Interprocedural analysis: Sharir-Pnueli's functional approach

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

24 September 2010

Outline

- Motivation
- **2** Functional Approach
- 3 Example
- 4 Exercise 1
- Iterative Approach

Example program with procedure calls

- We want join over all "valid" paths at each progam point.
- Simply taking "JOP" on extended CFG would lose precision.
- Can we compute "JVP" (Join over Valid Paths) values instead?

Example program: Available expressions analysis

Lattice for Av-Exp analysis.

• Is a*b available at program point N?

Example program: Available expressions analysis

Lattice for Av-Exp analysis.

- Is a*b available at program point N?
- No if we consider all paths.

Example program: Available expressions analysis

Lattice for Av-Exp analysis.

- Is a*b available at program point N?
- No if we consider all paths.
- Yes if we consider interprocedurally valid paths only.

Interprocedurally valid and complete paths: $IVP_0(M, N)$

- Convention: r_p and e_p are respectively the root and return nodes of procedure p. Root of the main procedure is r_1 .
- A path ρ is interprocedurally valid and complete if the sequence of call nodes and return notes form a balanced parenthesis string.
- A path in $IVP_0(r_1, D)$ for example program:

- C ("call p") O · · · H ("call p") L · · · J ("ret") M · · · J ("ret") N · D.
- Note that "call p" must be matched by "ret_p."

Interprocedurally valid paths: IVP(M, N)

- A path ρ is interprocedurally valid if it is a prefix of a valid and complete path.
- A path in $IVP(r_1, I)$ for example program:

Defining JVP

For a given program P and analysis $((D, \leq), f_{MN}, d_0)$, the join over all interprocedurally valid paths (JVP) at point N is defined to be:

$$\bigsqcup_{\rho \in IVP(r_1,N)} f_{\rho}(d_0)$$

- we setup equations to capture JOP assuming distributivity. Least solution to these equations gave us exact/over-approx JOP depending on distributive/monotonic framework.
- Try to set up similar equations for x_N (JVP) at program point N).

Instead try to capture join over complete paths first

- Set up equations to capture join over complete paths.
- Now set up equations to capture JVP using join over complete path values.

An IVP path ρ from r_1 to N in procedure p can be written as $\delta \cdot \eta$ where δ is in IVP (r_1, r_p) , and η is in IVP $_0(r_p, N)$.

Consider point where procedure *p* was last entered.

Valid and complete paths from r_p to N

For a proecedure p and node N in p, define:

$$\phi_{r_p,N}:D\to D$$

given by

$$\phi_{r_p,n}(d) = \bigsqcup_{\text{paths } \rho \in \text{IVP}_0(r_p,N)} f_{\rho}(d).$$

 $\phi_{r_0,N}$ is thus the join of all functions f_{ρ} where ρ is an interprocedurally valid and complete path from r_p to N.

$$\begin{array}{lcl} \psi_{r_p,r_p} & = & id_D \\ \psi_{r_p,N} & = & f_{MN} \circ \psi_{r_p,M} \\ \psi_{r_p,N} & = & \psi_{r_q,e_q} \circ \psi_{r_p,M} \\ \psi_{r_p,N} & = & \psi_{r_p,L} \sqcup \psi_{r_p,M}. \end{array}$$

Example: Equations for ϕ 's

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \\ \end{array}$$

$$\begin{array}{rcl} \phi_{F,F} & = & id \\ \phi_{F,G} & = & id \circ \psi_{F,F} \\ \phi_{F,K} & = & id \circ \psi_{F,F} \\ \phi_{F,H} & = & \mathbf{0} \circ \psi_{F,G} \\ \phi_{F,Q} & = & \psi_{F,J} \circ \psi_{F,H} \\ \phi_{F,I} & = & \mathbf{1} \circ \psi_{F,Q} \\ \phi_{F,J} & = & \psi_{F,I} \sqcup \psi_{F,K} \end{array}$$

$$\begin{array}{lcl} x_1 & \geq & d_0 \\ x_{r_p} & = & \bigsqcup_{\operatorname{calls} \, c \, \operatorname{to} \, p \, \operatorname{in} \, q} \phi_{r_q,c}(x_{r_q}) \\ x_n & = & \phi_{r_p,n}(x_{r_p}) & \text{for } n \in N_p - \{r_p\}. \end{array}$$

Example: Equations for x_N 's (JVP)

$$x_B = \mathbf{0}(x_A)$$

 $x_C = \mathbf{1}(x_A)$
 $x_P = \mathbf{1}(x_A)$
 $x_D = \mathbf{1}(x_A)$
 $x_E = \mathbf{1}(x_A)$
 $x_F = \mathbf{1}(x_A) \cup \mathbf{0}(x_F)$
 $x_G = id(x_F)$
 $x_K = id(x_F)$
 $x_H = \mathbf{0}(x_F)$
 $x_Q = \mathbf{0}(x_F)$
 $x_J = id(x_F)$.

Fig. shows values of $\phi_{r_0,N}$'s in bold.

Correctness and algo

- Consider lattice (F, \leq) of functions from D to D, obtained by closing the transfer functions, identity, and $f_{\perp}: d \mapsto \bot$ (denoted f_{Ω} by Sharir-Pnueil) under composition and join.
- Ordering is $f \leq g$ iff $f(d) \leq g(d)$ for each $d \in D$.
- (F, \leq) is also a complete lattice.
- \overline{f} induced by Eq (1) is a monotone function on the complete lattice (\overline{F}, \leq) .
- LFP / least solution exists.

Claim

 $\phi_{r_p,N}$'s are the least solution to Eq (1) when f_{MN} 's are distributive. Otherwise $\phi_{r_p,N}$'s are dominated by the least solution to Eq (1).

Kleene/Kildall's algo will compute LFP (assuming D finite).

Correctness and algo - II

- \overline{f} induced by Eq (2) is a monotone function on the complete lattice (\overline{D}, \leq) .
- LFP / least solution exists.

Claim

 JVP_N 's are the least solution to Eq (2) when f_{MN} 's are distributive. Otherwise JVP_N 's are dominated by the least solution to Eq (2).

Kleene/Kildall's algo will compute LFP (assuming D finite).

$$\begin{array}{rcl} \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \\ \\ \phi_{F,F} & = & id \\ \phi_{F,G} & = & id \circ \psi_{F,F} \end{array}$$

 $\psi_{A,A}$

$$\phi_{F,G} = id \circ \psi_{F,F}$$

$$\phi_{F,K} = id \circ \psi_{F,F}$$

$$\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}$$

$$\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}$$

$$\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}$$

$$\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

Example: Equations for ϕ 's

 $\psi_{A,A}$

$$\begin{array}{rcl} \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \\ \end{array}$$

$$\begin{array}{rcl} \phi_{F,F} & = & id \\ \phi_{F,G} & = & id \circ \psi_{F,F} \\ \phi_{F,K} & = & id \circ \psi_{F,F} \\ \phi_{F,H} & = & \mathbf{0} \circ \psi_{F,G} \\ \phi_{F,Q} & = & \psi_{F,J} \circ \psi_{F,H} \end{array}$$

 $\phi_{F,I} = \mathbf{1} \circ \psi_{F,O}$ $\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$

 $\psi_{A,B} = \mathbf{0} \circ \psi_{A,A}$

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \end{array}$$

$$\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

 $\psi_{A,A}$

$$\begin{array}{rcl} \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \\ \end{array}$$

$$\begin{array}{rcl} \phi_{F,F} & = & id \\ \phi_{F,G} & = & id \circ \psi_{F,F} \\ \phi_{F,K} & = & id \circ \psi_{F,F} \\ \phi_{F,H} & = & \mathbf{0} \circ \psi_{F,G} \end{array}$$

 $\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}$ $\phi_{F,I} = \mathbf{1} \circ \psi_{F,O}$ $\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$

Example: Equations for ϕ 's

 $\psi_{A,A}$

$$\psi_{A,P} = \phi_{F,J} \circ \psi_{A,C}$$

$$\psi_{A,D} = \mathbf{1} \circ \psi_{A,P}$$

$$\psi_{A,E} = id \circ \psi_{A,D}$$

$$\phi_{F,F} = id$$

$$\phi_{F,G} = id \circ \psi_{F,F}$$

$$\phi_{F,K} = id \circ \psi_{F,F}$$

$$\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}$$

$$\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}$$

 $\phi_{F,I} = \mathbf{1} \circ \psi_{F,O}$ $\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$

 $\psi_{A,B} = \mathbf{0} \circ \psi_{A,A}$ $\psi_{A,C} = \mathbf{1} \circ \psi_{A,B}$

Example: Equations for ϕ 's

 $\psi_{A,A}$

$$\psi_{A,C} = \mathbf{1} \circ \psi_{A,B}
\psi_{A,P} = \phi_{F,J} \circ \psi_{A,C}
\psi_{A,D} = \mathbf{1} \circ \psi_{A,P}
\psi_{A,E} = id \circ \psi_{A,D}$$

$$\phi_{F,F} = id
\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}$$

 $\phi_{F,I} = \mathbf{1} \circ \psi_{F,O}$ $\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$

 $\psi_{A,B} = \mathbf{0} \circ \psi_{A,A}$

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \end{array}$$

$$\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \end{array}$$

$$\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \end{array}$$

$$\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

Example: Equations for ϕ 's

 $\psi_{A,A}$

$$\begin{array}{rcl} \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \\ \\ \phi_{F,F} & = & id \\ \phi_{F,G} & = & id \circ \psi_{F,F} \\ \phi_{F,K} & = & id \circ \psi_{F,F} \\ \phi_{F,H} & = & \mathbf{0} \circ \psi_{F,G} \\ \phi_{F,Q} & = & \psi_{F,J} \circ \psi_{F,H} \end{array}$$

 $\phi_{F,I} = \mathbf{1} \circ \psi_{F,O}$ $\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$

 $\psi_{A,B} = \mathbf{0} \circ \psi_{A,A}$ $\psi_{A,C} = \mathbf{1} \circ \psi_{A,B}$

$$\psi_{A,A} = id
\psi_{A,B} = \mathbf{0} \circ \psi_{A,A}
\psi_{A,C} = \mathbf{1} \circ \psi_{A,B}
\psi_{A,P} = \phi_{F,J} \circ \psi_{A,C}
\psi_{A,D} = \mathbf{1} \circ \psi_{A,P}
\psi_{A,E} = id \circ \psi_{A,D}$$

$$\phi_{F,F} = id
\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \end{array}$$

$$\phi_{F,F} = id
\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \end{array}$$

$$\phi_{F,F} = id
\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \end{array}$$

$$\phi_{F,F} = id
\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \end{array}$$

$$\phi_{F,F} = id
\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

$$\begin{array}{rcl} \psi_{A,A} & = & id \\ \psi_{A,B} & = & \mathbf{0} \circ \psi_{A,A} \\ \psi_{A,C} & = & \mathbf{1} \circ \psi_{A,B} \\ \psi_{A,P} & = & \phi_{F,J} \circ \psi_{A,C} \\ \psi_{A,D} & = & \mathbf{1} \circ \psi_{A,P} \\ \psi_{A,E} & = & id \circ \psi_{A,D} \end{array}$$

$$\phi_{F,F} = id
\phi_{F,G} = id \circ \psi_{F,F}
\phi_{F,K} = id \circ \psi_{F,F}
\phi_{F,H} = \mathbf{0} \circ \psi_{F,G}
\phi_{F,Q} = \psi_{F,J} \circ \psi_{F,H}
\phi_{F,I} = \mathbf{1} \circ \psi_{F,Q}
\phi_{F,J} = \psi_{F,I} \sqcup \psi_{F,K}$$

Example: Equations for x_N 's (JVP)

$$x_B = \mathbf{0}(x_A)$$
 $x_C = \mathbf{1}(x_A)$
 $x_P = \mathbf{1}(x_A)$
 $x_D = \mathbf{1}(x_A)$
 $x_E = \mathbf{1}(x_A)$
 $x_F = \mathbf{1}(x_A) \cup \mathbf{0}(x_F)$
 $x_K = id(x_F)$
 $x_H = \mathbf{0}(x_F)$
 $x_Q = \mathbf{0}(x_F)$
 $x_J = id(x_F)$.

 X_A


```
x_B = \mathbf{0}(x_A)
x_C = \mathbf{1}(x_A)
x_P = \mathbf{1}(x_A)
x_D = \mathbf{1}(x_A)
             \mathbf{1}(x_A)
ΧE
       = \mathbf{1}(x_A) \sqcup \mathbf{0}(x_F)
ΧF
x_G = id(x_F)
       = id(x_F)
XK
       = \mathbf{0}(x_F)
XΗ
       = \mathbf{0}(x_F)
X_Q
            \mathbf{1}(x_F)
       = id(x_F).
ХJ
```


Fig shows initial (red) and final (blue) values.

```
x_B = \mathbf{0}(x_A)
x_C = \mathbf{1}(x_A)
x_P = \mathbf{1}(x_A)
     = \mathbf{1}(x_A)
x_D
             \mathbf{1}(x_A)
ΧE
       = \mathbf{1}(x_A) \sqcup \mathbf{0}(x_F)
ΧF
x_G = id(x_F)
       = id(x_F)
XK
       = \mathbf{0}(x_F)
XΗ
       = \mathbf{0}(x_F)
X_Q
            \mathbf{1}(x_F)
       = id(x_F).
ХJ
```


Fig shows initial (red) and final (blue) values.

Exercise

Exercise: Use the functional method to do interprocedural constant propagation analysis for the program below, with initial value \emptyset .

Summary of functional approach

- Uses a two step approach
 - **1** Compute $\phi_{r_p,N}$'s.
 - 2 Compute x_n 's (JVP's) at each point.

Summary of conditions: For each property (column heading), the conjunction of the ticked conditions (row headings) are sufficient to ensure the property.

	Termination	Least Sol of Eq(2) \geq JVP	Least Sol of Eq(2)= JVP
f_{MN} 's monotonic Finite underlying lattice Distributive	√ ✓	√	√

Iterative/Tabulation Approach

 $\phi_{r_p,N}$ for each program point N in procedure p.

• Informally, at N in procedure p, the table has an entry $d\mapsto d'$

Maintain a table of values representing the current value of

- Informally, at N in procedure p, the table has an entry $d \mapsto c$ if we have seen valid paths ρ from r_1 to r_p with $\bigsqcup_{\rho} f_{\rho}(d_0) = d$, and valid and complete paths δ from r_p to N with $\bigsqcup_{\delta} f_{\delta}(d) = d'$.
- Apply Kildall's algo with initial value of $d_0 \mapsto d_0$ at r_1 .

- If $d \mapsto d'$ at point M, and statement corresponding to MN is not a call or ret, then propogate $d \mapsto f_{MN}(d')$ to point N.
- If $d \mapsto d'$ at point M, and statement after M is call q, then
 - propogate $d \mapsto d'$ to point r_a ,
 - propogate $d \mapsto d''$ to return site of N of M, provided we have $d' \mapsto d''$ at point e_a .
- If $d \mapsto d'$ at point e_a (i.e before ret in procedure q), then
 - If LN corresponds to a call q and $(d'' \mapsto d)$ at L, then propogate $d'' \mapsto d'$ to point N. (Do this for all such N).

Example: Finally compute x_N 's from ϕ values

At each point *N* take join of reachable $\phi_{r_p,N}$ values.

Exercise 1

Correctness of iterative algo

$$x_1 \geq d_0$$

$$x_{r_p} = \bigsqcup_{\text{calls } c \text{ to } p \text{ in } q} \psi_{r_q,c}^*(x_{r_q})$$

$$x_n = \psi_{r_p,n}^*(x_{r_p}) \quad \text{for } n \in N_p - \{r_p\}.$$

- Iterative algo terminates provided underlying lattice is finite.
- It computes the least solution to the equations above, where $\psi^*(rp_N)$'s are the least solution to Eq (1).
- It thus computes an overapproximation of JVP for monotonic transfer functions, and exact JVP when transfer functions are distributive.

Exercise 2: Iterative algo

Exercise: Use the iterative algo to do constant propagation analysis for the program below with initial value \emptyset :

Comparing functional vs iterative approach

- Functional algo can terminate even when underlying lattice is infinite, provided we can represent and compose/join functions "symbolically".
- Iterative is typically more efficient than functional since it only computes $\phi_{r_p,N}$'s for values reachable at start of procedure.