Interprocedural Optimisation Seminar Static Program Analysis

Barbara Dörr

Sources:

Übersetzerbau - Analyse und Transformation (H. Seidl, R. Wilhelm, S. Hack) Principles of Program Analysis (F. Nielson, H.R. Nielson, C. Hankin)
12. März 2010

Forms of Program Optimisation

Program Optimisation

Interprocedural vs. Intraprocedural

disadvantage of intraprocedural optimisation:
context-insensitive optimisation:
cannot distinguish between different calls
(information is combined from all call sites)
\rightarrow imprecise information
interprocedural optimisation: context-sensitive optimisation:
different calls reached with different contexts δ_{1} and δ_{2}
\rightarrow information obtained clearly related to δ_{1} and δ_{2}
\Rightarrow more precise, but more costly

Introduction

Simple Interprocedural Optimisations

Operational Semantic

Functional Approach

Related Approaches

Summary

Program Representation

intraprocedural
\rightarrow program represented by a control flow graph:

Program Representation

 interprocedural\rightarrow program represented by a set of control flow graphs; f ()

Edge Annotations

($x \ldots$ variable, e ... arithmetic expression)
edge effects - intraprocedural:
Test:
NonZero (e)
Zero (e)
Assignment:
$x \leftarrow e$
Load:
$x \leftarrow M[e]$
Store:
$M\left[e_{1}\right] \leftarrow e_{2}$
Empty Statement: ;
additional edge effect - interprocedural:
Function Call: $f()$

Introduction

Simple Interprocedural Optimisations

Operational Semantic

Functional Approach

Related Approaches

Summary

Inlining

inlining:

copy function body to calling point

problems:

- function has to be statically known
- local variables of calling function must not be modified \rightarrow rename local variables
- recursive functions
\rightarrow identified from call graph
\rightarrow
- inlining only for leave functions (without calls)
- inlining only for non-recursive functions

Inlining

Call Graph

Call Graph: nodes \sim functions

 edges \sim between function f_{1} and function f_{2}, if f_{1} calls f_{2}```
main() {
 b}<-3
 f();
 M[17] <- ret;
}
```

```
f(){
```

f(){
A <- b;
A <- b;
if (A <=1) ret <- 1;
if (A <=1) ret <- 1;
else {
else {
b <- A-1;
b <- A-1;
f();
f();
ret <- A*ret;
ret <- A*ret;
}
}
}

```
}
```


## Inlining

## Call Graph

```
 abs(){
 b_1 <- b;
 b_2 <- -b;
 max();
}
max(){
 if (b_1 < b_2) ret <- b_2;
 else ret <- b_1;
}
```


## Inlining

## transformation PI:



## Inlining

## example

```
 abs(){
 b_1 <- b;
 b_2 <- -b;
 max();
}
max(){
if (b_1 < b_2) ret <- b_2;
else ret <- b_1;
}
```

```
abs(){
 b_1 <- b;
 b_2 <- -b;
 if (b_1 < b_2) ret <- b2;
 else ret <- b_1;
}
```


## Remove Last Calls

$\rightarrow$ no own stack frame needed; only replace local variables (unconditional jump to function body)
! only possible if local variables of calling function are not accessible any more
transformation LC:
f() :


$$
A=0 ;(A \in L o c)
$$

f() :

## Remove Last Calls

example

```
f(){
 if (b_2 <= 1) ret <- b_1;
 else {
 b_1 <- b_1*b_2;
 b_2 <- b_2 - 1;
 f();
 }
}
```

```
f(){
 _f: if (b_2 <= 1) ret <- b_1;
 else {
 b_1 <- b_1*b_2;
 b_2 <- b_2 - 1;
 goto _f;
 }
}
```


## Introduction

## Simple Interprocedural Optimisations

Operational Semantic

Functional Approach

Related Approaches

Summary

## Operational Semantic

 intraprocedural- computations are described by paths through the control flow graph
- computations transform the current program state
- program state: $\boldsymbol{s}=(\rho, \mu)$ with
$\rho:$ Vars $\rightarrow$ int $\ldots$ value of variables
$\mu: \mathbb{N} \rightarrow$ int $\quad \ldots \quad$ content of memory
- edge $k=(u, l a b, v)$
... entry node $u$, exit node $v$, edge annotation label
- edge effect: transformation $\llbracket k \rrbracket$ on program states defined by the edge $k$ $\llbracket k \rrbracket=\llbracket / a b \rrbracket$


## Operational Semantic

## Edge Effects - intraprocedural

$$
\left.\begin{array}{rl}
\llbracket ; \rrbracket(\rho, \mu)= & (\rho, \mu) \\
\llbracket \operatorname{NonZero}(e) \rrbracket(\rho, \mu)= & (\rho, \mu), \\
& \text { if } \llbracket e \rrbracket \rho \neq 0 \\
\llbracket \operatorname{Zero}(e) \rrbracket(\rho, \mu)= & (\rho, \mu), \\
& \text { if } \llbracket e \rrbracket \rho=0 \\
\llbracket x \leftarrow e \rrbracket(\rho, \mu)= & (\boxed{\rho \oplus\{x \mapsto \llbracket e \rrbracket \rho\}}, \mu) \\
\llbracket x \leftarrow M[e \rrbracket \rrbracket(\rho, \mu)= & (\square \oplus\{x \mapsto \mu(\llbracket e \rrbracket \rho)\} \\
\llbracket M\left[e_{1}\right] \leftarrow e_{2} \rrbracket(\rho, \mu)= & \left(\rho, \mu \oplus\left\{\llbracket e_{1} \rrbracket \rho \mapsto \llbracket e_{2} \rrbracket \rho\right\}\right.
\end{array}\right)
$$

## Stack Representation

## Call Stack:

```
main() {
 b <- 3;
 f();
 M[17] <- ret;
}
```

```
f(){
 A <- b;
 if (A <=1) ret <- 1;
 else {
 b <- A-1;
 f();
 ret <- A*ret;
 }
}
```



| 10 | $A \mapsto 1$ |
| :---: | :---: |
| 08 | $A \mapsto 2$ |
| 08 | $A \mapsto 3$ |
| 02 |  |
|  |  |


| 08 | $A \mapsto 2$ |
| :--- | :--- |
| 08 | $A \mapsto 3$ |
| 02 |  |


| 10 | $A \mapsto 2$ |
| :---: | :---: |
| 08 | $A \mapsto 3$ |
| 02 |  |


| 08 | $A \mapsto 3$ |
| :--- | :--- |
| 02 |  |


| 10 | $A \mapsto 1$ |
| :--- | :--- |
| 02 |  | 02

## Stack Representation

## call stack:

- describes called and not yet finished functions
- basis of operational semantic

$$
\begin{aligned}
\text { config }= & \text { stack } \times \text { globals } \times \text { store } \\
\text { globals }= & G l o b \rightarrow \mathbb{Z} \\
\text { store }= & \mathbb{N} \rightarrow \mathbb{Z} \\
\text { stack }= & \text { frame } \cdot \text { frame }{ }^{*} \\
\text { frame }= & \text { point } \times \text { locals } \\
\text { locals }= & \text { Loc } \rightarrow \mathbb{Z} \\
& !\text { function body is a scope with own local variables }
\end{aligned}
$$

## Modeling of Function Call

- call $k=(u, \mathrm{f}(), v):!\rho_{\mathrm{f}}=\{x \mapsto 0 \mid x \in \operatorname{Loc}\}$

$$
\underbrace{\left(\sigma \cdot\left(\left(\mu, \rho_{\text {Loc }}\right) \cdot, \rho_{G \text { Gob }}, \mu\right)\right.}_{\text {config }} \vdash(\sigma \cdot \underbrace{}_{\left(v, \rho_{\text {Loc }}\right) \cdot\left(u_{f}, \rho_{f}\right) \cdot}, \rho_{G l o b}, \mu)
$$

- effect of function itself
- return from call:

$$
\left(\sigma \cdot\left(v, \rho_{L o c}\right) \cdot\left(r_{\mathrm{f}},-\right), \rho_{G l o b}, \mu\right) \vdash\left(\sigma \cdot\left(v, \rho_{L o c}\right), \rho_{G l o b}, \mu\right)
$$

| $\sigma$ | $\ldots$ | stack |
| :--- | :--- | :--- |
| $\rho_{\text {Glob }}$ | $\ldots$ | global variables |
| $\mu$ | $\ldots$ | store |
| $\left(u, \rho_{\text {Loc }}\right)$ | $\ldots$ | frame $($ point $\times$ locals $)$ |

## Path Effects

$\pi:\left(\left(u, \rho_{\text {Loc }}\right), \rho_{G l o b}, \mu\right) \rightsquigarrow\left(\left(v, \rho_{\text {Loc }}^{\prime}\right), \rho_{\text {Glob }}^{\prime}, \mu^{\prime}\right)$
path $\pi$ defines a partial function $\llbracket \pi \rrbracket$, that transforms $\left(\left(u, \rho_{\text {Loc }}\right), \rho_{G l o b}, \mu\right)$ into $\left(\left(v, \rho_{\text {Loc }}^{\prime}\right), \rho_{G l o b}^{\prime}, \mu^{\prime}\right)$
$\Rightarrow$ compute transformation inductive over the structure of the path:

$$
\llbracket \pi k \rrbracket=\llbracket k \rrbracket \circ \llbracket \pi \rrbracket
$$

for a normal edge $k$ (composition of edge effects)

## Paths Effects

- same-level: all entered functions are also left again $\pi=\pi_{1}\langle\mathrm{f}\rangle \pi_{2}\langle\backslash \mathrm{f}\rangle$

|  |  |  |  | 05 | $A \mapsto 1$ | 10 | $A \mapsto 1$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 05 | $A \mapsto 2$ | 07 | $A \mapsto 2$ | 08 | $A \mapsto 2$ | 08 | $A \mapsto 2$ | 08 | $A \mapsto 2$ |
| 08 | $A \mapsto 3$ |
| 02 |  | 02 |  | 02 |  | 02 |  | 02 |  |

$\rightarrow$ height of the stack stays the same

$$
\llbracket \pi_{1}\langle\mathrm{f}\rangle \pi_{2}\langle\backslash \mathrm{f}\rangle \rrbracket=H\left(\llbracket \pi_{2} \rrbracket\right) \circ \llbracket \pi_{1} \rrbracket
$$

with

$$
\begin{aligned}
H(g)\left(\rho_{\text {Loc }}, \rho_{G l o b}, \mu\right)= & \operatorname{let}\left(\rho_{\text {Loc }}^{\prime}, \rho_{G l o b}^{\prime}, \mu^{\prime}\right)=g\left(\underline{0}, \rho_{G l o b}, \mu\right) \\
& \operatorname{in}\left(\rho_{\text {Loc }}, \rho_{G l o b}^{\prime}, \mu^{\prime}\right)
\end{aligned}
$$

## Path Effects

- computation that reaches a program point: $\pi\langle\mathrm{f}\rangle \pi^{\prime}$ with $\pi, \pi^{\prime}$ is same-level

$\llbracket \pi\langle\mathbf{f}\rangle \pi^{\prime} \rrbracket\left(\rho_{\text {Loc }}, \rho_{\text {Glob }}, \mu\right)=\operatorname{let}\left({ }_{-,}, \rho_{\text {Glob }}^{\prime}, \mu^{\prime}\right)=\llbracket \pi \rrbracket\left(\rho_{\text {Loc }}, \rho_{\text {Glob }}, \mu\right)$

$$
\mathbf{i n} \llbracket \pi^{\prime} \rrbracket\left(\underline{0}, \rho_{G l o b}^{\prime}, \mu^{\prime}\right)
$$

## Introduction

## Simple Interprocedural Optimisations

## Operational Semantic

Functional Approach

Related Approaches

Summary

## Program Analysis

D ... lattice
$\rightarrow$ all possible sets of analysis information that may hold at a program point
idea: collect information along all paths leading to a program point to yield analysis information that holds there
$\rightarrow$ transformation of analysis information along edge $k$ according to abstract edge effect $\llbracket k \rrbracket^{\#}: \mathbb{D} \rightarrow \mathbb{D}$

## Program Analysis

 interproceduralenter $\#: \mathbb{D} \rightarrow \mathbb{D}$
$\rightarrow$ initialise information for the starting point of a function
combine ${ }^{\#}: \mathbb{D}^{2} \rightarrow \mathbb{D}$
$\rightarrow$ combines information at the end of function body and information before entering the function

$$
\Rightarrow \llbracket k \rrbracket^{\#} D=\text { combine }^{\#}\left(D, \llbracket f \rrbracket \#\left(\rrbracket^{\#} \text { enter }^{\#} D\right)\right)
$$

## Example: Copy Propagation

## intraprocedural

## Copy Propagation:

computes for variable $x$ at each program point the set of variables that contain the same value
$\rightarrow$ usage may be replaced by usage of $x$
abstract edge effects: $\left(\llbracket k \rrbracket^{\#}: \mathbb{D} \rightarrow \mathbb{D}\right)$

$$
\begin{aligned}
\llbracket x \leftarrow e \rrbracket^{\#} V= & \{x\} \\
\llbracket x \leftarrow M[e] \rrbracket^{\#} V= & \{x\} \\
\llbracket z \leftarrow y \rrbracket^{\#} V= & (y \in V) ? V \cup\{z\}: V \backslash\{z\} \\
& x \not \equiv z, y \in \operatorname{Vars} \\
\llbracket z \leftarrow r \rrbracket^{\#} V= & V \backslash\{z\}, \\
& x \not \equiv z, r \notin \operatorname{Vars}
\end{aligned}
$$

## Example: Copy Propagation

## interprocedural

- all variables global:

$$
\begin{aligned}
& \text { enter } \# V=V \\
& \text { combine }^{\#}\left(V_{1}, V_{2}\right)=V_{2}
\end{aligned}
$$

- with local variables:
- : auxiliary local variable to store value of $x$ before the function call

$$
\begin{aligned}
& \text { enter\# } V=V \cap G l o b \cup\{\bullet\} \\
& \text { combine } \#\left(V_{1}, V_{2}\right)=\left(V_{2} \cap G l o b\right) \cup\left(\left(\bullet \in V_{2}\right) ? V_{1} \cap \text { Loc. }: \emptyset\right) \\
& \text { with Loc• }=\operatorname{Loc} \cup\{\bullet\}
\end{aligned}
$$

## Abstract Effect of Function f

$\rightarrow \llbracket \mathrm{f} \rrbracket$ \#: upper bound for abstract effect $\llbracket \pi \rrbracket^{\#}$ of every same-level computation $\pi$ for f
$\rightarrow$ approximated via

$$
\begin{aligned}
\llbracket s t a r t_{\mathrm{f}} \rrbracket^{\#} \sqsupseteq & \mathrm{Id} \\
\llbracket v \rrbracket^{\#} & H^{\#}\left(\llbracket \mathrm{f} \rrbracket^{\#}\right) \circ \llbracket u \rrbracket^{\#}, \\
& k=(u, \mathrm{f}(), v) \text { function call } \\
\llbracket v \rrbracket^{\#} \sqsupseteq & \llbracket k \rrbracket^{\#} \circ \llbracket u \rrbracket^{\#}, \\
& k=(u, l a b, v) \text { normal edge } \\
\llbracket \mathrm{f} \rrbracket^{\#} \sqsupseteq & \llbracket s t o p_{\mathrm{f}} \rrbracket^{\#}
\end{aligned}
$$

with $\llbracket v \rrbracket^{\#}: \mathbb{D} \rightarrow \mathbb{D}$ describes effects of all same-level computations from the beginning of $f$ to program point $v$

## Abstract Effects of Function f

right side of inequalities is monotone
$\rightarrow$ system of inequalities has smallest solution
【.】\# be the smallest solution of the system of inequalities

1. $\llbracket v \rrbracket^{\#} \sqsupseteq \llbracket \pi \rrbracket^{\#}$
$\forall$ same-level computations $\pi$ from start $_{\mathrm{f}}$ to $v$
2. $\llbracket \mathrm{f} \rrbracket^{\#} \sqsupseteq \llbracket \pi \rrbracket^{\#}$
$\forall$ same-level computations $\pi$ of f
$\Rightarrow$ every solution of the system of inequalities can be used to approximate the abstract effect of a function call

## Problems

- not always closed representation of monotone functions in the system of inequalities
- infinite ascending chains
$\Rightarrow$ in the case of copy propagation:
- complete lattice $\mathbb{V}=\left\{V \subseteq V_{\text {ars }}^{\mathbf{0}} \mid x \in V\right\}$ is atomic
- edge effects are distributive ( $\rightarrow$ monotone)
- no infinite ascending chains: only finitely many variables
$\rightarrow$ compact representation of monotone functions exists:

$$
g(V)=b \sqcup \bigsqcup\{h(a) \mid a \in A \wedge a \sqsubseteq V\}
$$

with $h: A \rightarrow \mathbb{V}, b \in \mathbb{V}, A \subseteq \mathbb{V}$

## Abstract Effects of Function f

ex. Copy Propagation

```
main() {
 A <- M[0];
 if (A) print();
 b <- A;
 work();
 ret <- 1-ret;
}
work() {
 A <- b;
 if (A) work();
 ret <- A;
}
```


## Abstract Effects of Function f

ex. Copy Propagation

Vars $\mathbf{\bullet}=\{A, b$, ret,$\bullet\}$, investigate $b$
$\Rightarrow$

$$
\begin{aligned}
\llbracket A \leftarrow b \rrbracket^{\#} C & =C \cup\{A\} \\
& :=g_{1}(C) \\
\llbracket \mathrm{ret} \leftarrow A \rrbracket^{\#} C & =(A \in C) ?(C \cup\{r e t\}):(C \backslash\{r e t\}) \\
& :=g_{2}(C)
\end{aligned}
$$

## Abstract Effects of Function f

ex. Copy Propagation

represent edge effects $g_{1}, g_{2}$ by $\left(h_{1}\right.$, Vars $\left._{\bullet}\right),\left(h_{2}\right.$, Vars $\left._{\bullet}\right)$ :
(enumerable for finite lattice)

|  | $h_{1}$ | $h_{2}$ |
| :--- | :--- | :--- |
| $\{b, r e t, \bullet\}$ | $V_{a r s_{\bullet}}$ | $\{b, \bullet\}$ |
| $\{b, A, \bullet\}$ | $\{b, A, \bullet\}$ | Vars ${ }^{\bullet}$ |
| $\{b, A, r e t\}$ | $\{b, A, r e t\}$ | $\{b, A, r e t\}$ |

$$
\begin{aligned}
& g_{1}(C)=C \cup\{A\} \\
& g_{2}(C)=(A \in C) ?(C \cup\{r e t\}):(C \backslash\{r e t\})
\end{aligned}
$$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():


$$
\begin{aligned}
& \llbracket A \leftarrow b \rrbracket^{\#} C=C \cup\{A\}:=g_{1}(C) \\
& \llbracket \text { ret } \leftarrow A \rrbracket^{\#} C=(A \in C) ?(C \cup\{r e t\}):(C \backslash\{r e t\}):=g_{2}(C)
\end{aligned}
$$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():


$$
\begin{aligned}
& \llbracket A \leftarrow b \rrbracket^{\#} C=C \cup\{A\}:=g_{1}(C) \\
& \llbracket \text { ret } \leftarrow A \rrbracket^{\#} C=(A \in C) ?(C \cup\{r e t\}):(C \backslash\{r e t\}):=g_{2}(C)
\end{aligned}
$$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():


$$
\begin{aligned}
& \llbracket A \leftarrow b \rrbracket^{\#} C=C \cup\{A\}:=g_{1}(C) \\
& \llbracket \text { ret } \leftarrow A \rrbracket^{\#} C=(A \in C) ?(C \cup\{r e t\}):(C \backslash\{r e t\}):=g_{2}(C)
\end{aligned}
$$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():


$$
\begin{aligned}
& \llbracket A \leftarrow b \rrbracket^{\#} C=C \cup\{A\}:=g_{1}(C) \\
& \llbracket \text { ret } \leftarrow A \rrbracket^{\#} C=(A \in C) ?(C \cup\{r e t\}):(C \backslash\{r e t\}):=g_{2}(C)
\end{aligned}
$$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():


$$
\begin{aligned}
& \llbracket A \leftarrow b \rrbracket^{\#} C=C \cup\{A\}:=g_{1}(C) \\
& \llbracket \text { ret } \leftarrow A \rrbracket^{\#} C=(A \in C) ?(C \cup\{r e t\}):(C \backslash\{r e t\}):=g_{2}(C)
\end{aligned}
$$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():


$$
\begin{aligned}
& \llbracket A \leftarrow b \rrbracket^{\#} C=C \cup\{A\}:=g_{1}(C) \\
& \llbracket \mathrm{ret} \leftarrow A \rrbracket^{\#} C=(A \in C) ?(C \cup\{r e t\}):(C \backslash\{r e t\}):=g_{2}(C)
\end{aligned}
$$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():

first approximation for call of work:
combine $\#\left(C, g_{3}\left(\operatorname{enter}^{\#}(C)\right)\right)=C \cup\{r e t\}:=g_{4}(C)$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():

first approximation for call of work:
combine $\#\left(C, g_{3}\left(\operatorname{enter}^{\#}(C)\right)\right)=C \cup\{r e t\}:=g_{4}(C)$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():

first approximation for call of work:
combine $\#\left(C, g_{3}\left(\operatorname{enter}^{\#}(C)\right)\right)=C \cup\{r e t\}:=g_{4}(C)$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():

first approximation for call of work:
combine $\#\left(C, g_{3}\left(\operatorname{enter}^{\#}(C)\right)\right)=C \cup\{r e t\}:=g_{4}(C)$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():

first approximation for call of work:
combine $\#\left(C, g_{3}\left(\operatorname{enter}^{\#}(C)\right)\right)=C \cup\{r e t\}:=g_{4}(C)$

## Abstract Effects of Function f

## ex. Copy Propagation

$C$ : set of variables that initially have the same value as $b$ work ():

fixpoint reached after first iteration:
work approximated by $g_{4}(C)=C \cup\{r e t\}$

## Coincidence Theoreme

- $\exists$ same-level computation from $\operatorname{start}_{\mathrm{f}}$ to $v \forall v \in \mathrm{f}$, edge effects and transformation $H^{\#}$ are distributive
$\Rightarrow \llbracket v \rrbracket^{\#}=\bigsqcup\left\{\llbracket \pi \rrbracket^{\#} \mid \pi \in \mathcal{T}_{v}\right\} \forall v \in \mathrm{f}$
( $\mathcal{T}_{v} \ldots$ set of all same-level computations from $\operatorname{start}_{\mathrm{f}}$ to $v$ )
- enter\# distributive, combine ${ }^{\#}\left(x_{1}, x_{2}\right)=h_{1}\left(x_{1}\right) \sqcup h_{2}\left(x_{2}\right)$ $\Rightarrow H^{\#}$ distributive: $H^{\#}(\bigsqcup \mathcal{F})=\bigsqcup\left\{H^{\#}(g) \mid g \in \mathcal{F}\right\}$


## Coincidence Theoreme

ex. Copy Propagation

$$
\text { enter }^{\#} V=V \cap G l o b \cup\{\bullet\}
$$

$\rightarrow$ distributive

$$
\begin{aligned}
\text { combine }^{\#}\left(V_{1}, V_{2}\right)= & \left(V_{2} \cap G l o b\right) \cup\left(\bullet \in V_{2}\right) ? V_{1} \cap L o c: \emptyset \\
= & \left(\left(V_{1} \cap \text { Loc }\right) \cup G l o b\right) \cap \\
& \left(\left(V_{2} \cap G l o b\right) \cup \text { Loc }_{\bullet}\right) \cap \\
& \left(G l o b \cup\left(\bullet \in V_{2}\right) ? \text { Vars. }: \text { Glob }\right)
\end{aligned}
$$

$\rightarrow$ intersection of distributive functions of first and second argument
$\Rightarrow$ coincidence theoreme holds for copy propagation

## Interprocedural Reachability

effects $\llbracket f \rrbracket$ \# are approximated
$\rightarrow$ compute for program point $u$ a safe approximation of property $\mathcal{D}[u]$ that holds when $u$ is reached

$$
\begin{aligned}
\mathcal{D}\left[\text { start }_{\text {main }}\right] & \sqsupseteq \operatorname{enter}^{\#}\left(d_{0}\right) \\
\mathcal{D}\left[\text { start }_{f}\right] & \sqsupseteq \operatorname{enter}^{\#}(\mathcal{D}[u]), \\
& (u, \mathrm{f}(), v) \text { calling edge } \\
\mathcal{D}[v] \sqsupseteq & \operatorname{combine}^{\#}\left(\mathcal{D}[u], \llbracket \mathrm{f} \rrbracket^{\#}\left(\operatorname{enter}^{\#}(\mathcal{D}[u])\right)\right), \\
& (u, \mathrm{f}(), v) \text { calling edge } \\
\mathcal{D}[v] \sqsupseteq & \llbracket k \rrbracket^{\#}(\mathcal{D}[u]) \\
& k=(u, l a b, v) \text { normal edge }
\end{aligned}
$$

## Interprocedural Reachability

smallest solution for system of inequalities exists because of monotonicity and it holds:

$$
\mathcal{D}[v] \sqsupseteq \llbracket \pi \rrbracket^{\#} d_{0}
$$

for all paths that reach $v$
( $d_{0} \in \mathbb{D}$ : information at the beginning of program execution) for distributive abstract edge effects and distributive transformation $H^{\#}$ :

$$
\mathcal{D}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\#} d_{0} \mid \pi \in \mathcal{P}_{v}\right\}
$$

with $\mathcal{P}_{v} \ldots$ set of all paths that reach $v$

## Interprocedural Reachability

example


## Interprocedural Reachability

example



## Interprocedural Reachability

example


## Interprocedural Reachability

example


## Interprocedural Reachability

example


## Interprocedural Reachability

example


## Interprocedural Reachability

example


## Interprocedural Reachability

example


## Interprocedural Reachability

example


work approximated by
$g_{4}(C)=C \cup\{r e t\}$

## Interprocedural Reachability

example


## Interprocedural Reachability

example


## Interprocedural Reachability

example



## Interprocedural Reachability

example


$\Rightarrow$ within the call of work: global var. $b$ may be used instead of local var. $A$

## Introduction

## Simple Interprocedural Optimisations

## Operational Semantic

Functional Approach

Related Approaches

Summary

## Demand-Driven Interprocedural Analysis

sometimes: lattice not finite, functions cannot be represented in a compact form
$\rightarrow$ only analyse calls in situations that really occur
! this is the case e.g. for constant propagation
$\rightarrow$ use local fixpoint algorithm:
only compute solutions for certain inequalities; only solve part of the system that is needed therefor

## Demand-Driven Interprocedural Analysis

 system of inequalities$$
\begin{aligned}
\mathcal{D}[v, a] \sqsupseteq & a, \\
& v \text { entry point } \\
\mathcal{D}[v, a] \sqsupseteq & \text { combine }^{\#}\left(\mathcal{D}[u, a], \mathcal{D}\left[\mathrm{f}, \text { enter }^{\#}(\mathcal{D}[u, a])\right]\right), \\
& (u, \mathrm{f}(), v) \text { calling edge } \\
\mathcal{D}[v, \mathrm{a}] \sqsupseteq & \llbracket l a b \rrbracket(\mathcal{D}[u, a]), \\
& k=(u, l a b, v) \text { normal edge } \\
\mathcal{D}[\mathrm{f}, \mathrm{a}] \sqsupseteq & \mathcal{D}\left[\text { stop }_{\mathrm{f}}, a\right]
\end{aligned}
$$

with $\mathcal{D}[f, a] \ldots$ abstract state when reaching program point $v$ of a function called in abstract state $a\left(\mathcal{D}[\mathrm{f}, \mathrm{a}] \sim \llbracket v \rrbracket^{\#}(a)\right)$ $\Rightarrow$ compute $\mathcal{D}$ [main, enter $\left.{ }^{\#}\left(d_{0}\right)\right]$

## Demand-Driven Interprocedural Analysis

ex. Constant Propagation

## Constant Propagation:

move as many computations as possible from runtime to compile time complete lattice: $\mathbb{D}=\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp}$
$\rightarrow$ ! not finite

enter $\# D= \begin{cases}\perp & D=\perp \\ D \oplus\{A \mapsto \top \mid A \text { local }\} & \text { otherwise }\end{cases}$
combine $^{\#}\left(D_{1}, D_{2}\right)= \begin{cases}\perp & D_{1}=\perp \vee D_{2}=\perp \\ D_{1} \oplus\left\{b \mapsto D_{2}(b) \mid b \text { global }\right\} & \text { otherwise }\end{cases}$

## Constant Propagation

Abstract Edge Effects - intraprocedural

$$
\begin{aligned}
\llbracket ; \rrbracket^{\#} D & =D \\
\llbracket \operatorname{NonZero}(e) \rrbracket^{\#} D & =\left\{\begin{array}{cc}
\perp & \text { if } 0=\llbracket e \rrbracket^{\#} D \\
D & \text { otherwise }
\end{array}\right. \\
\llbracket \text { Zero }(e) \rrbracket^{\#} D & = \begin{cases}\perp & \text { if } 0 \nsubseteq \llbracket e \rrbracket^{\#} D \\
D & \text { if } 0 \sqsubseteq \llbracket e \rrbracket^{\#} D\end{cases} \\
\llbracket x \leftarrow e \rrbracket^{\#} D & =D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\#} D\right\} \\
\llbracket x \leftarrow M[e] \rrbracket^{\#} D & =D \oplus\{x \mapsto T\} \\
\llbracket M\left[e_{1}\right] \leftarrow e_{2} \rrbracket^{\#} D & =D
\end{aligned}
$$

## Demand-Driven Interprocedural Analysis

ex. Constant Propagation

$$
\begin{aligned}
& d_{0}=\{A \mapsto \top, b \mapsto \top, \text { ret } \mapsto \top\} \\
& \operatorname{main}():
\end{aligned}
$$



## Call-String-Approach

$\rightarrow$ compute set of all reachable call stacks
! restrict call stacks to fixed size $d$
$\rightarrow$ (complexity increases with depth)
here: call stack of depth 0
$\rightarrow$ function call as unconditional jump

## Call-String-Approach

system of inequalities

$$
\begin{aligned}
& \mathcal{D}\left[\text { start }_{\text {main }}\right] \sqsupseteq \operatorname{enter}^{\#}\left(d_{0}\right) \\
& \mathcal{D}\left[s t a r t_{f}\right] \sqsupseteq \operatorname{enter}^{\#}(\mathcal{D}[u]), \\
&(u, \mathrm{f}(), v) \text { calling edge } \\
& \mathcal{D}[v] \sqsupseteq \operatorname{combine}^{\#}(\mathcal{D}[u], \mathcal{D}[v]), \\
&(u, \mathrm{f}(), v) \text { calling edge } \\
& \mathcal{D}[v] \sqsupseteq \llbracket l a b \rrbracket^{\#}(\mathcal{D}[u]), \\
& k=(u, l a b, v) \text { normal edge } \\
& \mathcal{D}[f] \sqsupseteq \mathcal{D}\left[\operatorname{stop}_{\mathrm{f}}\right]
\end{aligned}
$$

## Call-String-Approach

ex. Copy Propagation main ()


## Call-String-Approach

ex. Copy Propagation

$$
\begin{aligned}
\mathcal{D}[5] & \left.\sqsupseteq \operatorname{combine}^{\#}(\mathcal{D}[4], \mathcal{D} \text { [work }]\right) \\
\mathcal{D}[7] & \sqsupseteq \operatorname{enter}^{\#}(\mathcal{D}[4]) \\
\mathcal{D}[7] & \sqsupseteq \operatorname{enter}^{\#}(\mathcal{D}[9]) \\
\mathcal{D}[10] & \sqsupseteq \operatorname{combine}^{\#}(\mathcal{D}[9], \mathcal{D}[\text { work }])
\end{aligned}
$$

## Call-String-Approach

ex. Copy Propagation
! for depth 0: impossible paths may occur


## Introduction

## Simple Interprocedural Optimisations

## Operational Semantic

Functional Approach

Related Approaches

Summary

## Summary

- Interprocedural Analysis is an extension of intraprocedural analysis which takes into account the calling context of functions.
- Interprocedural Analysis is more demanding than intraprocedural analysis, but yields more precise results.
- Functional Approach:
approximate abstract effect of function call by solving system of inequalities describing the edge effects within the function
- lattice of possible analysis solutions has to fullfill certain properties to ensure that the analysis terminates

