Interprocedural analysis: Sharir-Pnueli’s
functional approach

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

24 September 2010

Outline

o Motivation

e Functional Approach
© Example

© Exercise 1

e Iterative Approach

Motivation

Example program with procedure calls

@ We want join over all
“valid" paths at each

¥
progam point. !
@ Simply taking “JOP” B
on extended CFG
would lose precision.

@ Can we compute
“JVP" (Join over
Valid Paths) values
instead?

D N
JOP

° N
T e |°
e JVP (interprocedurally valid) ?

\/

Motivation

Example program: Available expressions analysis

e 0O (not available)
e 1 (avalable)
[

Lattice for Av-Exp
analysis.

@ s axb available at
program point N7

Motivation

Example program: Available expressions analysis

e 0O (not available)
o 1(avalable)
o L

Lattice for Av-Exp

analysis.

@ s axb available at
program point N7

@ No if we consider all
paths.

Motivation

Example program: Available expressions analysis

e 0O (not available)
o 1(avalable)
o L

Lattice for Av-Exp

analysis.

@ s axb available at
program point N7

@ No if we consider all
paths.

@ Yes if we consider
interprocedurally
valid paths only.

Motivation

Interprocedurally valid and complete paths: /VPy(M, N)

@ Convention: r, and e, are respectively the root and return
nodes of procedure p. Root of the main procedure is ry.

@ A path p is interprocedurally valid and complete if the
sequence of call nodes and return notes form a balanced
parenthesis string.

@ A path in IVPy(r, D) for example program:

@ C(callp’) -0 H("allp’) - L--- J("ret") - M--- J(“ret’) - N - D.

@ Note that “call p” must be matched by “ret,.”

Motivation

Interprocedurally valid paths: /VP(M, N)

@ A path p is interprocedurally valid if it is a prefix of a valid
and complete path.

@ A path in IVP(ri, 1) for example program:

Motivation

Defining JVP

For a given program P and analysis ((D, <), fun, do), the join over
all interprocedurally valid paths (JVP) at point N is defined to be:

|_| fp(do)-

peIVP(r,N)

Functional Approach

Equation solving: Problems with naive approach

@ In non-procedural case, AY R
we setup equations to 1 P 7
capture JOP assuming Lo
distributivity. Least
solution to these
equations gave us
exact/over-approx
JOP depending on
distributive/monotonic
framework.

@ Try to set up similar .
. - : 1
equations for xy (JVP 5 e o] et

at program point N). E
N

Functional Approach

Instead try to capture join over paths first

@ Set up equations to capture join over complete paths.

@ Now set up equations to capture JVP using join over
complete path values.

Functional Approach

Basic idea: Why join over complete paths help

An IVP path p from r; to N in procedure p can be written as § - n
where § is in IVP(r1,rp), and 7 is in IVPq(rp, N).

n

p N

Consider point where procedure p was last entered.

Functional Approach

Valid and complete paths from r, to N

For a proecedure p and node N in p, define:
Gryn i D — D

given by
¢rp,n(d) = |_| fp(d)-

paths p€IVPq(rp,N)

¢r,,n is thus the join of all functions f, where p is an
interprocedurally valid and complete path from r, to N.

Functional Approach

Equations (1) to capture ¢, v

77brp,rp = IdD

Yo, N = fMNO Y, M

77brp,N = djrq,eq © wrp,l\/l calla
¢rp,N = wrp,L U wrp,M' ; N

Functional Approach

Example: Equations for ¢'s

Yaa = id

Yag = 00vYan

Yac = lovag

Yap = QruoYac

Yap = lotap

Yae = idovYap «
orF = id

orc = idotrr

ork = idoyrF

¢rH = 00vrg

OFQ = YFIOoVEH
¢F,/ = 1o wF,Q
OFy = YriUYrk

Functional Approach

Equations (2) to capture JVP

X1 do

Xrp I—lcallsctopinq ¢"q,C(Xl’q)
Xn = gbrp,n(er) for n e Np — {I’p}.

v

Functional Approach

Example: Equations for xy’s (JVP)

N | O
XQ = O(XF) \N.\\ Mq\\ J ¢ id
X| = l(XF) er \\\\~>;_,:; ret €2
Xy = id(XF).

Fig. shows values of ¢,, n's in bold.

Functional Approach

Correctness and algo

@ Consider lattice (F, <) of functions from D to D, obtained by
closing the transfer functions, identity, and f| : d — L
(denoted fq by Sharir-Pnueil) under composition and join.

@ Ordering is f < g iff f(d) < g(d) for each d € D.

@ (F,<) is also a complete lattice.

of induced by Eq (1) is a monotone function on the complete
lattice (F, <).

@ LFP / least solution exists.

®r,,n's are the least solution to Eq (1) when fjyp's are distributive.
Otherwise ¢,, n's are dominated by the least solution to Eq (1).

Kleene/Kildall's algo will compute LFP (assuming D finite).

Functional Approach

Correctness and algo - Il

°of induced by Eq (2) is a monotone function on the complete
lattice (D, <).

@ LFP / least solution exists.

JVPy's are the least solution to Eq (2) when fyn's are distributive.
Otherwise JVPy's are dominated by the least solution to Eq (2).

Kleene/Kildall's algo will compute LFP (assuming D finite).

Example: Equations for ¢’s

id

Yag = 00van
Yac = loiap
Yap = ¢FioPac
Yap = lotap
YaE = idovap
¢rF = id

brc = idoyrF
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

id

Yag = 00van
Yac = loiap
Yap = ¢FioPac
Yap = lotap
YaE = idovap
¢rF = id

brc = idoyrF
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

id

Yag = 00van
Yac = loiap
Yap = ¢FioPac
Yap = lotap
YaE = idovap
¢rF = id

brc = idoyrF
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

id

Yag = 00van
Yac = loiap
Yap = ¢FioPac
Yap = lotap
YaE = idovap
¢rF = id

brc = idoyrF
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

id

Yag = 00van

Yac = loiap

Yap = GFsovac

Yap = lotap

YaE = idovap .
id

¢rF = id

brc = idoyrF

brk = idoyYEF

¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

id

Yag = 00van

Yac = loiap

Yap = GFsovac

Yap = lotap

YaE = idovap .
id

¢rF = id

brc = idoyrF

brk = idoyYEF

¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

id

Yag = 00van

Yac = loiap

Yap = GFsovac

Yap = lotap

YaE = idovap .
id

¢rF = id

brc = idoyrF

brk = idoyYEF

¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

id

Yag = 00van

Yac = loiap

Yap = GFsovac

Yap = lotap

YaE = idovap .
id

¢rF = id

brc = idoyrF

brk = idoyYEF

¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

id

Yag = 00van

Yac = loiap

Yap = GFsovac

Yap = lotap

YaE = idovap .
id

¢rF = id

brc = idoyrF

brk = idoyYEF

¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

vaa = id AY id

e =ty
Yac = loyas T o
Yap = QruotYac ;
1
Yap = lovap
Yae = idotap ct 1 «
a .- %
orr = id |
orc = idotrF Pe 1
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

vaa = id AY id

e =ty
Yac = loyas T o
Yap = QruotYac ;
1
Yap = lovap
Yae = idotap ct 1 «
a .- %
orr = id |
orc = idotrF Pe 1
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

vaa = id AY id

e =ty
Yac = loyas T o
Yap = QruotYac ;
1
Yap = lovap
Yae = idotap ct 1 «
a_.-~" id
brr = id |
orc = idotrF Pe 1
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

vaa = id AY id

e =ty
Yac = loyas T o
Yap = QruotYac ;
1
Yap = lovap
Yae = idotap ct 1 «
a_.-~" id
brr = id |
orc = idotrF Pe 1
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

vaa = id AY id

e =ty
Yac = loyas T o
Yap = QruotYac ;
1
Yap = lovap
Yae = idotap ct 1 «
a_.-~" id
brr = id |
orc = idotrF Pe 1
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

vaa = id AY id

e =ty
Yac = loyas T o
Yap = QruotYac ;
1
Yap = lovap
Yae = idotap ct 1 «
a_.-~" id
brr = id |
orc = idotrF Pe 1
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for ¢’s

vaa = id AY id

e =ty
Yac = loyas T o
Yap = QruotYac ;
1
Yap = lovap
Yae = idotap ct 1 «
a_.-~" id
brr = id |
orc = idotrF Pe 1
brk = idoyYEF
¢rn = 00vYrg

PFQ = YFJOYFH
¢Fry = lowrg
OFy = YriUYrk

Example: Equations for xy’s (JVP)

XA
XB
xc
Xp
XD
XE

XF
X6
XK
XH
XQ
X

Xy

v

1(XA) (| O(X,E)
id(XF)

id(XF)

0(xr)

0(xr)

1(X,E)

id(XF).

Na.

Example: Equations for xy’s (JVP)

XA
XB
xc
Xp
XD
XE

XF
X6
XK
XH
XQ
X

Xy

v

1(XA) (| O(X,E)
id(XF)

id(XF)

0(xr)

0(xr)

1(X,E)

id(XF).

Y
0

ead a,b

Be 0

=a*b
Ce 1

n

,

,

1 7
-

C
call p

Pe 1
L

H=l=H

Na.

- e

Eé¢1
L

Fig shows initial (red) and final (blue) values.

Example: Equations for xy’s (JVP)

XA > 0 0 ///// :
xc = 1(xa) B4 O A G¢ id
Xp = 1(XA) 0 n Li 0
o = 1) ST pEe
XE = 1(XA) © 11 /,// \\ 00 K
a - 2 lig
I e callp 0
XF = 1(XA) (| O(X,E) Qt 00
o T oo "
XKk = id(XF) ATe
_ - / le1
xqu = 0(xF) - ; 1
N ;)
xq = 0(xg) Na._ M‘\\\ 3} id
x = 1(xF) e
XJ = id(XF).

Fig shows initial (red) and final (blue) values.

Exercise 1

Exercise

Exercise: Use the functional method to do interprocedural constant
propagation analysis for the program below, with initial value (.

Exercise 1

Summary of functional approach

@ Uses a two step approach
Q@ Compute ¢, n's.
©Q Compute x,,'s (JVP's) at each point.
Summary of conditions: For each property (column heading), the
conjunction of the ticked conditions (row headings) are sufficient
to ensure the property.

| | Termination | Least Sol of Eq(2) > JVP | Least Sol of Eq(2)= JVP |

v

fpn's monotonic
Finite underlying lattice
Distributive

v
v

v ‘

Iterative Approach

Iterative/ Tabulation Approach

@ Maintain a table of values representing the current value of
¢r,,n for each program point N in procedure p.

@ Informally, at N in procedure p, the table has an entry d — d’
if we have seen valid paths p from r; to r, with
L, f-(do) = d, and valid and complete paths 4 from r, to N
with | |5 f5(d) = d'.

@ Apply Kildall's algo with initial value of dy — dy at ry.

Iterative Approach

Propogation rules

@ If d — d’ at point M, and statement corresponding to MN is
not a call or ret, then propogate d — fyn(d’) to point N.
o If d — d’ at point M, and statement after M is call q, then
@ propogate d — d’ to point rq,
@ propogate d — d” to return site of N of M, provided we have
d’ — d” at point eg.
o If d — d’ at point e (i.e before ret in procedure q), then

@ If LN corresponds to a call q and (d” — d) at L, then
propogate d”’ +— d’ to point N. (Do this for all such N).

Iterative Approach

Example: Computing ¢’s iteratively: 1

Y.
B

Iterative Approach

Example: Computing ¢’s iteratively: 2

Y.
Be 0 —

Iterative Approach

Example: Computing ¢’s iteratively: 3

Y.
Be 0 —

Iterative Approach

Example: Computing ¢'s iteratively: 4

Y.
Be 0 —

Iterative Approach

Example: Computing ¢’s iteratively: 5

Y.
Be 0 —

Iterative Approach

Example: Computing ¢’s iteratively: 6

Y.
Be 0 —

Iterative Approach

Example: Computing ¢’s iteratively: 7

Y.
Be 0 —

Iterative Approach

Example: Computing ¢’s iteratively: 8

Y.
Be 0 —

Iterative Approach

Example: Computing ¢’s iteratively: 9

Y.
Be 0 —

01

Iterative Approach

Example: Computing ¢'’s iteratively: 10

Y.
Be 0 —

01

Iterative Approach

Example: Computing ¢’s iteratively: 11

Y.
Be 0 —

01

Iterative Approach

Example: Computing ¢’s iteratively: 12

Y.
Be 0 —

01

Iterative Approach

Example: Computing ¢'’s iteratively: 13

Y.
Be 0 —

01

Iterative Approach

Example: Finally compute xy's from ¢ values

At each point N take join of reachable ¢,, v values.
0
—
Yo
o
By 0 —

Iterative Approach

Correctness of iterative algo

x1 > do
Xrp = I_lcalls ctoping ¢Z,C(qu)
Xa = r o(x,) for ne N, —{rp}.

@ lterative algo terminates provided underlying lattice is finite.

@ It computes the least solution to the equations above, where
Y*(rpn)'s are the least solution to Eq (1).

9 |t thus computes an overapproximation of JVP for monotonic
transfer functions, and exact JVP when transfer functions are
distributive.

Iterative Approach

Exercise 2: lterative algo

Exercise: Use the iterative algo to do constant propagation analysis
for the program below with initial value (:

Iterative Approach

Comparing functional vs iterative approach

@ Functional algo can terminate even when underlying lattice is
infinite, provided we can represent and compose/join
functions “symbolically”.

@ lterative is typically more efficient than functional since it only
computes ¢, n's for values reachable at start of procedure.

	Motivation
	Functional Approach
	Example
	Exercise 1
	Iterative Approach

