Interprocedural Optimisation

Seminar Static Program Analysis

Barbara Dorr

B Sources:
Ubersetzerbau - Analyse und Transformation (H. Seidl, R. Wilhelm, S. Hack)
Principles of Program Analysis (F. Nielson, H.R. Nielson, C. Hankin)

12. Marz 2010

1/54

Forms of Program Optimisation

Program Optimisation

N
Intraprocedural
Optimisation: Interprocedural
optimise each function Optimisation
separately - \
explicitly model optimise function calls
function calls without explicit mod-
elling
e.g.
= Interprocedural Opti- . .
. .. » Inlining
misation:
more demanding, but also > Remove Last
more precise information Call

2/54

Interprocedural vs. Intraprocedural

disadvantage of intraprocedural optimisation:
context-insensitive optimisation:

cannot distinguish between different calls
(information is combined from all call sites)
— imprecise information

interprocedural optimisation:

context-sensitive optimisation:

different calls reached with different contexts d; and 5
— information obtained clearly related to d; and 6,

=> more precise, but more costly

3/54

Introduction

Introduction

Simple Interprocedural Optimisations
Operational Semantic

Functional Approach

Related Approaches

Summary

4/54

Introduction

Program Representation

intraprocedural
— program represented by a control flow graph:

y+1

y <o L

while (x>1){
¥ <o x*y;
x <- x-1;

Zero (x > 1)

}

5/54

Introduction

Program Representation

interprocedural
— program represented by a set of control flow graphs;

£()

i A+ b
main() { main
b <- 3; N
£0;
M[17] <- ret;
! 3 3
£O{
A <- b;
if (A <=1) ret <- 1; £()
else {
b <- A-1;
£0;
ret <- Asret; M[17] < —ret
}

6/54

Introduction

Edge Annotations

(x ... variable, e ... arithmetic expression)

edge effects - intraprocedural:

Test: NonZero (e)
Zero (e)
Assignment: X4 e
Load: x < M]e]
Store: Mle] < e

Empty Statement:

additional edge effect - interprocedural:
Function Call: £ ()

7/54

Simple Optimisations

Simple Interprocedural Optimisations

8/54

Simple Optimisations

Inlining
inlining:

copy function body to calling point

problems:

» function has to be statically known

» local variables of calling function must not be modified
— rename local variables

» recursive functions
— identified from call graph

» inlining only for leave functions (without calls)

» inlining only for non-recursive functions

9/54

Simple Optimisations

Inlining
Call Graph
Call Graph:

nodes ~ functions
edges ~ between function f; and function £,, if £; calls £,

main() {

b <- 3;

£0O;

M[17] <- ret;
¥

£O{

A <- b;
if (A <=1) ret <- 1; -—>
else {

b <- A-1;
£0;
ret <- Asret;
}
}

10/54

Simple Optimisations

Inlining
Call Graph
abs O{
b_1 <- b;
b_2 <- -b;
max () ; |IIIII
max () {

if (b_1 < b_2) ret <- b_2;
else ret <- b_1;

11/54

Simple Optimisations

Inlining

transformation PlI:

z()
. A = 0;A € Loc

-9

copy of f

12/54

Simple Optimisations

Inlining
example
abs O {
b_1 <- b;
b_2 <- -b; absO{
max () ; b_1 <- b;
3 b_2 <- -b;
if (b_1 < b_2) ret <- b2;
max () { else ret <- b_1;
if (b_1 < b_2) ret <- b_2; }

else ret <- b_1;

13/54

Simple Optimisations

Remove Last Calls

— no own stack frame needed; only replace local variables
(unconditional jump to function body)

I only possible if local variables of calling function are not
accessible any more

transformation LC:

A=0; (A€ Loc)

\. ¢ = ®

£ ():

f

14 /54

Simple Optimisations

Remove Last Calls

example
£04{ £04{
if (b_2 <= 1) ret <- b_1; _f: if (b_2 <= 1) ret <- b_1;
else { else {
b_1 <- b_1xb_2; b_1 <- b_1%b_2;
b_2 <- b_2 -1; b_2 <- b_2 -1;
£0O; goto _f;
} }
} }

15/54

Operational Semantic

Operational Semantic

16 /54

Operational Semantic

Operational Semantic

intraprocedural

» computations are described by paths through the control
flow graph
» computations transform the current program state

» program state: s = (p,) with
p: Vars — int ... value of variables
@ N —int ... content of memory
» edge k = (u, lab, v)
... entry node u, exit node v, edge annotation /abel

» edge effect: transformation [k] on program states
defined by the edge k

[£] = [/ab]

17 /54

Operational Semantic
Edge Effects - intraprocedural

1) = (po)
[NonZero ()] (p, 1) = (p,11).
if [e]p #0
[Zexo (e)] (p.1) = (p,11).
if [e]p=0

[x < el (p,n) =
[x < Mle]] (o, 1) =

[Mlel] < e (p, 1) =

p® {x — [elp} ,u>
p& {x > u([elp)}] 1)

ps| @ {[e]p > [e]p}

T N TN TN

N——

18/54

Operational Semantic

Stack Representation

Call Stack:
£0<{
A <- b;
if (A <=1) ret <- 1;
else {
main() { b <- A-1;
b <- 3; £0O;
£O; ret <- Axret;
M[17] <- ret; ¥
} }

05| A— 1
05][A — 2] o7 A — 2] [E8]][A — 2
05][A — 3]| [O7[[A — 3] [©8] A — 3] @8l A — 3] [[8][lA — 3
| || 02 02 02 02 02

10fj|A — 1
08| A — 2| [l08]||A — 2| |ZO]|A — 2
08Ji[A — 3| |08 A — 3|[[[08]|| A — 3| |08 A — 3|[[[TOJ]A — 1
02 02 02 02 02 (2] |

19/54

Operational Semantic

Stack Representation

call stack:
» describes called and not yet finished functions

» basis of operational semantic

config = stack x globals x store
globals = Glob — Z

store = N—Z

stack = frame - frame*

frame = point x locals

locals = Loc —7Z

I function body is a scope with own local variables

20 /54

Modeling of Function Call

» call k = (u,f(),v): ! pr={x— 0|x € Loc}

(U' (U, PLoc) mcmmu) = (U' (vs PLoc) - (uf, pf) apGIob:H)

config

» effect of function itself
» return from call:

(U‘ (Vs PLoc) - (rf5-) ,pc/obyu) - (U-&cm;u)

o ... stack

PGlob ... global variables

o ... store

(U, proc) ... frame (point X locals)

21/54

Operational Semantic

Path Effects

T ((LI, pLOC) sy PGlob :u) ~ ((V7 plLoc) 7p,G/ob? ,U,,)

path 7 defines a partial function [r], that transforms
(4, pLoc) s Pciobs 11) It ((V; Ploc) » Peion: 1)

=> compute transformation inductive over the structure of the
path:

[rkl = [K]o[x]

for a normal edge k (composition of edge effects)

22/54

Paths Effects

» same-level: all entered functions are also left again
7w =m(f)m(\f)

A—1 A—1

A—2 A—2 A—2 A—2 A= 2
A—3 A3 [A>—>3 [A>—>3 [A>—>3
e2] [[o21] [o21] [o21]

— height of the stack stays the same

[m{f)m(\£)] = H([m]) o [m]

with

H (g) (pLOC7 PGlobs ,LL) = let (p/Lom p/GIoba MI) =& (97 PGlob; M)
in (PLom p/GIobv MI)

23 /54

Operational Semantic

Path Effects

» computation that reaches a program point:
m(f)m" with 7,7 is same-level

A»—>1 A»—>1

A2 A 2] [08][A - 2] 8][4 2] 82 — 2]

A 3] [08l[A — 3 A 3] [08[A — 3] [e8l[A — 3] A3
[[[[o2 [

[[ﬂ-<f>7r/]] (pLOC7 PGlob N) = let (77 p/GIoba :U'/) = [[77]] (pLoa PGlob N)
in[[ﬂ'/]] (Qa p,GIob7 :u/)

24 /54

Functional Approach

Functional Approach

25 /54

Functional Approach

Program Analysis

D ... lattice
— all possible sets of analysis information that may hold at a
program point

idea: collect information along all paths leading to a program
point to yield analysis information that holds there

— transformation of analysis information along edge k
according to abstract edge effect [k]# : D — D

26 /54

Functional Approach

Program Analysis

interprocedural

enter” : D — D
— initialise information for the starting point of a function

combine? : D? — D

— combines information at the end of function body and
information before entering the function

= [k]#D = combine® (D, [£]# (enter”D))

27 /54

Functional Approach

Example: Copy Propagation
intraprocedural
Copy Propagation:
computes for variable x at each program point the set of
variables that contain the same value
— usage may be replaced by usage of x

abstract edge effects: ([k]# : D — D)

[x < e]*V = {x}
[x < M[e]]*V = {x}
[z y]*V = (yeV)?Vu{z}: V\{z},
x#z,y € Vars
[z r]*V = V\{z},
x#z,r¢ Vars

28 /54

Functional Approach

Example: Copy Propagation

interprocedural

» all variables global:

enter?V =V
combine” (Vq, V) = Vs

» with local variables:
e: auxiliary local variable to store value of x before the
function call

enter”V = V N GlobU {e}
combine? (Vy, V) = (Vo N Glob)U((e € V,)?Vi N Loc, : 0)
with Loc, = Loc U {e}

29 /54

Functional Approach

Abstract Effect of Function f

— [£]7: upper bound for abstract effect [7]# of every
same-level computation 7 for f
— approximated via

[start:]*

[v1*

Id

H* ([£]%) o [u]*,

k = (u,f(),v) function call
[k]# o [u],

k = (u, lab, v) normal edge
[£1% 3 [stops]*

Iy

[v1*

1L

with [v]# : D — D describes effects of all same-level
computations from the beginning of £ to program point v

30/54

Functional Approach

Abstract Effects of Function £

right side of inequalities is monotone
— system of inequalities has smallest solution

[.]7* be the smallest solution of the system of inequalities
1. [v]* 3 [+]*
V same-level computations 7 from start; to v
2. [€]# 2 [+]*
V same-level computations 7 of f

= every solution of the system of inequalities can be used to
approximate the abstract effect of a function call

31/54

Functional Approach

Problems

» not always closed representation of monotone functions in
the system of inequalities

» infinite ascending chains

= in the case of copy propagation:

» complete lattice V = {V C Vars,|x € V} is atomic

» edge effects are distributive (— monotone)

» no infinite ascending chains: only finitely many variables
— compact representation of monotone functions exists:

g(V) = bu| {h(a)lacAnac v}

withh:A—>V beVACYVY

32/54

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation

main() {
A <- M[0];
if (A) print();
b <- A;
work () ;
ret <- 1-ret;
¥
work() {
A <- b;
if (A) work();
ret <- A;
}

33/54

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation

Vars, = {A, b, ret, o}, investigate b
=

[A«~ b]*C = CuU{A}
= & (0)

[ret < AJ*C = (A€ C)?(CuU{ret}): (C\{ret})
= g (C)

34 /54

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation

represent edge effects g1, g2 by (hy, Vars,) , (ha, Vars,):
(enumerable for finite lattice)

hy hy

{b, ret, e} | Vars, {b, e}
{b,A,e} | {b A e} Vars,
{b,A,ret} | {b,A,ret} | {b, A, ret}

& (C) = CU{A}
2 (C) = (Ae O)?(CU{ret}): (C\{ret})

35/54

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():
A<+ b
NonZero (A)
Zero (A)
work ()
ret < A

[A« b]#C = CU{A} := g (C)
[ret + AJ#C = (A € C)?(C U {ret}) : (C\{ret}) := g (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():
ID(C)
A<+ b
NonZero (A)
Zero (A)
work ()
ret < A

[A« b]#C = CU{A} := g (C)
[ret + AJ#C = (A € C)?(C U {ret}) : (C\{ret}) := g (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

Zero (A)

ret < A

[A« b]#C = CU{A} := g (C)
[ret + AJ#C = (A € C)?(C U {ret}) : (C\{ret}) := g (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

[A« b]#C = CU{A} := g (C)
[ret + AJ#C = (A € C)?(C U {ret}) : (C\{ret}) := g (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

[A« b]#C = CU{A} := g (C)
[ret + AJ#C = (A € C)?(C U {ret}) : (C\{ret}) := g (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

g 081 (C)=CU{A, ret} = g3(C)

[A« b]#C = CU{A} := g (C)
[ret + AJ#C = (A € C)?(C U {ret}) : (C\{ret}) := g (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

g 081 (C)=CU{A, ret} = g3(C)

first approximation for call of work:
combine” (C, g3 (enter (C))) = CU {ret} := g4 (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

}———— 1D (C) ID(C)
A+ b

g1 (C)

NonZero (A)

first approximation for call of work:
combine” (C, g3 (enter (C))) = CU {ret} := g4 (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

}———— 1D (C) ID(C)
A+ b

&1 (C) &1 (C)

NonZero (A)

first approximation for call of work:
combine” (C, g3 (enter (C))) = CU {ret} := g4 (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

}———— 1D (C) ID(C)
A+ b

&1 (C) &1 (C)

NonZero (A)

&1 (C)

first approximation for call of work:
combine” (C, g3 (enter (C))) = CU {ret} := g4 (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

}———— 1D (C) ID(C)
A+ b

&1 (C) &1 (C)

NonZero (A)

&1 (C)

81 (C) Nega(e1(C) = CU{A} = g1 (C)

first approximation for call of work:
combine” (C, g3 (enter (C))) = CU {ret} := g4 (C)

Functional Approach

Abstract Effects of Function £

ex. Copy Propagation
C: set of variables that initially have the same value as b

work ():

1D (C) ID(C)

&1 (C) &1 (C)

NonZero (A)

&1 (C)

g1 (C) Mgy (a1 (C)) = CU{A} =& (C)

C U {A, ret} g og(C)=CU{A, ret} = g3(C)

fixpoint reached after first iteration:
work approximated by ga (C) = CU{ret}

36 /54

Functional Approach

Coincidence Theoreme

» d same-level computation from start; to v Vv € f,
edge effects and transformation H# are distributive

= [v]* = | [{[=]#|7 € T,}Vv € £

(7,...set of all same-level computations from start; to v)

» enter? distributive, combine® (x1, x2) = h1 (x1) LI ha (x2)
= H# distributive: H# (| | F) = | {H" (g)|g € F}

37/54

Functional Approach

Coincidence Theoreme
ex. Copy Propagation

enter”V = V N GlobU {e}
— distributive

combine™ (V4, Vo) = (Vo Glob)U (e € V5)?Vi N Loc : ()
((V1 N Loc,) U Glob) N

((Va N Glob) U Loc,) N

(Glob U (e € V,)?Vars, : Glob)

— intersection of distributive functions of first and second
argument

= coincidence theoreme holds for copy propagation

38/54

Functional Approach

Interprocedural Reachability

effects [£]# are approximated
— compute for program point u a safe approximation of
property D[u] that holds when u is reached

D|startyasn]
D|start;]

enter™ (dy)

enter” (D[u]),

(u,f(),v) calling edge

Dlv] O combine™ (D[u], [£]# (enter” (D[u]))),
(u,f(),v) calling edge

DM 3 [K* (Dlul).

k = (u, lab, v) normal edge

39/54

Functional Approach

Interprocedural Reachability

smallest solution for system of inequalities exists because of
monotonicity and it holds:

Dlv] I [n]*dy

for all paths that reach v

(do € D: information at the beginning of program execution)
for distributive abstract edge effects and distributive
transformation H#:

Dlv] = | [Ix]*dolw € P}

with P, ... set of all paths that reach v

40/54

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

Dlstartyain] 3 {b}
A+ M[0]

NonZero (A)

Zero (A)

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b}
A+ M][0]

[A + M[0]]* (Dlo]) = P[o]

NonZero (A)

Zero (A)

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example

main (): work ():
N
{b}
A +— MI0] A<+ b

{p}

NonZero (A) NonZero (A)

Zero (A) [NonZero (A)]7 (D[1]) = D[1]Zero (A)

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b}
A+ M][0]

{p}

NonZero (A)

Zero (A) {b} Zero (A)

[zexo] # (D[1]) N [print O1# (P[2])

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b}
A+ M][0]

{p}

NonZero (A)
Zero (A) {b}
{p}

[b < AJ# (DI3])

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b} enter” (D[4]) = {b, o}
A+ M][0]

{p}

NonZero (A)
Zero (A) {b}
{p}

{p}

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b} {b}
A+ M][0]

{b} [A « b]* (DI7)

NonZero (A)
Zero (A) {b}
{p}

{p}

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b} {b}
A+ M][0]

{p} {b,A, e}

NonZero (A)

Zero (A) {b} [NonZero (A)]# (D[8])
{b}

{p}

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():
N

{b} {b}

A+ M][0]
{b} {b, A, e}

NonZero (A)
Zero (A) {b} {b,A, e}
[zero (A)]# (D[8])

{b} N [work]# (D[9])
{b}

work approximated by
g4 (C) = CU{ret}

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b} {b}
A+ M][0]

{p} {b,A, e}

NonZero (A)

Zero (A) {b} {b,A, e}

{p}

{b,A, e}

{b} [ret < A]# (D[10])

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b} {b}
A+ M][0]

{p} {b,A, e}

NonZero (A)

Zero (A) {b} {b,A, e}

{p}

{b,A, e}

{b} {b,A,e,ret}

combine? (D[4], [[f]]# (enter# (D[4])))

ret <— 1 — ret

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b} {b}
A+ M][0]

{p} {b,A, e}

NonZero (A)

{p} {b,A, o}

{p}

{b,A, e}

{b} {b,A,e,ret}

{b, ret}
ret <— 1 — ret

[ret « ret — 1]%# (D[5)])

Functional Approach

Interprocedural Reachability

example
main (): work ():

Ny

{b} {b}
A+ M][0]

{p} {b,A, e}
{p} {b,A, o}
{p}

{b,A, e}

{b} {b,A,e,ret}

= within the call of work:
{b, ret} global var. b may be

ret + 1 — ret used instead of local var. A
{b}

41/54

Related Approaches

Related Approaches

42/54

Related Approaches

Demand-Driven Interprocedural Analysis

sometimes: lattice not finite, functions cannot be represented
in a compact form
— only analyse calls in situations that really occur

I this is the case e.g. for constant propagation

— use local fixpoint algorithm:
only compute solutions for certain inequalities;
only solve part of the system that is needed therefor

43 /54

Related Approaches

Demand-Driven Interprocedural Analysis

system of inequalities

Dlv,a] I a,
v entry point
Dlv,a] O combine® (D[u,a], D[f,enter” (D[u, a])]),
(u,f(),v) calling edge
Dlv,a] 3 [lab]* (D[u,a]),
k = (u, lab, v) normal edge
D[f,a] 3 Di[stops,al
with D[f, a] ... abstract state when reaching program point v
of a function called in abstract state a (D[£, a] ~ [v]* (a))

= compute D[main, enter” (dp)]

44 /54

Related Approaches

Demand-Driven Interprocedural Analysis
ex. Constant Propagation
Constant Propagation:
move as many computations as possible from runtime to
compile time
complete lattice: D = (Vars — Z7) |
— | not finite

P@o o

L D=1
enter”™ D =)
D @ {A+— T|Alocal} otherwise

1 Dy =L VD, =1L

R _
b Dy, Dp) =
combine™ (Dy, Dy) {D1 @ {b+— Dy (b)|b global} otherwise

45/54

Related Approaches

Constant Propagation
Abstract Edge Effects - intraprocedural

[1*D = D
1 ifo=[e]*D
[NonZero (e)][*D = o [[e]]
D otherwise

|1 ifog[e*D
[zero (e)]*D = {D if 0 C [e]*D

[x +e]*D = Do {x~ [e]*D}
[x < M[ell*D = D& {x—T}

[Mlei] + &]#*D = D

46 /54

Related Approaches

Demand-Driven Interprocedural Analysis

ex. Constant Propagation
dongHT,bHT,retHT}

main

dy={A— T,b+— 0,ret — T}

work ():

mroo- H-4-44 HHf|2

A
0,do | T
1,dg | ©

2, do
3, do
4, do
7,dy
8, dy
9, dy
10, ch
11, dy
5, doy
6, dy
main, dy

o oo

coococopLococoHL -

coooco

work ()

ret <— 1 — ret

47 /54

Related Approaches

Call-String-Approach

— compute set of all reachable call stacks
I restrict call stacks to fixed size d
— (complexity increases with depth)

here: call stack of depth 0
— function call as unconditional jump

48 /54

Related Approaches

Call-String-Approach

system of inequalities

D[startyain]
D|start;]

enter” (djp)
enter” (D[u]),
(u,f(),v) calling edge
Dlv] I combine” (D[u], D[v]),
(u,f(),v) calling edge
Dlv] 2 [lab]* (D[u]),
k = (u, lab, v) normal edge
D[f] I Dlstop]

49 /54

Related Approaches

Call-String-Approach

ex. Copy Propagation
main ()
N .
interprocedural supergraph
A+ 0

work ():

Ny

< enter#

A+ b

NonZero (A)
Zero (A)

NonZero (A)

combine#

4
combine

ret <— 1 — ret

50 /54

Related Approaches

Call-String-Approach

ex. Copy Propagation

D[5] I combine™ (D[4], D[work])
D[7] I enter” (D[4])
D[7] I enter” (D[9))

D[10] I combine™ (D[9], D[work])

51/54

Related Approaches

Call-String-Approach

ex. Copy Propagation
I for depth 0: impossible paths may occur

enter#

NonZero (A)

Zero (A)

combine

combine

ret <— 1 — ret

52 /54

Summary

Summary

53 /54

Summary

Summary

» Interprocedural Analysis is an extension of intraprocedural
analysis which takes into account the calling context of
functions.

» Interprocedural Analysis is more demanding than
intraprocedural analysis, but yields more precise results.

» Functional Approach:
approximate abstract effect of function call by solving
system of inequalities describing the edge effects within
the function

» lattice of possible analysis solutions has to fullfill certain
properties to ensure that the analysis terminates

54 /54

	Introduction
	Simple Interprocedural Optimisations
	Operational Semantic
	Functional Approach
	Related Approaches
	Summary

