Software Verification and
Abstraction

Rupak Majumdar

Lecture 1: Model Checking
Basic Concepts

Rupak Majumdar

Model checking,

Automatic algorithmic techniques for
system verification which operate on a
system model (semantics)

Somewhat General View

Model checking,

Decision procedures for checking if a given Kripke
structure is a model for a given formula of a modal
logic (CTL or LTL).

Our view includes
- Dataflow analysis in compilers
- Symbolic execution based methods
Our view excludes
- Language design for ensuring properties
- Proof calculi and interactive theorem proving

There are many different model checking
algorithms, depending on

e The system model

» The specification formalism

Discrete Systems Theory

Trajectory: dynamic evolution of state
sequence of states

Model: generates a set of trajectories N\
transition graph
Property: assigns boolean values to trajectories

temporal logic formula ‘red and green
alternate”

Algorithm: compute values of the trajectories
generated by a model

->0->0>0~>

Paradigmatic Example: Mutual Exclusion

loop [l loop
out: x1:=1; last:=1 out: x2:=1; last:=2
req: await x2=0 or last=2 req: await x1=0 or last=1
int x1:=0 int x2:=0
end loop. end loop.
P1 P2

Property: It is never the case that P1 and P2 are both at "in’

System Modeling

e Various factors influence choice of model
- State based vs event based
- Concurrency model

» While the choice of system model is important for ease
of modeling in a given situation,

the only thing that is important for model checking is that
the system model can be translated into some form of
state-transition graph.

» So: Will not focus much on syntactic constructs

Syntax: Finite State Programs

« Parallel composition of C programs,
without function calls

» Each variable has a finite range

« We’ll write such programs as guarded
commands

Semantics: State Transition Graph

Q

set of states {94,9,,95}
initial state q,
transition relation q; - qQ

set of atomic observations {a,b}

observation function [q,] = {a}

Important Restriction

Until notified, restrict attention to
finite-state transition systems

Q is finite

Example: Mutual Exclusion

loop [l loop
out: x1:=1; last:=1 out: x2:=1; last:=2
req: await x2=0 or last=2 req: await x1=0 or last=1
int x1:=0 int x2:=0

end loop. end loop.

P1 P2

pcl: {o,r,I}
pc2: {o,r,i}
x1: {0,1}

@ x2: {0 1)
last: {1,2}
N\ 332212 = 72 states

State Explosion Problem

The translation from a system description to
a state-transition graph usually involves an
exponential blow-up !!!

e.g., nboolean variables = 2" states

System Verification Problem

I E S

/N

“Implementation” “Specification”
System model System properties
“models” “implements” “refines

Satisfaction relation

System Properties

Some orthogonal dimensions in choosing specification
formalisms

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear time

2 prohibiting bad vs. desiring good behavior:
safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems

Safety vs Liveness

 Safety: Something “bad” will never happen

- Program does not produce bad result
“partial correctness”

: Mutual exclusion

 Liveness: Something “good” eventually
happens
- The program produces a result “termination”

: A process wanting to go to the critical
section eventually gets in

Safety vs Liveness Contd.

« Safety: those properties whose violation
always has a finite witness
- “if something bad happens on an infinite run,
then it happens already on some finite
prefix” --- Can be checked on finite runs
« Liveness: those properties whose
violation never has a finite witness
- “no matter what happens along a finite run,

something good could still happen later” ---
Must be checked on infinite runs

Two Remarks

1. The vast majority of properties to be
verified are safety

2. While nobody will ever observe the
violation of a true liveness property,
liveness is a useful abstraction that turns
complicated safety into simple liveness

Accordingly, we focus on safety for most of the
lectures

Safety Model Checking

Requirement: The system should always stay
within some safe region

Input: A state transition graph
Input: A set of good states “invariants”

Output: “Safe” if all executions maintain the
invariant, “Unsafe” otherwise (and a trace)

From Safety to Reachability

 Input: A state transition graph
 Input: A set of bad states

o Output: “Safe” if there is no run from an
initial state to any bad state, “Unsafe”
otherwise (and a trace)

Model Checking Algorithm

» Graph Search
- Linear time in the size of the graph

- Exponential time in the size of the
rogram

= >

Enumerative Model Checking

e Provide access to each state

» For each state, provide access to
neighboring states

« Implement classical graph algorithms
- Depth-first or breadth-first search

- Starting from initial states and searching
forward for bad states

- Or starting from bad states and searching
backward for initial states

State Space Explosion

» Biggest problem is state space explosion
- N bits = 2N states
e Many heuristics
- Search on-the-fly,
- partial order and symmetry reduction
- Do not store dead variables

» Many successful implementations
» Spin, Murphi, Verisoft, ... [Protocol verification]

Symbolic Model Checking

 |ldea: Work with sets of states, rather
than individual states

Given: Transition graph G, target states o'
begin
- oR = set of Initial states
- repeat forever

if oR N o # Othen return “yes”

if Post(oR)C oR then return “no”

oR := gR U Post(oR)

end

Here, Post(o) = {s’| [k0a. s - s’}

Encoding Sets through Formulas

« ldea: Represent sets of states
symbolically, using constraints

e E.g., 1 < x <100 represents the 100
states x =1, x =2, ..., x =100

» Represent both sets of initial states and
transition relation implicitly

Representing States as Formulas

[F]

states satisfying F {s | s F }
[F 1N [F,]

[F]1 U [F]

[F]

[F:] C [F.]

F

FO fmla over prog. vars

F, \NF,
F,VF,

- F

F, implies F,

i.e. F,/— F, unsatisfiable

Symbolic Transition Graph

e A transition graph
- A Formula Init(x) representing initial states

- A Formula TR(x,x’) representing the
transition relation

« Example: C program
X:=e TR(x,x’): loc=pclloc’=pc’[X’ = e[} y’=y | y#x}
Assume(p) TR(x,x’): loc=pcloc’=pc’p

Symbolic Transition Graph

» Operations:
- Post(X) ={s’ | (kOX.s - s’}
= [k. X(s) OTR(s,s’)

- Pre(X) ={s | ¥’0X.s - s’}
= [k’. TR(s,s’) OOX(s’)

« Can implement using formula manipulations

Symbolic Model Checking

Given: Transition graph G, target states o'
begin
- oR = Formula representing set of Initial states
- repeat forever

if oR O 0T is satisfiable then return “yes”

if Post(oR) = oR then return “no”

oR := oR O Post(aR)

end

Here, Post(o)(s’) = (k. a(s) OTR(s,s’)

Can be implemented using decision procedures for the
language of formulas

Finite State Systems

Symbolic representation in propositional logic
State described by n bits X

A region is a propositional formula with free
variables in X

Can implement symbolic operations using
propositional formula manipulations

Example: Mutual Exclusion

loop [| loop
out: x1:=1; last =1 out: x2 = 1; last := 2
req: await x2=0 or last=2 req: await x1=0 or last=1
inn x1:=0 int x2:=0

end loop. end loop.

Symbolic representation has variables
pc1,pc2, x1, x2, last
Initial states: _
pc1=out [pc2=out Ox1=0 [0x2=0 Eﬁ.;‘;?s”a'”‘
Transition relation:
pc1=outldx1’=10last’=10 pc2’=pc2[]x2’=x2
O..

Additional Desirable Properties

All operations must be efficient in practice

Should maintain compactness whenever
possible

Canonical representations

Representing initial states and transition

relation from the program description should be
efficient

Binary Decision Diagrams

« Efficient representations of boolean functions
[Bryant86]

» Share commonalities
e Ordered BDDs:
- Fix a linear ordering of the variables in X

- BDD = DAG, with nodes labeled with boolean
variables

- Each variable occurs 0 or 1 times along a path
- Paths in the DAG encode assignments to variables

« Extremely successful in hardware verification

More on Safety Properties

» Not all safety properties can be written
as invariants on the program state space

» For example, if correctness depends on
the order of events
- Locks can be acquired and released in
alternation, it is an error to acquire/release
a lock twice in succession without an
intermediate release / acquire

Monitors

» Write the ordering of events as an automaton
(called the monitor)

» Take the product of the system with the
monitor

- The monitor tracks the sequence of events

- It goes to a special “bad” state if a bad sequence
occurs

« Now we can express the property as an
invariant: the monitor state is never bad

Symbolic Search

e Guaranteed to terminate for finite state
systems

» And can be applied to infinite state
systems as well
- Although without guarantees of termination
in general

- Application to infinite state requires richer
languages for formulas and associated
decision procedures

What about Software?

» Can construct an infinite state transition system
from a program

 States: The state of the program
- (stack, heap, pc location)

« Transitions: g— q’ iff in the operational
semantics, there is a transition of the program
fromqtoq’

« Initial state: Initial state of the program

Termination

» Each operation can be computed

» But iterating Pre or Post operations may
not terminate

 What do we do now?

Observation

« Often, we do not need the exact set of
reachable states

- We need a set of states that separates the reachable
states from the bad states

>

One Possibility

» User gives an estimate (inductive invariant)
A set of states Inv such that
-InitdInv -Invn bad=0 - Post(Inv) O Inv

* Can show that this implies system is safe (How?)

* Given Inv, and decision procedures, this
procedure is guaranteed to terminate

- This is the idea of classical loop invariants

- Problem: In general, it can be hard to manually
construct Inv

Before we proceed

« What is the sign of the following product:

- 12433454628 * 94329545771 ?

|dea

» One can “abstract” the behavior of the
system, and yet reason about certain
aspects of the program

e Abstraction:
-ve * +ve = -ve

Model Checking Algorithm

» Graph Search

Abstract Interpretation

« The state transition graph is large/infinite
« Suppose we put a finite grid on top

[m] [l = = = >

Existential Abstraction

» Every time s — s’, we put [s] — [s’]
e This allows more behaviors

=) 5 = = =z vao

Abstract Model Checking

 Search the abstract graph until fixpoint
- Can be much smaller than original graph
- Can be finite, when original is infinite

[m] [l = = = >

Simulation Relations

e Arelation < C Qx Qis a simulation relation if
s=< s’ implies
- Observation(s) = Observation(s’)
- For all t such that s— t

there exists t’ such that s’— t’
ands’ <t’

Formally captures notion of “more behaviors”
Implies containment of reachable behaviors

Main Theorem

e s =< [s]is asimulation relation

« If an error is unreachable in Abs(G) then it
is unreachable in G

e Plan:
1. Find a suitable grid to make the graph
finite state

2. Run the finite-state model checking
algorithm on this abstract graph

3. |If abstract graph is safe, say “safe” and
stop

What if the Abstract Graph says Unsafe?

» The error may or may not be reachable in
the actual system

- Stop and say “Don’t know”

>

What if the Abstract Graph says Unsafe?

» Or, put a finer grid on the state space
» And try again

- The set of abstract reachable states is smaller
- Where do these grids come from?

>

Grids: Predicate Abstraction

» Suppose we fix a set of facts about program variables
- E.g., old = new, lock =0, lock =1

« Grid: Two states of the program are equivalent if they
agree on the values of all predicates
- N predicates = 2N abstract states

o How do we compute the grid from the program?

Predicate Abstraction

Region Representation: formulas over predicates
& BB R

Piix=y Piz=t+y
—P,,~P,
Py, P, ' P;ix < z+1 Py:*u=x
Pu P2 Set of states
Py =P,

Abstract Set: P,P,P,v-P, P,P; P,
Karnaugh Map

Predicate Abstraction

PP,
Py, Py
Py, P,

Py, P,

4l
J:gU
J
9
O
J
B0

Pl:x:y PZ:Z=t+y

P;ix < z+1 P,:i*u=x

Karnaugh Map

Box: abstract variable valuation
BoxCover(S): Set of boxes covering S
Theorem prover used to compute BoxCover

Post#, Pre

-P,,—-P,
_‘Pl P, .
P, P, — post(S)
#
Put, |] post*(s)

e pre(S,op) ={s | Is’S. s - s’} (Weakest Precondition)
e post(S,0p) ={s | Is’eS. s’ —°P s} (Strongest Postcondition)

o Abstract Operators: post?
post(S,op) C post*(S,op)

Computing Post?

BRER
-P,,-P,
_‘Pl P, .
P, P, — post(S)
#
P, R, | post”(S)
» For each predicate p, check if
- S= Pre(p, op) then have a conjunct p
- S= Pre(- p, op) then have a conjunct - p
- Else have no conjunct corresponding to p

« Use a theorem prover for these queries

Example

« | have predicates

- lock=0, new=old, lock=1
e My current region is lock = 0 A new=old
« Consider the assighment new = new+1

« What is abstract post?

Example

WP(new:=new+1, lock=0) is lock=0
WP (new:=new+1, lock=1) is lock=1
WP(new:=new+1, new=old) is new+1=old

lock=0A new=old = lock =0 YES
lock=0A new=old = lock # 0 NO
lock=0A new=old = lock = 1 NO
lock=0A new=old = lock # 1 YES
lock=0A new=old = new+1=old NO
lock=0A new=old= new+1# old YES

So post is lock = 0 A lock# 1 A new# old

Symbolic Search with Predicates

Symbolic representation:
Boolean formulas of (fixed set of) predicates

Boolean operations: easy
Emptiness check: Decision procedures

Post: The abstract post computation algorithm

Can now implement symbolic reachability search!

Big Question

« Who gives us these predicates?

e Answer 1: The user

- Manual abstractions

« Given a program and property, the user figures
out what are the interesting predicates

- Dataflow analysis

« For “generic” properties, come up with a family
of predicates that are likely to be sufficient for
most programs

Abstract Interpretation

» Abstract model checking is formalized
through abstract interpretation

- Formalizes and unifies semantics-based
program analysis

More Approximations

« Many program dataflow analyses do not
perform exact reachability analysis on
the abstract state space

« Instead, use the structure of the control
flow graph to further approximate the
result

Example: Flow Sensitive Analysis

 For each control flow node, keep track of
the set of reachable states (along any
program path) to that node

- Information may be lost at merge points by
abstracting [by something coarser

« Assumption: All paths of the control flow
graph can be executed
- Ignore conditional statements

Flow Insensitive Analysis

« Even more approximate

« Disregard the order of operations in the
program!

e Much faster analysis than abstract model
checking

- But results are much cruder of course!

- Can still be useful: e.g., primary way to
perform alias analysis

When | run a model checker, it goes to
compute the result and never comes
back. When | run a dataflow analysis, it
comes back immediately and says “Don’t
know”!

- Patrick Cousot

Lecture 2:
Software Model Checking
and
Counterexample-Guided Refinement

Rupak Majumdar

Recap

» Model checking is an algorithmic
technique to verify properties of systems

« In conjunction with abstractions, can be
effective in proving subtle properties

» Today: Consider the problem of abstract
model checking of (sequential) software
implementations

Setting: Property Checking

« Programmer gives partial specifications

» Code checked for consistency w/ spec

« Different from program correctness
- Specifications are not complete
- Is there a complete spec for Word ? Emacs ?

Interface Usage Rules

UNIX

NETWORK
PROGRAMMING

OMPLETE

Driver)
Development Kit

 Rules in documentation

- Order of operations & data access
- Resource management

- Incomplete, unenforced, wordy

« Violated rules = bad behavior
- System crash or deadlock

- Unexpected exceptions

- Failed runtime checks

Property 1: Double Locking

unl ock | ock

“An attempt to re-acquire an acquired lock or
release a released lock will cause a deadlock.”

Calls to lock and unlock must alternate.

Property 2: Drop Root Privilege

[Chen-Dean-Wagner '02]

“User applications must not run with root privilege”

When execy is called, must have suid # 0

Property 3

IRP Handler

IRP accessible

completion

CallDriver

Complete

start P

Mark [Pending

s

skip1 SNVl gy iy

N A CaIDnve
MPR3 ——synch
e 4 ~ | CallDriver
W PPC
i con'\:‘ l:I’eRtion Complete
MPR2 S@lDrivet fyiop p e
no prop
completion CallDriver

N/A

Pending

N
e

[Fahndrich]

Does a given usage rule hold?

« Undecidable!
- Equivalent to the halting problem

» Restricted computable versions are
prohibitively expensive (PSPACE)

 Why bother ?
- Just because a problem is undecidable,
it doesn’t go away!

Example

Exanple (){
1: dof
| ock();
old = new;
g = g->next;
2: if (g != NULL){
3: g->data = new;
unl ock();
new ++;

4: } while(new != old);

5: unlock ();
return;

}

unl ock

| ock

What a program really is...

State
‘ Transition ‘
pc 3 3: unlock(); pc L4
lock ' @ new++; lock ' Q
old 5 4;},_, old 5
new (5 new [6
q [0 0x133a q [0x133a
Exanple (){
1: do{
lock();
old = new,
q =g->next;
2: i (q!= NULL)
3: g->data = new;
unl ock();
new ++;

}
4: } while(new != old);
5: unlock ();
return;}

The Safety Verification Problem

Error

Safe

Initial

Is there a path from an initial to an error state ?
Problem: Infinite state graph
Solution : Set of states ~ logical formula

Idea 1: Predicate Abstraction

\.

lock

old = new

T~ .\./ ./,. » Predicates on program state:
) .

|

L J

.\:\. @

» States satisfying same predicates
are equivalent

S R I3
;
|

AN

o—|ro—e
o ..
/.
o—e

- Merged into one abstract state

]
S

1
=)

~

o #abstract states is finite

By

i

S
i

'\47 i — 470\14 e
.

[3

Abstract States and Transitions

41

State

3: unl ock();

® new++;
5 4} ...
Ox1

Theorem Prover

lock
old=new

pc
ck 0O

- lock
- old=new

Abstraction

[4 1 414 bl

v I__»I__» | [
)) 4
S [y

| A x4

bl I

A4 v At

Existential Lifting

State
3: unl ock(); C
@& new++; (o)
4} ... 5

Theorem Prover

lock - lock

old=new -
old=new

Abstraction

I I
vi I__»I__»I [
| S Y
ENERERE
L L4 T 4N 4 4
NENEN I
A I
A L4l

State

o

o

3: unl ock();
< U@ new++;
g 4} ...
_—
lock - lock
old=new -

old=new

Analyze Abstraction

I
'
4

> —t

|
'

/

— —— —]

|
!

Analyze finite graph

Over Approximate:
Safe = System Safe

No false negatives

Problem
Spurious counterexamples

Idea 2: Counterex.-Guided Refinement

Solution

Use spurious counterexamples
to refine abstraction !

>

Idea 2: Counterex.-Guided Refinement

Solution

Use spurious counterexamples
to refine abstraction

1. Add predicates to distinguish
states across cut

PrBiritdisitnedu toactione

Iterative Abstraction-Refinement

/

[Kurshan et al 93] [Clarke et al 00]
[Ball-Rajamani 01]

Solution
Use spurious counterexamples
to refine abstraction

1. Add predicates to distinguish
states across cut

2. Build refined abstraction
-eliminates counterexample

3. Repeat search
Till real counterexample
or system proved safe

Reachability Tree

Initial .
Unroll Abstraction

1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

Reachability Tree

Initial

Unroll Abstraction

1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

Error Free

Reachability Tree

Initial

Error Free

SAFE

Unroll

1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min spurious suffix
- Learn new predicates

S1: Only Abstract Reachable States

S2: Don’t refine error-free regions

Build-and-Search

Exanpl e (){
1: do{
I ock();

old = new;

q = g->next; II‘ ~LocK
2: if (g != NULL){
3: g->data = new;

unl ock();
new ++;

4:}while(new != old);
5: unlock ();
}

Reachability Tree

Predicates: Lock

Build-and-Search

Example (){
1: dof
I ock();
old = new;
g = g->next; 1 ock() - LOCK
2: if (g != NULL){ old = new [)
3: g->data=new; TR
unl ock(); LOCK
new ++;

4:}while(new != old);
5: unlock ();
}

]

Predicates: Lock

Reachability Tree

Build-and-Search

Exanmple (){

1: do{
I ock();
old = new;
g = g->next;

| 2: if (g != NULL){

37 g->data = new,
unl ock();
new ++;

4:}while(new != old);
5: unlock ();
}

1 2—3

Predicates: Lock

Reachability Tree

Build-and-Search

Example (){
1: do{
I ock();
old = new;
g = g->next;
2: if (g != NULL)Y{
3: g->data=new;
unl ock();
new ++;

}
4:}while(new != old);
5: unlock (); g->data = new

unl ock()

new++

W=

BERE

Predicates: Lock

Reachability Tree

Build-and-Search

Exanmple (){
1: do{
I ock();
old = new;
q = g->next;
2: if (g != NULL){
3: g->data = new;
unl ock();
new ++;
1

| 4:}while(new != old);

5: unlock ();
}

£

w—h

EERE

Predicates: Lock

[new==old]

Reachability Tree

Build-and-Search

Exanple (){
1: do{
I ock();
old = new;
q = g->next;
2: if (g != NULL){
3: g->data=new;
unl ock();
new ++;

4:}while(new '= old);

[5: unlock () |
}4
5
+ unl ock()
4
t
1—|—»2——»3

Reachability Tree

Predicates: Lock

Analyze Counterexample

Exanmple (){
1: do{
I ock();
old = new;
q = g->next;
2: if (g != NULL){
3: g->data = new;
unl ock();
new ++;

}
4:}while(new != old);
5: unlock ();

}

]

w—h

EERE

Predicates: Lock

1 ock()
old = new
g=g->next

[g!=NULL]

q->data = new
unl ock()
new-++

[new==old]

unl ock()

Reachability Tree

Analyze Counterexample

Exanmple (){
1: do{
I ock();
old = new;
q = g->next;
2: if (g != NULL){
3: g->data = new;
unl ock();
new ++;

}
4:}while(new != old);
5: unlock ();

}

]

w—h

EERE

Predicates: Lock

- LOCK

o old = new
LoCK

newt+

[new==ol d]

Inconsistent

new == old

Reachability Tree

Repeat Build-and-Search

Exanpl e (){
1: do{
I ock();

old = new;
q = g->next; II‘ ~LocK
2: if (g != NULL){
3: g->data = new;
unl ock();
new ++;

4:}while(new != old);
5: unlock ();
}

Reachability Tree

Predicates: LoCK, new==old

Repeat Build-and-Search

Exanp
1: dof

e O{

I ock();
old = new;
g = g->next;

2: it (q = NULL){

3: g->data = new;

4:}while(new != old);

5. un

unl ock();

new ++;

lock ();

1

2

Predicates: LoCK, new==old

n - LOCK

. 1 ock()
LOCK , new==old old = new
g=g->next

Reachability Tree

Repeat Build-and-Search

Exanple (){

1: do{

I ock();
old = new;
q = g->next;

2: if (g != NULL){

3: g->data = new;

unl ock();

new ++;

4:}while(new != old);

5: unlock ();
}

1

4

213

LOCK , new==old

LOCK , new==old F——

O unl ock()
++
- LOCK , —new = old new

Reachability Tree

Predicates: LoCK, new==old

Repeat Build-and-Search

Exanmple (){

1: do{
I ock();
old = new;
q = g->next;

2: if (g != NULL){

3: g->data = new;
unl ock();

new ++;
}

| 4:}while(new != old);

5: unlock ();
}

Predicates: LoCK, new==old

[new==old]

Reachability Tree

Repeat Build-and-Search

Exanmple (){

1: do{
I ock();
old = new;
q = g->next;

2: if (g != NULL){

3: g->data = new;
unl ock();

new ++;
}

| 4:}while(new != old);

5: unlock ();
}

Predicates: LoCK, new==old

[new!=old]

- LOCK,
- new == old

Reachability Tree

Repeat Build-and-Search

Exanple (){
1: do{
I ock();
old = new;
q = g->next;
2: if (g != NULL){ .
3: g->data=new;
unl ock() ; LOCK , new==old
new ++;

SAFE

LOCK , new=old

}
4:}while(new != old); ==
5 unl ock (): LOCK , new==old
} O
- LOCK , =new = old

< 1]
oo, O
4 4 - new == old I:'

- LOCK , new==old

Reachability Tree

Predicates: LoCK, new==old

Reachability Tree

Initial

Error Free

SAFE

Unroll

1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min spurious suffix
- Learn new predicates

S1: Only Abstract Reachable States

S2: Don’t refine error-free regions

Technical Details

« Q: How to compute “successors”?

» Q: How to find predicates ?
[Interpolation]

« Q: How to analyze (recursive)
procedures? [Context-free reachability]

Technical Details

Q. How to compute “successors” ?

#Predicates grows with program size

while(1)
Te1: if(p lock() ;
F if (| ;)| unlock() ;

Te®2:if(p) lock()

if @ ,) unlock() ;

niif() 1ock() ;
}

if(p) unlock() ;

Problem:

Tracking lock not enough

py,---,P, Needed for verification
Exponential reachable abstract states

#Predicates grows with program size

while(1){
1: if(p

if (p
2:if (p

if (p
n: if (p

if (p
2

ﬁLOCK.‘/D\‘

) 1ock() LOCK, p, oy - LOCK, - p,
1) unlock() ;

= LOCK, p, ° - LOCK, —p,
o) lock() ; o
,) unlock() ; ﬂLOCKO 0
n) |.;).ck() : i Al ~Py/P Iﬂpwpz
») unlock() ;

2" Abstract States

Problem:

py,---,P, Needed for verification
Exponential reachable abstract states

Predicates useful locally

while(1){ LOCK o

1. if() lock() ; Lock b, Lotk -p,
Py if(p ,) unlock() ; 3
- LOCK-LBCK-[Ldck o -LOCK , - p,

2t) lock() ;
pg{ if(p) unlock() HocK P S /D Lo e
[l

- LOCK
n: if (p . lock() ;
n{ if(p) unlock() ;

2n Abstract States

Solution: Use predicates only where needed
Using Counterexamples:

Q1. Find predicates

Q2. Find where predicates are needed

Counterexample Traces

1 ock()
old = new
g=q->next

[q'=NULL]
Qg->data = new
unl ock()
new++

[new==old]

unl ock()

Trace

lock, =1
old; = new,
4y = gg->next

assume(q; != NULL)

(g, -> data); = new
lock, = 0
new, = new, +1

assume(new;=ol d,)

assert (1 ock,=1)

SSA Trace

lock; =1 4

old, = new, A

g, = Qg->next A

g; !'= NULL 4

(q, ->data),; = newy, A
lock, = 0 A

new, = new, +1 A

new;=ol d,

Trace Feasibility
Formula

Thm: Trace is feasible & TF is satisfiable

Proof of Unsatisfiability

lock, =1 A
A old; = new, new; = new, + 1
g; = go->next A
! ° new, = old,+1 new, = old,
g, !'= NULL A
7

(g, ->data); = newy A
lock, = 0 A Proof of Unsatisfiability

A
new,=ol d

Trace Feasibility
Formula [

[Predicates: old=new, new=new+1, new=old]

Add: old=new]

[HenzingerJhalaM.Sutre02]

Counterexample Traces: Take 2

Slge 20y

X = ctr;
ctr = ctr + 1;
y = ctr;
if (x =i-1){
if (y 1= i}
ERROR: }

A

X = ctr
ctr = ctr + 1

y = ctr
assune(x = i-1)

assune(y # i)

Trace Formulas

X = ctr

ctr = ctr+1
y = ctr
assume(x=i - 1)

assume(y#i)

Trace

a » w nh R

X, = ctry

ctr, = ctry+1
y, = ctry
assune(x,=i 4- 1)

assume(y #,)

SSA Trace

X, = ctr,
ctr, = ctryt+ 1

y, = ctr,

S0 N N

Trace Feasibility
Formula

Proof of Unsatisfiability

X, = ctry ! Xp=ctry X;=iy-1
A ctry = ctry + i ctry =iy-1 ctry= ctry+1
Ay, = ctr, f ctr; =iy, y;=ctr
A Xy = dg- 1Y Vislo yi#ip
Ay, #Z g v g

Trace Formula Proof of Unsatisfiability

The Present State...

Trace

;1: X = ctr

;2: ctr =ctr =11 s all the information the
3y =ctr executing program has here
. D
4: assune(x = i-1)
v .
5: assune(y # i)
State...

1. ... after executing trace past (prefix) At pCy, which predicate on
present state shows
infeasibility of future ?

2. ... knows present values of variables

3. ... makes trace future (suffix) infeasible

What Predicate is needed ?

a M e nh R

Trace
X = ctr
ctr =ctr + 1
y = ctr
assume(x = i-1)

assume(y # i)

Trace Formula (TF)

x, = ctr,

ctr, = ctry +1

What Predicate is needed ?

Trace
X =ctr
ctr =ctr + 1
y = ctr
assume(x = i-1)

assune(y # i)

Relevant Information

1..

.. after executing trace prefix

Trace Formula (TF)

x, = ctr,

A ctry = ctrg+ 1

Predicate ...

... implied by TF prefix

1:

What Predicate is needed ?

2
3
4:
5

Trace
X = ctr
ctr =ctr + 1
= ctr
y e
assume(x = i-1)

assune(y # i)

Relevant Information

1.

2.

... after executing trace prefix

... has present values of variables

Trace Formula (TF)

Predicate ...
... implied by TF prefix

... on common variables

1:

What Predicate is needed ?

2
3
4:
5

Trace
X =ctr
ctr =ctr +1
y = ctr
assume(x = i-1)

assune(y # i)

Relevant Information

1.

2.

3.

... after executing trace prefix
... has present values of variables

... makes trace suffix infeasible

Trace Formula (TF)

X, = ctry
A ctry = ctrgt 1
_____ A Y = ctr,
A X; = ip- 1
A Y
Predicate ...

... implied by TF prefix
... on common variables

... & TF suffix is unsatisfiable

Interpolant = Predicate !

Trace Trace Formula
1: x = ctr =
X; =ty Predicate at 4:
2: ctr =ctr +1 A ctr, = ctrg+ 1 l.|J' y=x+1
3y=etr Ay =atr o
4. assune(x =i-1) A X, = ig- 1 lIJ+ yo=x, 41
1=
5. assune(y # i) Ay, Ziy
Craig Interpolant Predicate ...
[Craig 57] ... implied by TF prefix

Computable from
Proof of Unsat

... on common variables

... & TF suffix is unsatisfiable

Another interpretation ...

Trace Formula

= ct
After X; = ctho Predicate at 4:
exec ctr, = ctry+ 1 l.|J_ y=x+1
O] prefix

N
_______________________ 4---L-f..€.t_r1__-_-____ o
Can .

X, = d,- 1 +
exec /! ! 0 lIJ v, =x,+ 1
suffix A

Unsat = Empty Intersection = Trace Infeasible

Interpolant ® =

Overapproximation of states after prefix
that cannot execute suffix

Main Questions

Q. How to find good predicates ?
Where to track each predicate?

Q: How to compute interpolants?
(And do they always exist?)

Another Proof of Unsatisfiability

X;- Ctry=0 X;~ip+1=0

Ctry=ip+1= = Ctro-1=
o~lp+1=0 ctry- ctry 0

ctri=ip =0 y;,-ctr;=0

Vi=ip=0 Yy;~lp#0

Vi 0z0

Proof of Unsatisfiability Rewritten Proof

Interpolant from Rewritten Proof ?

P

x, = ctr, Xp=Ctry=0 X;=ipg +1=0

P .
A ctry = ctry + 1 Clry-ip+1=0 ctr;- ctryp-1=0
» try—ip =0 -ctr;=0

Ay, = ctr, clry=ly y-ctr;
--------- - gt . L]
A X, = dp- 1 V17io=0 ¥1~Io#0
Ay, # io 0Z0

Trace Formula Rewritten Proof

Interpolant from Rewritten Proof ?

X, = ctr X;- Ctry=0
Actry = ctry + 1 et im0
Ay, = ctry e
T

A Yy # g

Trace Formula Interpolant !

Building Predicate Maps

Trace
1. x = ctr
2 ctr =ctr +1 |
3: y =ctr
4: assune(x = i-1)
5: assune(y # i)

Trace Formula

Predicate Map
2: x=ctr

-------------------------- X, = ctr,

ctr, = ctry+ 1

y, = ctr,
X; = ip-
Y, # g

«Cut + Interpolate at each point

«Pred. Map: pc; [Interpolant from cut i

1

LlJ+

Building Predicate Maps

Predicate Map

Trace Trace Formula 2: x =ctr
3: x=ctr-1

X = ctr X, = ctr,

1

2: ctr =ctr +1 A ctry = ctryg+ 1 l'|J
--

Ty =ctr y, = ctr, LIJ+ x,= ctr,-1

3 A
4: assune(x =1i-1) A X; = dg- 1
5: assune(y # i) A

«Cut + Interpolate at each point
«Pred. Map: pc; [Interpolant from cut i

Building Predicate Maps

Predicate Map
Trace Trace Formula 2: x =ctr
3:x=ctr-1
X = ctr X, = ctr, 4y=x+1

ctr, = ctry+ 1

oy =ctr = ctr
By AL .

4: assume(x = i-1) X; = ip- 1 l.IJ+ V.= X +1
5.

1
2. ctr = ctr + 1
3

assunme(y # i)

«Cut + Interpolate at each point
«Pred. Map: pc; [Interpolant from cut i

Building Predicate Maps

Predicate Map
Trace Trace Formula 2: x =ctr
3:x=ctr-1
X = ctr X, = ctr, 4y=x+1
5:y=i

ctr = ctr + 1 ctr; = ctry+ 1

1

2 A

3.y =ctr Ay, = ctr,
4 A

: assume(x = i-1) X; = ip- 1 LIJ

5: assunme(y # i) A Y E l.|J+ Y= i,

«Cut + Interpolate at each point
«Pred. Map: pc; [Interpolant from cut i

Local Predicate Use

Use predicates needed at location

#Preds. grows with program size

#Preds per location small

&

Local Predicate use

Ex: 2n states

Predicate Map
2: x = ctr

3: x=ctr-1
4:y=x+1
5:y=i

Verif;

qales ...

Global Predicate use

Ex: 2" states

Question: When Do Interpolants Exist?

 Craig’s Theorem guarantees existence for

» But we are interpreting formulas over
theories (arithmetic, theories of data
structures)

The Good News

« Interpolants always exist for recursively
enumerable theories

- The proof is a simple application of compactness

» So: interpolants exist for Presburger arithmetic,
sets with cardinality constraints, theory of lists,
(quantifier-free) theory of arrays, multisets, ...

The Bad News

» “The proof is a simple application of
compactness”

- May be algorithmically inefficient

- Daunting engineering task to construct
interpolating decision procedure for each
individual theory

An Alternate Path: Reduction

» Want to compile formulas in a new theory to formulas in
an old theory such that interpolation in the old theory
imply interpolation in the new theory

» T reduces to R: can compile formulas in theory T to
formulas in theory R
- And use decision procedures for R
to answer decision questions for T

« Technically: Given theories T and R, with RC T, a
reduction is a computable map p from T formulas to R
formulas such that for any T-formula @:

@and (o) are T-equivalent
@is T-satisfiable iff () is R-satisfiable

Example: Theory of Sets

Theory of sets reduces to theory of equality with
uninterpreted functions

X=yN z

Ve.eex&s ecy

YV e.eldXx

vV e.ec x
eexNnvVe.eex=e=¢
Veecx&secyvecez
Veecx&secyANecz

Example: Theory of Multisets

Theory of multisets reduces to the combination theory of
equality with uninterpreted functions and linear
arithmetic

X=Yy V e. count(x,e) = count(y,e)
x=() Y e.count(x,e) =0
x=[(e,n)] count(x,e)=max(0,n)
AV e’.e’# e = count(x,e’)=0
X=yW4 z V e.count(x,e)= count(y,e)+count(z,e)
x=yU z V e. count(x,e) = max(count(y,e), count(z,e))

X=yN z ¥V e. count(x,e) = min(count(y,e), count(z,e))

Reduction and Interpolation

W-and W in Theory T

Reduction from T to R

@ and ®* in Theory R

Interpolate in R

Interpolant o in
Theory Raswellas T

Eliminate quantifiers in T or R

Quantifier-free
interpolant

[KapurM.zZarba06]

Reduction Theorem

« Interpolants for the theory of arrays,
sets, and multisets can be computed by
reduction to the combination theory of
linear arithmetic and equality with
uninterpreted functions

- We already have interpolating decision
procedures for this latter theory

Lazy Abstraction

Yes
C Program —> Abstract
Refine N
o
Property —>| ——Trace

Problem: #Preds grows w/ Program Size
Solution: Localize pred. use, find where preds. needed

Refine

Trace
Srex. - P! pred, Map
Trace Feas I:> Thm Pvr I:> Unsat Interpolate I:> PC) Preds.

Formula

Refinement Failure: Unrolling Loops

« counterexample:
x=0; y=50; x>=100; y==100
refinement: x==0
« counterexample:
x=0; y=50; x<100; x=x+1; x>=100; y==100
refinement: x==
« counterexample:
x=0; y=50; x<100; x=x+1; x<100; x=x+1;
x>=100; y==100
refinement: x==

u]
8
I
i
!

>

Refinement Failure: Unfolding Arrays

« counterexample:
i=0; i<n; a[i]=i; i++; i>=n;
3=0; j<n; a[j]!=j
refinement: a[0]==0

e counterexample:
i=0; i<n; a[i]=i; i++; i<n; a[i]=i; i++; i>=n;

j=0; j<n; a[jl==j; j++; j<n; a[jl!=j
refinement: a[1]==1

>

What went Wrong?

» Consider all unrolled counterexamples at once
- Convergence of abstraction discovery

« Inspect families of counterexamples of
unbounded length

- Justification for unbounded universal
quantification

» Looking at one counterexample path at a time
is too weak [JhalaMcMillan05,JhalaMcMillan06]

[BeyerHenzingerM.Rybalchenko07]

Path Programs

» Treat counterexamples as programs
- “Close” the loops

Mo

(path program,
g?gtains loops,

Meaning of Path Programs

Path program “ (Possibly unbounded) sets of
counterexamples:

—
— —
— — —

— — — —
°
°
°

» Unbounded counterexamples

—— 000)

o Property-determined fragment of original program
- Can be analyzed independently to find good abstractions

Path Invariants

e Invariant for path programs “ path invariant

« Abstraction refinement using path invariants

- Elimination of all counterexamples within path
program

- Justification for unbounded quantification

Invariant Generation

e Given a path program, with a designated
error location, find an invariant that
demonstrates error is not reachable

- Can scale: Reduced obligation to program
fragment

- Outer model checking loop integrates path
invariants into program invariant

« Can use any technique

» We use constraint-based invariant generation
[SankaranarayananSipmaManna04,BeyerHenzingerM.Rybalchenko07]

Lecture 3:
Technical Extensions
and
Termination

Rupak Majumdar

Technical Details

Q. How to analyze recursive procedures ?

An example

mai n(){
O

|f (flag){
= inc(x,flag);

_O?I\JI—‘

}else {
4: y=inc(z flag);

5: if (y>=2) ERROR;

}
O

return;

}

|f (y<=x) ERROR;

i nc(int a, int sign){
1: if (sign){
2. rv=atl;
}else {
3: rv=a-l;
}

4: return rv;

}

Inline Calls in Reach Tree

mai r;(){ Initial
1 it (flag){ ‘
2: y= mc‘x flagl'

N <=X q \
else { \

;& y=inc(zflag); \
;50 if(y>=2) ERROR; \
}

1

1 0 !
1 [return;] !
1
1
\

T !

i nc(int a, int sign){ v

\ 1: if (sign){

v [27 v=atl,
\ TerRe 1
\ 3T wWw=arl,

\ 1
3| 4:return rv; |

Inline Calls in Reach Tree

Problem

Repeated analysis for “inc”
Exploding call contexts

int x; //global

10

£ 201 |
£30f |

a0f |

fn({

1:x ++;
return;

2" nodes in Reach Tree

Inline Calls in Reach Tree

Problem
Repeated analysis for “inc”
Exploding call contexts

Cyclic call graph (Recursion)
Infinite Tree!

- Procedure Summaries

Summaries: Input/Output behavior
e Plug summaries in at each callsite

... instead of inlining entire procedure
[Sharir-Pnueli 81, Reps-Horwitz-Sagiv 95]

e Summary = set of (F] F’)
F : Precondition formula describing input state
F’ : Postcondition formula describing output state

- Procedure Summaries

i nc(int a, int sign){

ATCIN o (- sign=0 0 rv > a)
3 Wead e (sign=0 Orv<a)
4: return rv;

Summary = set of (F 0 F’)
- F : Precondition formula describing input state
- F’: Postcondition formula describing output state

Q. How to compute, use summaries ?

Lazy Abstraction + Procedure Summaries

Yes
C Program —> Abstract
Refine N
0
Property —| —— > Trace

Q. How to compute, use summaries ?

Abstraction with Summaries

e — main

| 1:if (flag){
| 20y = inc(x,flag); |
3T (Y=X) ERROR,
}else {
4: 'y =inc(z,flag);
5: if (y>=z) ERROR;
}

[flag!=0]

a=x
sign=flag

O

return;

1

i nc(int a, int sign){

1: if (sign){

2: rv=at+l;
}else {

3: rv=al;

4: return rv;

Predicates: flag=0, y>x, y<z
sign=0 , rv>a , rv<a

Abstraction with Summaries

mai n0f main inc

1: if (flag{
[Zy=linc(xflag);]
3T (Y=X) ERROR,
}else {

4: 'y =inc(z,flag);

5: if (y>=z) ERROR;
}

a=x
sign=flag

O
return;

b

i nc(int a, int sign
| 1: if (sign){ |
|20 rv=a+l] |
Fersey
3: rv=al;
1
| 4:return rv; |

Predicates: flag=0, y>x, y<z Summary: (-sign=0 1 rv>a),
sign=0 , rv>a , rv<a

Summary Successor

main inc

mai n({
o

1: if (fla

2: y=inc(x,flag);

3T 1T (Y<=X) ERROR,
}else {

4: 'y =inc(z,flag);

5: if (y>=z) ERROR;
}

O
return;

3

i nc(int a, int sign){

1: if (sign){

2: rv=at+l;
}else {

3: rv=al;

4: return rv;

Predicates: flag=0, y>x, y<z Summary: (-sign=0 [rv>a),
sign=0 , rv>a , rv<a

Abstraction with Summaries

mai n({
0O

1:if (flag){
2:

mc(xf ag); |
(

main

[flag==0]

return;

b

i nc(int a, int sign){
1: if (sign){
2. rv=atl;

~flag=0 [2| | 4]siag=0

sign=0

a=z
sign=flag

| } else {

3. rv=a-l;

4: return rv;

Predicates: flag=0, y>x, y<z Summary:

sign=0 , rv>a , rv<a

inc

(—sign=0 O

rv>a),

Abstraction with Summaries
i main inc

1:if (jflag){ [1] - sign=0

2: y=inc(x,flag); /

3: i (y<=x) ERRCR; ‘
]

belsed - flag= -
L4:_y=inc(z/flag);] flag=0 flag=0
ian=0
sign e e

5: if (y>=z) ERROR;
}

O y>x
return;
} >

i nc(int a, int sign){ @

1: if (sign){
2: rv=atl;
}else {
3: rv=al;
}
| 4:return rv; |
+

Predicates: flag=0, y>x, y<z Summary: (-sign=0 [rv>a),
sign=0 , rv>a , rv<a (sign=0 [rv<a)

a=z
sign=flag

Summary Successor
i main

0O
1:if (flag){ n

2: y=inc(x,flag);
3: if (y<=x) ERROR;

telse { . . -
4: 'y =inc(z,flag); flag=0 flag=0
Cif(y>=z 2

}
O y<z
return; |z|
b D
ol
i nc(int a, int sign){ sign=flag
1:if (sign){ i assume rv<a’
20 rv=atl; i :
}else { 0 i
3: rv=al;
4: return rv;
Predicates: flag=0, y>x, y<z Summary: (-sign=0 [rv>a),

sign=0 , rv>a , rv<a (sign=0 [rv<a)

Abstraction with Summaries

main inc

mai n({
0O

1:if (flag){
2: y=inc(x,flag);
3: if (y<=x) ERROR;
}else {
y = inc(z,flag);
if (y>=2) ERROR,
}

@1l 4%

O
return;

b

i nc(int a, int sign){

1: if (sign){

2: rv=at+l;
}else {

3: rv=al;

4: return rv;

Predicates: flag=0, y>x, y<z Summary: (-sign=0 [rv>a),
sign=0 , rv>a , rv<a (sign=0 [rv<a)

Another Call ...

1:if (flag){

2: y=inc(x,flag);

3: if (y<=x) ERROR;
}else {

y = inc(z,flag);

if (y>=2) ERROR;

@1l 4%

}
| 6: y1=inc(z1,1); |
7 (YI<=z1) ERROR,
return;

}

i nc(int a, int sign){

1: if (sign){

2: rv=atl;
}else {

3: rv=al;

4: return rv;

3

Predicates: flag=0,y>x,y<z, y1>z1 Summary: (-sign=0 [rv>a),
sign=0 , rv>a , rv<a (sign=0 O rv<a)

Another Call ...

1:if (flag){

2: y=inc(x,flag);

3: if (y<=x) ERROR;
}else {

4: 'y =inc(z,flag);

5: if (y>=z) ERROR;

}
6: vyl =linc(z11);
| 7:if (yl<=z1) ERROR, |
return;

}

i nc(int a, int sign){

1: if (sign){

2: rv=atl;
}else {

3: rv=al;

SAFE

4: return rv;

b

Predicates: flag=0,y>x,y<z, y1>z1 Summary: (-sign=0 [rv>a),
sign=0 , rv>a , rv<a (sign=0 0O rv<a)

Technical Details

Q. How to perform interpolation in the
presence of recursive calls?

Traces with Procedure Calls

Trace Trace Formula
Xy =3
;. assune (x,>0)
s ®3f(Klxy)

d'gi z, = z;+1 (——i

s [retugdy: 2Lt urn Zg
degtienunn v,

I Xg = Xgtl

Roxs %5 F3(Kaf X4)

1Hcass u{ms6), <5)
Achetiustnumg W,

. assune x,>5

pCis: assume(Kxpxx42R)

Interprocedural Analysis

Trace

Trace Formula

<

Find predicate
needed at point i

Require at each point i:
Scoped predicates

: Variables visible at i
NO: Caller’s local variables

Problems with Cutting

Trace Trace Formula

Caller variables common to - and y*
» Unsuitable interpolant: not well-scoped

Scoped Cuts

Trace Trace Formula
0 Call begins

= <

Scoped Cuts

Trace Trace Formula

Predicate at pc; = Interpolant from cut i

Common Variables

Trace Trace Formula

€ommabn Variables

+ 1T % Formals
g9 il

| Current locals

Well-scoped

Predicate at pc; = Interpolant from i-cut

When does a Program Terminate?

e |ff its reachable transition relation is
well-founded

e Reachable transition relation =
TR(x,x’) n Reach(x)xReach(x’) =

Restriction of the transition relation to
the set of reachable states

Well-Founded Relation

A binary relation > is well-founded if
there is no infinite descending sequence

e No s0, s1, s2,... such that
sO>s1>s2>..

Example: > on natural numbers
But not > on integers

ldea: Rank Functions

e Fix a set X, and > a wf relation on X

» Suppose | can map each reachable state s
of the transition graph to a rank r(s)0X
s.t.

s — s’ implies r(s) > r(s’)

Then the system must terminate
The converse is also true

Example

Input x, n
While(x <= n) x++;

Terminates, using (roughly) the rank
function n-x

Does it, really?

Disjunctive Rank Functions

 In many cases, finding a single wf relation
can be difficult

» Suppose | can find wf relations T1,...,Tk
such that RTROT1 O ... O Tk

» Does the program terminate?
- Not in general (Why?)

Disjunctive Well-foundedness

If T1...Tk are wf relations and
R*OT10..0Tk
Then: R is well-founded

Such R is called disjunctively well-founded

Disjunctive Well-foundedness

P terminates if TR n ReachxReach is
disjunctively well-founded

Useful: Can consider individual portions of
the program independent of other parts

Incremental Termination

T = emptyset
While TR+ not included in T:
invariant: T is a finite union of wf relations
find abstract counterexample to wf
if concretely feasible
does not terminate
otherwise find wf relation T’
T=TOT

Counterexample to Termination

 Lasso = Stem + Cycle
- Represents infinite execution
Stem Cycle Cycle ...

Needs rank-finding technique to find a wf
relation showing lasso cannot be
executed arbitrarily (Heuristics exist)

Reduction to Safety

e How to check if R* O T for the reachable
transition relation?

» Can reduce check to safety

e Run program parallel with a monitor for T
- runs in parallel with the program
- inspects pairs of states wrt. T
- goes to error if observes (s,s’) 0T
- Use non-determinism to perform check

Reduction to Safety: Idea

selected := |
phase := SELECT

while True {
switch (phase) {
SELECT: if (nondet()) {
selected := current
phase := CHECK
}
CHECK: if ((selected, current) O T) { ERROR: }
3
3

Terminator

Input: program written in C

Language features supported

- nested loops, gotos

- aliasing

- (mutually) recursive function calls

o Qutput:
- termination proof: transition invariant
- counterexample: lasso = stem + cycle

Scalability: (on drivers from WinDDK)

