Interprocedural Analysis: Sharir-Pnueli's Call-strings Approach

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

06 October 2010

Call strings approach

- For a given program P and analysis $\left((D, \leq), f_{M N}, d_{0}\right)$, the join over all interprocedurally valid paths (JVP) at point N is defined to be:

$$
\bigsqcup_{\rho \in I V P\left(r_{1}, N\right)} f_{\rho}\left(d_{0}\right) .
$$

- Idea: collect data values that reach each point, tagged with call-string of associated path.
- This helps to say which values pass to a given return site.
- Now we can set up equations that capture JVP values.

Call-string along an interprocedurally valid path

- Call-string associated with an IVP path ρ, denoted $C M(p)$, is the sequence of pending calls in ρ.
- A path ρ in $I V P\left(r_{1}, I\right)$ for example program:

- Associated call-string $C M(\rho)$ is c_{1}.

Call-string along an interprocedurally valid path

- Call-string associated with an IVP path ρ, denoted $C M(p)$, is the sequence of pending calls in ρ.
- A path ρ in $I V P\left(r_{1}, I\right)$ for example program:

- Associated call-string $C M(\rho)$ is c_{1}.
- For $\rho^{\prime}=A B C O F G H L F C M\left(\rho^{\prime}\right)=c_{1} c_{2}$.
- Denote set of all call-strings for given program by Γ.

Tagging with call-strings

- Classify paths reaching N according to call-strings.
- For each call-string γ maintain data value

$$
d=\bigsqcup_{\rho \in C M^{-1}(\gamma)} f_{\rho}\left(d_{0}\right) .
$$

- Thus elements of L^{*} are maps $\xi: \Gamma \rightarrow D$, and ordering $\xi_{1} \leq \xi_{2}$ is pointwise extension of \leq in D.
- Tagged JVP value: $\xi_{N}^{*}: \gamma \mapsto \bigsqcup_{\rho \in C M^{-1}(\gamma)} f_{\rho}\left(d_{0}\right)$.
- JVP value $d_{N}=\bigsqcup_{\gamma \in \Gamma} \xi_{N}^{*}(\gamma)$.

Example: Tagging

Eg: Path ABCOFGHLFKJ has associated callstring $c_{1} c_{2}$.

Tagged data values at J for for availability of $\mathrm{a}^{*} \mathrm{~b}$ analysis

γ
$\gamma(\gamma)$
:---
\perp

Data-flow analysis with tagged data values

- Let $D^{*}=\Gamma \rightarrow D$.
- Pointwise ordering on D^{*}
- $\xi \leq^{\prime} \xi^{\prime}$ iff $\xi(\gamma) \leq \xi^{\prime}(\gamma)$ for each call-string γ.
- $\left(D^{*}, \leq^{\prime}\right)$ is also a complete lattice.
- Initial value ξ_{0} is given by

$$
\xi_{0}(\gamma)= \begin{cases}d_{0} & \text { if } \gamma=\epsilon \\ \perp & \text { otherwise }\end{cases}
$$

- Transfer functions for non call/ret nodes: $f_{M N}^{*}=\lambda \xi . f_{M N} \circ \xi$.
- Transfer functions $f_{M N}^{*}$'s are monotonic (distributive) if $f_{M N}$'s are monotonic (distributive).

Transfer functions $f_{M N}^{*}$ by example

- (Non-call/ret node)

$$
\xi_{C}=f_{B C} \circ \xi_{B} .
$$

- (Call node)

- (Return site)

$$
\xi_{P}(\gamma)=\xi_{J}\left(\gamma \cdot c_{1}\right) .
$$

Correctness claims

Claim

Let the LFP of the analysis $\left(\left(D^{*}, \leq^{\prime}\right), f_{M N}^{*}, \xi_{0}\right)$ be ξ^{*}. Then

$$
x_{N}^{*}=\bigsqcup_{\gamma \in \Gamma} \xi_{N}^{*}(\gamma)
$$

is an over-approximation of the JVP at N. When $f_{M N}$'s are distributive x_{N}^{*} coincides with JVN at N.

Exercise

Use Kildall's algo to compute the ξ table values for the example program, for $|\gamma| \leq 4$. Start with initial value $d_{0}=0$.

Exercise

Use Kildall's algo to compute the ξ table values for the example program, for $|\gamma| \leq 4$. Start with initial value $d_{0}=0$.

Exercise

Use Kildall's algo to compute the ξ table values for the example program, for $|\gamma| \leq 4$. Start with initial value $d_{0}=0$.

Exercise

Use Kildall's algo to compute the ξ table values for the example program, for $|\gamma| \leq 4$. Start with initial value $d_{0}=0$.

Exercise

Use Kildall's algo to compute the ξ table values for the example program, for $|\gamma| \leq 4$. Start with initial value $d_{0}=0$.

Convergence of iteration

- Lattice $\left(D^{*}, \leq^{\prime}\right)$ is infinite for recursive programs.
- It is possible to bound the size of call strings Γ we need to consider.
- Let k be the number of call sites in P.

Convergence of iteration

Claim

For any path p with a prefix q such that $|C M(q)|>k|D|^{2}=M$ there is a path p^{\prime} with $\left|C M\left(q^{\prime}\right)\right| \leq M$ for each prefix q^{\prime} of p^{\prime}, and $f_{p}\left(d_{0}\right)=f_{p^{\prime}}\left(d_{0}\right)$.

Paths with bounded call-strings

Proof follows shortly.

Ensuring convergence

- Go over to a finite lattice.
- Consider only call strings of length $\leq M$ (Call this Γ_{M}).
- $I V P_{\Gamma_{M}}\left(r_{1}, N\right)=$ paths from r_{1} to N such that for each prefix $q, C M(q) \leq M$.

Data-flow analysis for JVP over $I V P_{\Gamma_{M}}$

- (Non-call/ret node)

$$
\xi_{C}=f_{B C} \circ \xi_{B}
$$

- (Call node)

$$
\xi_{F}(\gamma)=\left\{\begin{array}{lc}
\xi_{C}\left(\gamma^{\prime}\right) & \begin{array}{c}
\text { if } \gamma=\gamma^{\prime} \cdot c_{1} \\
\text { and } \gamma \in \Gamma_{M} \\
\perp
\end{array} \\
\text { otherwise }
\end{array}\right.
$$

- (Return site)

$$
\xi_{P}(\gamma)=\xi_{J}\left(\gamma \cdot c_{1}\right)
$$

Bounding call-string size

Claim

For any path p in $I V P\left(r_{1}, N\right)$ such that $|C M(q)|>M=k|D|^{2}$ for some prefix q of p, there is a path p^{\prime} in $I V P_{\Gamma_{M}}\left(r_{1}, N\right)$ with $f_{p^{\prime}}\left(d_{0}\right)=f_{p}\left(d_{0}\right)$.

- Sufficient to prove:

Subclaim

For any path p in $\operatorname{IVP}\left(r_{1}, N\right)$ with a prefix q such that
$|C M(q)|>M$, we can produce a smaller path p^{\prime} in $\operatorname{IVP}\left(r_{1}, N\right)$ with $f_{p^{\prime}}\left(d_{0}\right)=f_{p}\left(d_{0}\right)$.

- ...since if $|p| \leq M$ then $p \in I V P_{\Gamma_{M}}$.

Proving subclaim: Path decomposition

A path ρ in $\operatorname{IVP}\left(r_{1}, n\right)$ can be decomposed as

$$
\rho_{1}\left\|\left(c_{1}, r_{p_{2}}\right)\right\| \rho_{2}\left\|\left(c_{2}, r_{p_{3}}\right)\right\| \sigma_{3}\|\cdots\|\left(c_{j-1}, r_{p_{j}}\right) \| \rho_{j}
$$

where each $\rho_{i}(i<j)$ is a valid and complete path from $r_{p_{i}}$ to c_{i}, and ρ_{j} is a valid and complete path from $r_{p_{j}}$ to n. Thus c_{1}, \ldots, c_{j} are the unfinished calls at the end of ρ.

Proving subclaim

- Let p_{0} be the first prefix of p where $|C M|>M$.
- Let decomposition of p_{0} be

$$
\rho_{1}\left\|\left(c_{1}, r_{p_{2}}\right)\right\| \rho_{2}\left\|\left(c_{2}, r_{p_{3}}\right)\right\| \sigma_{3}\|\cdots\|\left(c_{j-1}, r_{p_{j}}\right) \| \rho_{j}
$$

- Tag each unfinished-call c_{i} in p_{0} by $\left(c_{i}, f_{q \cdot c_{i}}\left(d_{0}\right), f_{q \cdot c_{i} q^{\prime} e_{i+1}}\right)$ where e_{i+1} is corresponding return of c_{i} in p.
- If no return for c_{i} in p tag with $\left(c, f_{q \cdot c_{i}}\left(d_{0}\right), \perp\right)$.
- Number of distinct such tags is $k \cdot|D|^{2}$.
- So there are two calls $q c$ and $q c q^{\prime} c$ with same tag values.

Proving subclaim - tag values are \perp

Proving subclaim - tag values are not \perp

Example

