc(x, flag);
3: if (y<=x) ERROR;
  } else {
4: y = inc(z, flag);
5: if (y>=z) ERROR;
return;
```

```
inc(int a, int sign){
1: if (sign){
2:    rv = a+1;
    } else {
3:    rv = a-1;
    }
4: return rv;
}
```

Inline Calls in Reach Tree

Inline Calls in Reach Tree

Problem

- Repeated analysis for "inc"
- Exploding call contexts

2ⁿ nodes in Reach Tree

Inline Calls in Reach Tree

Problem

- Repeated analysis for "inc"
- Exploding call contexts
- Cyclic call graph (Recursion)
 - Infinite Tree!

Solution: Procedure Summaries

Summaries: Input/Output behavior

- Plug summaries in at each callsite
 ... instead of inlining entire procedure
 [Sharir-Pnueli 81, Reps-Horwitz-Sagiv 95]
- Summary = set of (F □ F')
 - F: Precondition formula describing input state
 - F': Postcondition formula describing output state

Solution: Procedure Summaries

```
inc(int a, int sign){
1: if (sign){
2:    rv = a+1;
    } else {
3:    rv = a-1;
    }
4: return rv;
}
```

- $(\neg sign=0 \square rv > a)$
- (sign = 0 \square rv < a)

- Summary = set of (F □ F')
 - F: Precondition formula describing input state
 - F': Postcondition formula describing output state

Q. How to compute, use summaries?

Lazy Abstraction + Procedure Summaries

Q. How to compute, use summaries?

Abstraction with Summaries

```
main
main() {
1: if (flag)
     y = inc(x,flag)
                                           [flag!=0]
     if (v<=x) ERROR;
                              ¬ flag=0
     y = inc(z,flag);
                                            a=x
     if (v>=z) ERROR;
                                            sign=flag
                              ¬ sign=0
return;
inc(int a, int sign){
1: if (sign) {
     else
4: return rv;
```

Predicates: flag=0, y>x, y<z sign=0, rv>a, rv<a

Abstraction with Summaries

sign=0, rv>a, rv<a

Summary Successor

```
inc
                                           main
main() {
                                                               ¬ sign=0
 1: if (flag) {
2: y = inc(x,flag);
3: if (y<=x) ERROR;</pre>
    if (y<=x) ERROR;
     else
                                ¬ flag=0
      y = inc(z,flag);
                                              sign=flag
      if (v>=z) ERROR;
                                              assume rv>a
 return;
 inc(int a, int sign){
 1: if (sign) {
      rv = a+1;
      else
      rv = a-1;
 4: return rv;
                                                Summary: (\neg sign=0 \square rv>a),
Predicates: flag=0, y>x, y<z
               sign=0, rv>a, rv<a
```

Abstraction with Summaries

Abstraction with Summaries

Predicates: flag=0, y>x, y<z sign=0, rv>a, rv<a Summary: $(\neg sign=0 \ \Box \ rv>a)$, $(sign=0 \ \Box \ rv<a)$

Summary Successor

Predicates: flag=0, y>x, y<z sign=0, rv>a, rv<a Summary: $(\neg sign=0 \ \Box \ rv>a)$, $(sign=0 \ \Box \ rv<a)$

Abstraction with Summaries

```
main
                                                                        inc
main() {
                                                                                  sign=0
                                                           ¬ sign=0
1: if (flag){
     y = inc(x,flag);
     if (y<=x) ERROR;
    else {
                              ¬ flag=0
     y = inc(z,flag);
    if (v>=z) ERROR;
                                                            rv>a
return;
                                                   [y>=z]
inc(int a, int sign){
1: if (sign) {
     rv = a+1;
     else
     rv = a-1;
4: return rv;
```

Predicates: flag=0, y>x, y<z Summary: $(\neg sign=0 \ \Box \ rv>a)$, sign=0, rv>a, rv<a ($sign=0 \ \Box \ rv<a$)

Another Call ...

Predicates: flag=0, y>x, y<z, y1>z1 Summary: $(\neg sign=0 \ \Box \ rv>a)$, sign=0, rv>a, rv<a ($sign=0 \ \Box \ rv<a$)

Another Call ...

Technical Details

Q. How to perform interpolation in the presence of recursive calls?

Traces with Procedure Calls

Interprocedural Analysis

Problems with Cutting

Caller variables common to ψ^- and ψ^+

• Unsuitable interpolant: not well-scoped

Scoped Cuts

Scoped Cuts

Predicate at pc_i = Interpolant from cut i

Common Variables

Predicate at pc_i = Interpolant from i-cut

When does a Program Terminate?

Iff its reachable transition relation is well-founded

Reachable transition relation =
 TR(x,x') \(\cap \) Reach(x) \(\times \) Reach(x') =
 Restriction of the transition relation to
 the set of reachable states

Well-Founded Relation

 A binary relation > is well-founded if there is no infinite descending sequence

No s0, s1, s2,... such that
 s0 > s1 > s2 > ...

Example: > on natural numbers
But not > on integers

Idea: Rank Functions

Fix a set X, and > a wf relation on X

Suppose I can map each reachable state s
 of the transition graph to a rank r(s)∈ X
 s.t.

$$s \rightarrow s'$$
 implies $r(s) > r(s')$

Then the system must terminate The converse is also true

Example

Input x, n
While(x <= n) x++;

Terminates, using (roughly) the rank function n-x

Does it, really?

Disjunctive Rank Functions

 In many cases, finding a single wf relation can be difficult

Suppose I can find wf relations T1,...,Tk
 such that RTR ⊂ T1 ∪ ... ∪ Tk

- Does the program terminate?
 - Not in general (Why?)

Disjunctive Well-foundedness

If T1...Tk are wf relations and

 $R^+ \subseteq T1 \cup ... \cup Tk$

Then: R is well-founded

Such R is called disjunctively well-founded

Disjunctive Well-foundedness

P terminates if TR ∩ Reach×Reach is disjunctively well-founded

Useful: Can consider individual portions of the program independent of other parts

Incremental Termination

```
T = emptyset
While TR+ not included in T:
 invariant: T is a finite union of wf relations
 find abstract counterexample to wf
 if concretely feasible
  does not terminate
 otherwise find wf relation T'
 T = T \cup T'
```

Counterexample to Termination

- Lasso = Stem + Cycle
 - Represents infinite execution
 Stem Cycle Cycle ...

Needs rank-finding technique to find a wf relation showing lasso cannot be executed arbitrarily (Heuristics exist)

Reduction to Safety

 How to check if R⁺ ⊆ T for the reachable transition relation?

- Can reduce check to safety
- Run program parallel with a monitor for T
 - runs in parallel with the program
 - inspects pairs of states wrt. T
 - goes to error if observes (s, s') ∉ T
 - Use non-determinism to perform check

Reduction to Safety: Idea

```
selected := \perp
phase := SELECT
while True {
  switch (phase) {
    SELECT: if ( nondet() ) {
             selected := current
              phase := CHECK
    CHECK: if ( (selected, current) ∉ T ) { ERROR: }
```

Terminator

- Input: program written in C
- Language features supported
 - nested loops, gotos
 - aliasing
 - (mutually) recursive function calls
- Output:
 - termination proof: transition invariant
 - counterexample: lasso = stem + cycle
- Scalability: (on drivers from WinDDK)