Interprocedural Analysis: Sharir-Pnueli's Call-strings Approach

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

06 October 2010

Call strings approach

• For a given program P and analysis $((D, \leq), f_{MN}, d_0)$, the *join over all interprocedurally valid paths* (JVP) at point N is defined to be:

$$\bigsqcup_{\rho\in IVP(r_1,N)} f_{\rho}(d_0)$$

- Idea: collect data values that reach each point, tagged with call-string of associated path.
- This helps to say which values pass to a given return site.
- Now we can set up equations that capture JVP values.

Call-string along an interprocedurally valid path

- Call-string associated with an *IVP* path ρ, denoted *CM*(p), is the sequence of pending calls in ρ.
- A path ρ in $IVP(r_1, I)$ for example program:

• Associated call-string $CM(\rho)$ is c_1 .

- Call-string associated with an *IVP* path ρ, denoted *CM*(p), is the sequence of pending calls in ρ.
- A path ρ in *IVP*(r₁, I) for example program:

- Associated call-string $CM(\rho)$ is c_1 .
- For $\rho' = ABCOFGHLF CM(\rho') = c_1c_2$.
- Denote set of all call-strings for given program by Γ.

- Classify paths reaching N according to call-strings.
- $\bullet\,$ For each call-string γ maintain data value

$$d = \bigsqcup_{
ho \in CM^{-1}(\gamma)} f_{
ho}(d_0).$$

- Thus elements of L^* are maps $\xi : \Gamma \to D$, and ordering $\xi_1 \leq \xi_2$ is pointwise extension of \leq in D.
- Tagged JVP value: $\xi_N^* : \gamma \mapsto \bigsqcup_{\rho \in CM^{-1}(\gamma)} f_{\rho}(d_0).$
- JVP value $d_N = \bigsqcup_{\gamma \in \Gamma} \xi_N^*(\gamma)$.

Example: Tagging

Eg: Path ABCOFGHLFKJ has associated callstring c_1c_2 .

Tagged data values at J for for availability of a*b analysis

γ :	ε	<i>c</i> ₁	<i>c</i> ₁ <i>c</i> ₂	c1c2c2	
$\xi(\gamma)$:	\perp	1	0	0	

- Let $D^* = \Gamma \rightarrow D$.
- Pointwise ordering on D^*
 - $\xi \leq' \xi'$ iff $\xi(\gamma) \leq \xi'(\gamma)$ for each call-string γ .
- (D^*, \leq') is also a complete lattice.
- Initial value ξ_0 is given by

$$\xi_0(\gamma) = \begin{cases} d_0 & \text{if } \gamma = \epsilon \\ \bot & \text{otherwise.} \end{cases}$$

- Transfer functions for non call/ret nodes: $f_{MN}^* = \lambda \xi . f_{MN} \circ \xi$.
- Transfer functions f_{MN}^* 's are monotonic (distributive) if f_{MN} 's are monotonic (distributive).

Transfer functions f_{MN}^* by example

Claim

Let the LFP of the analysis $((D^*, \leq'), f^*_{MN}, \xi_0)$ be ξ^* . Then

$$x_{\mathcal{N}}^* = \bigsqcup_{\gamma \in \Gamma} \xi_{\mathcal{N}}^*(\gamma)$$

is an over-approximation of the JVP at N. When f_{MN} 's are distributive x_N^* coincides with JVN at N.

- Lattice (D^*, \leq') is infinite for recursive programs.
- It is possible to bound the size of call strings Γ we need to consider.
- Let k be the number of call sites in P.

Claim

For any path p with a prefix q such that $|CM(q)| > k|D|^2 = M$ there is a path p' with $|CM(q')| \le M$ for each prefix q' of p', and $f_p(d_0) = f_{p'}(d_0)$.

Paths with bounded call-strings

Proof follows shortly.

- Go over to a finite lattice.
- Consider only call strings of length $\leq M$ (Call this Γ_M).
- $IVP_{\Gamma_M}(r_1, N) = paths from r_1 to N such that for each prefix q, <math>CM(q) \le M$.

Claim

For any path p in $IVP(r_1, N)$ such that $|CM(q)| > M = k|D|^2$ for some prefix q of p, there is a path p' in $IVP_{\Gamma_M}(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0)$.

• Sufficient to prove:

Subclaim

For any path p in $IVP(r_1, N)$ with a prefix q such that |CM(q)| > M, we can produce a smaller path p' in $IVP(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0)$.

• ...since if $|p| \leq M$ then $p \in IVP_{\Gamma_M}$.

A path ρ in $IVP(r_1, n)$ can be decomposed as

$$\rho_1 \| (c_1, r_{\rho_2}) \| \rho_2 \| (c_2, r_{\rho_3}) \| \sigma_3 \| \cdots \| (c_{j-1}, r_{\rho_j}) \| \rho_j$$

where each ρ_i (i < j) is a valid and complete path from r_{ρ_i} to c_i , and ρ_j is a valid and complete path from r_{ρ_j} to n. Thus c_1, \ldots, c_j are the unfinished calls at the end of ρ .

- Let p_0 be the first prefix of p where |CM| > M.
- Let decomposition of p_0 be

$$\rho_1 \| (c_1, r_{\rho_2}) \| \rho_2 \| (c_2, r_{\rho_3}) \| \sigma_3 \| \cdots \| (c_{j-1}, r_{\rho_j}) \| \rho_j.$$

- Tag each unfinished-call c_i in p_0 by $(c_i, f_{q \cdot c_i}(d_0), f_{q \cdot c_iq'e_{i+1}})$ where e_{i+1} is corresponding return of c_i in p.
- If no return for c_i in p tag with $(c, f_{q \cdot c_i}(d_0), \bot)$.
- Number of distinct such tags is $k \cdot |D|^2$.
- So there are two calls qc and qcq'c with same tag values.

Proving subclaim – tag values are \perp

Proving subclaim – tag values are not \perp

Example

