Interprocedural analysis: Sharir-Pnueli's functional approach

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

24 September 2010

Outline

(1) Motivation
(2) Functional Approach
(3) Example
(4) Exercise 1
(5) Iterative Approach

Example program with procedure calls

- We want join over all "valid" paths at each progam point.
- Simply taking "JOP" on extended CFG would lose precision.
- Can we compute "JVP" (Join over Valid Paths) values instead?
- JOP
- JVP (interprocedurally valid)

Example program: Available expressions analysis

Lattice for Av-Exp analysis.

- Is a*b available at program point N ?

Example program: Available expressions analysis

Lattice for Av-Exp analysis.

- Is a*b available at program point N ?
- No if we consider all paths.

Example program: Available expressions analysis

Lattice for Av-Exp analysis.

- Is a*b available at program point N ?
- No if we consider all paths.
- Yes if we consider interprocedurally valid paths only.

Interprocedurally valid and complete paths: $I V P_{0}(M, N)$

- Convention: r_{p} and e_{p} are respectively the root and return nodes of procedure p. Root of the main procedure is r_{1}.
- A path ρ is interprocedurally valid and complete if the sequence of call nodes and return notes form a balanced parenthesis string.
- A path in $\operatorname{IVP_{0}}\left(r_{1}, D\right)$ for example program:

- C ("call $\left.p^{\prime \prime}\right) \cdot \mathrm{O} \cdot \mathrm{H}($ "call p " $) \cdot \mathrm{L} \cdot \mathrm{J}$ J ("ret") $\cdot \mathrm{M} \cdot \mathrm{J}$ J ("ret") $\cdot \mathrm{N} \cdot \mathrm{D}$.
- Note that "call p" must be matched by "ret ${ }_{p}$."

Interprocedurally valid paths: $\operatorname{IV}(M, N)$

- A path ρ is interprocedurally valid if it is a prefix of a valid and complete path.
- A path in $\operatorname{IVP}\left(r_{1}, I\right)$ for example program:

Defining JVP

For a given program P and analysis $\left((D, \leq), f_{M N}, d_{0}\right)$, the join over all interprocedurally valid paths (JVP) at point N is defined to be:

$$
\bigsqcup_{\rho \in \operatorname{VP}\left(r_{1}, N\right)} f_{\rho}\left(d_{0}\right) .
$$

Equation solving: Problems with naive approach

- In non-procedural case, we setup equations to capture JOP assuming distributivity. Least solution to these equations gave us exact/over-approx JOP depending on distributive/monotonic framework.
- Try to set up similar equations for x_{N} (JVP at program point N).

Instead try to capture join over

paths first

- Set up equations to capture join over complete paths.
- Now set up equations to capture JVP using join over complete path values.

Basic idea: Why join over complete paths help

An IVP path ρ from r_{1} to N in procedure p can be written as $\delta \cdot \eta$ where δ is in $\operatorname{IVP}\left(r_{1}, r_{p}\right)$, and η is in $\operatorname{IVP}_{0}\left(r_{p}, N\right)$.

Consider point where procedure p was last entered.

Valid and complete paths from r_{p} to N

For a proecedure p and node N in p, define:

$$
\phi_{r_{p}, N}: D \rightarrow D
$$

given by

$$
\phi_{r_{p}, n}(d)=\bigsqcup_{\text {paths }} f_{\rho \in \operatorname{IVP}_{0}\left(r_{p}, N\right)}(d)
$$

$\phi_{r_{\rho}, N}$ is thus the join of all functions f_{ρ} where ρ is an interprocedurally valid and complete path from r_{p} to N.

Equations (1) to capture $\phi_{r_{p}, N}$

$$
\begin{aligned}
\psi_{r_{p}, r_{p}} & =i d_{D} \\
\psi_{r_{p}, N} & =f_{M N} \circ \psi_{r_{p}, M} \\
\psi_{r_{p}, N} & =\psi_{r_{q}, e_{q}} \circ \psi_{r_{p}, M} \\
\psi_{r_{p}, N} & =\psi_{r_{p}, L} \sqcup \psi_{r_{p}, M}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Equations (2) to capture JVP

$$
\begin{array}{ll}
x_{1} \geq d_{0} \\
x_{r_{p}}=\bigsqcup_{\text {calls } c \text { to } p \text { in } q} \phi_{r_{q}, c}\left(x_{r_{q}}\right) & \\
x_{n}=\phi_{r_{p}, n}\left(x_{r_{p}}\right) & \text { for } n \in N_{p}-\left\{r_{p}\right\} .
\end{array}
$$

Example: Equations for x_{N} 's (JVP)

$$
\begin{aligned}
& x_{A} \geq 0 \\
& x_{B}=\mathbf{0}\left(x_{A}\right) \\
& x_{C}=\mathbf{1}\left(x_{A}\right) \\
& x_{P}=\mathbf{1}\left(x_{A}\right) \\
& x_{D}=\mathbf{1}\left(x_{A}\right) \\
& x_{E}=\mathbf{1}\left(x_{A}\right) \\
& x_{F}=\mathbf{1}\left(x_{A}\right) \sqcup \mathbf{0}\left(x_{F}\right) \\
& x_{F}=i d\left(x_{F}\right) \\
& x_{G}=i d\left(x_{F}\right) \\
& x_{K}=i=0 \\
& x_{H}=\mathbf{0}\left(x_{F}\right) \\
& x_{Q}=\mathbf{0}\left(x_{F}\right) \\
& x_{1}=\mathbf{1}\left(x_{F}\right) \\
& x_{J}=i d\left(x_{F}\right) .
\end{aligned}
$$

Fig. shows values of $\phi_{r_{p}, N}$'s in bold.

Correctness and algo

- Consider lattice (F, \leq) of functions from D to D, obtained by closing the transfer functions, identity, and $f_{\perp}: d \mapsto \perp$ (denoted f_{Ω} by Sharir-Pnueil) under composition and join.
- Ordering is $f \leq g$ iff $f(d) \leq g(d)$ for each $d \in D$.
- (F, \leq) is also a complete lattice.
- \bar{f} induced by Eq (1) is a monotone function on the complete lattice (\bar{F}, \leq).
- LFP / least solution exists.

Claim

$\phi_{r_{p}, N}$'s are the least solution to Eq (1) when $f_{M N}$'s are distributive. Otherwise $\phi_{r_{\rho}, N}$'s are dominated by the least solution to Eq (1).

Kleene/Kildall's algo will compute LFP (assuming D finite).

Correctness and algo - II

- \bar{f} induced by Eq (2) is a monotone function on the complete lattice $(\bar{D}, \overline{\leq})$.
- LFP / least solution exists.

Claim

JVP_{N} 's are the least solution to Eq (2) when $f_{M N}$'s are distributive. Otherwise JVP_{N} 's are dominated by the least solution to Eq (2).

Kleene/Kildall's algo will compute LFP (assuming D finite).

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for ϕ 's

$$
\begin{aligned}
\psi_{A, A} & =i d \\
\psi_{A, B} & =\mathbf{0} \circ \psi_{A, A} \\
\psi_{A, C} & =\mathbf{1} \circ \psi_{A, B} \\
\psi_{A, P} & =\phi_{F, J} \circ \psi_{A, C} \\
\psi_{A, D} & =\mathbf{1} \circ \psi_{A, P} \\
\psi_{A, E} & =i d \circ \psi_{A, D} \\
\phi_{F, F} & =i d \\
\phi_{F, G} & =i d \circ \psi_{F, F} \\
\phi_{F, K} & =i d \circ \psi_{F, F} \\
\phi_{F, H} & =\mathbf{0} \circ \psi_{F, G} \\
\phi_{F, Q} & =\psi_{F, J} \circ \psi_{F, H} \\
\phi_{F, I} & =\mathbf{1} \circ \psi_{F, Q} \\
\phi_{F, J} & =\psi_{F, I} \sqcup \psi_{F, K}
\end{aligned}
$$

Example: Equations for x_{N} 's (JVP)

$$
\begin{aligned}
& x_{A} \geq 0 \\
& x_{B}=\mathbf{0}\left(x_{A}\right) \\
& x_{C}=\mathbf{1}\left(x_{A}\right) \\
& x_{P}=\mathbf{1}\left(x_{A}\right) \\
& x_{D}=\mathbf{1}\left(x_{A}\right) \\
& x_{E}=\mathbf{1}\left(x_{A}\right) \\
& x_{F}=\mathbf{1}\left(x_{A}\right) \sqcup \mathbf{0}\left(x_{F}\right) \\
& x_{F}=i d\left(x_{F}\right) \\
& \left.x_{G}=i d x_{F}\right) \\
& x_{K}=i=0\left(x_{F}\right) \\
& x_{H}=\mathbf{0}\left(x_{F}\right) \\
& x_{Q}=\mathbf{1}\left(x_{F}\right) \\
& x_{I}=\mathbf{x} \\
& x_{J}=i d\left(x_{F}\right) .
\end{aligned}
$$

Example: Equations for x_{N} 's (JVP)

$$
\begin{aligned}
& x_{A} \geq 0 \\
& x_{B}=\mathbf{0}\left(x_{A}\right) \\
& x_{C}=\mathbf{1}\left(x_{A}\right) \\
& x_{P}=\mathbf{1}\left(x_{A}\right) \\
& x_{D}=\mathbf{1}\left(x_{A}\right) \\
& x_{E}=\mathbf{1}\left(x_{A}\right) \\
& x_{F}=\mathbf{1}\left(x_{A}\right) \sqcup \mathbf{0}\left(x_{F}\right) \\
& x_{F}=i d\left(x_{F}\right) \\
& x_{G}=i
\end{aligned} x_{K}=i d\left(x_{F}\right) .
$$

Fig shows initial (red) and final (blue) values.

Example: Equations for x_{N} 's (JVP)

$$
\begin{aligned}
& x_{A}=0 \\
& x_{B}=\mathbf{0}\left(x_{A}\right) \\
& x_{C}=\mathbf{1}\left(x_{A}\right) \\
& x_{P}=\mathbf{1}\left(x_{A}\right) \\
& x_{D}=\mathbf{1}\left(x_{A}\right) \\
& x_{E}=\mathbf{1}\left(x_{A}\right) \\
& x_{F}=\mathbf{1}\left(x_{A}\right) \sqcup \mathbf{0}\left(x_{F}\right) \\
& x_{G}=i d\left(x_{F}\right) \\
& \left.x_{G}=i d x_{F}\right) \\
& x_{K}=i=\mathbf{0}\left(x_{F}\right) \\
& x_{H}=\mathbf{0}\left(x_{F}\right) \\
& x_{Q}= \\
& x_{1}=\mathbf{1}\left(x_{F}\right) \\
& x_{J}=i d\left(x_{F}\right) .
\end{aligned}
$$

Fig shows initial (red) and final (blue) values.

Exercise

Exercise: Use the functional method to do interprocedural constant propagation analysis for the program below, with initial value \emptyset.

Summary of functional approach

- Uses a two step approach
(1) Compute $\phi_{r_{p}, N}$'s.
(2) Compute x_{n} 's (JVP's) at each point.

Summary of conditions: For each property (column heading), the conjunction of the ticked conditions (row headings) are sufficient to ensure the property.

	Termination	Least Sol of Eq(2) $\geq \mathrm{JVP}$	Least Sol of Eq(2)= JVP
$f_{M N \prime}$'s monotonic			
Finite underlying lattice	$\sqrt{ }$	$\sqrt{ }$	
Distributive			$\sqrt{ }$

Iterative/Tabulation Approach

- Maintain a table of values representing the current value of $\phi_{r_{p}, N}$ for each program point N in procedure p.
- Informally, at N in procedure p, the table has an entry $d \mapsto d^{\prime}$ if we have seen valid paths ρ from r_{1} to r_{p} with $\bigsqcup_{\rho} f_{\rho}\left(d_{0}\right)=d$, and valid and complete paths δ from r_{p} to N with $\bigsqcup_{\delta} f_{\delta}(d)=d^{\prime}$.
- Apply Kildall's algo with initial value of $d_{0} \mapsto d_{0}$ at r_{1}.

Propogation rules

- If $d \mapsto d^{\prime}$ at point M, and statement corresponding to $M N$ is not a call or ret, then propogate $d \mapsto f_{M N}\left(d^{\prime}\right)$ to point N.
- If $d \mapsto d^{\prime}$ at point M, and statement after M is call q, then
- propogate $d \mapsto d^{\prime}$ to point r_{q},
- propogate $d \mapsto d^{\prime \prime}$ to return site of N of M, provided we have $d^{\prime} \mapsto d^{\prime \prime}$ at point e_{q}.
- If $d \mapsto d^{\prime}$ at point e_{q} (i.e before ret in procedure q), then
- If $L N$ corresponds to a call q and $\left(d^{\prime \prime} \mapsto d\right)$ at L, then propogate $d^{\prime \prime} \mapsto d^{\prime}$ to point N. (Do this for all such N).

Example: Computing ϕ 's iteratively: 1

Example: Computing ϕ 's iteratively: 2

Example: Computing ϕ 's iteratively: 3

Example: Computing ϕ 's iteratively: 4

Example: Computing ϕ 's iteratively: 5

Example: Computing ϕ 's iteratively: 6

Example: Computing ϕ 's iteratively: 7

Example: Computing ϕ 's iteratively: 8

Example: Computing ϕ 's iteratively: 9

Example: Computing ϕ 's iteratively: 10

Example: Computing ϕ 's iteratively: 11

Example: Computing ϕ 's iteratively: 12

Example: Computing ϕ 's iteratively: 13

Example: Finally compute x_{N} 's from ϕ values

At each point N take join of reachable $\phi_{r_{p}, N}$ values.

Correctness of iterative algo

$$
\begin{array}{ll}
x_{1} \geq d_{0} \\
x_{r_{p}}=\bigsqcup_{\text {calls } c \text { to } p \text { in } q} \psi_{r_{q}, c}^{*}\left(x_{r_{q}}\right) & \\
x_{n}=\psi_{r_{p}, n}^{*}\left(x_{r_{p}}\right) & \text { for } n \in N_{p}-\left\{r_{p}\right\} .
\end{array}
$$

- Iterative algo terminates provided underlying lattice is finite.
- It computes the least solution to the equations above, where $\psi^{*}\left(r p_{N}\right)$'s are the least solution to Eq (1).
- It thus computes an overapproximation of JVP for monotonic transfer functions, and exact JVP when transfer functions are distributive.

Exercise 2: Iterative algo

Exercise: Use the iterative algo to do constant propagation analysis for the program below with initial value \emptyset :

Comparing functional vs iterative approach

- Functional algo can terminate even when underlying lattice is infinite, provided we can represent and compose/join functions "symbolically".
- Iterative is typically more efficient than functional since it only computes $\phi_{r_{p}, N}$'s for values reachable at start of procedure.

