
Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Optimisation
Seminar Static Program Analysis

Barbara Dörr

Sources:
Übersetzerbau - Analyse und Transformation (H. Seidl, R. Wilhelm, S. Hack)

Principles of Program Analysis (F. Nielson, H.R. Nielson, C. Hankin)

12. März 2010

1 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Forms of Program Optimisation
Program Optimisation

Intraprocedural
Optimisation:

optimise each function
separately

Interprocedural
Optimisation

explicitly model
function calls

optimise function calls
without explicit mod-
elling
e.g.

I Inlining

I Remove Last
Call

⇒ Interprocedural Opti-
misation:
more demanding, but also
more precise information

2 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural vs. Intraprocedural

disadvantage of intraprocedural optimisation:
context-insensitive optimisation:
cannot distinguish between different calls
(information is combined from all call sites)
→ imprecise information

interprocedural optimisation:
context-sensitive optimisation:
different calls reached with different contexts δ1 and δ2
→ information obtained clearly related to δ1 and δ2
⇒ more precise, but more costly

3 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Introduction

Simple Interprocedural Optimisations

Operational Semantic

Functional Approach

Related Approaches

Summary

4 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Program Representation
intraprocedural

→ program represented by a control flow graph:

y <- 1;

while (x>1){

y <- x*y;

x <- x-1;

}

0

1

2

3

4

5

y ← 1

Zero (x > 1) NonZero (x > 1)

y ← x ∗ y

x ← x − 1

5 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Program Representation
interprocedural

→ program represented by a set of control flow graphs;

main() {

b <- 3;

f();

M[17] <- ret;

}

f(){

A <- b;

if (A <=1) ret <- 1;

else {

b <- A-1;

f();

ret <- A*ret;

}

}

main

0

1

2

3

b ← 3

f ()

M[17] < −ret

f ()

4

5

6

7

8

9

10

A← b

Zero (A ≤ 1) NonZero (A > 1)

b ← A− 1

f ()

ret ← A ∗ ret

ret ← 1

6 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Edge Annotations

(x ... variable, e ... arithmetic expression)

edge effects - intraprocedural:
Test: NonZero (e)

Zero (e)
Assignment: x ← e
Load: x ← M[e]
Store: M[e1]← e2
Empty Statement: ;

additional edge effect - interprocedural:
Function Call: f ()

7 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Introduction

Simple Interprocedural Optimisations

Operational Semantic

Functional Approach

Related Approaches

Summary

8 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Inlining
inlining:
copy function body to calling point

problems:

I function has to be statically known

I local variables of calling function must not be modified
→ rename local variables

I recursive functions
→ identified from call graph

→
I inlining only for leave functions (without calls)

I inlining only for non-recursive functions

9 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Inlining
Call Graph

Call Graph:
nodes ∼ functions
edges ∼ between function f1 and function f2, if f1 calls f2

main() {

b <- 3;

f();

M[17] <- ret;

}

f(){

A <- b;

if (A <=1) ret <- 1;

else {

b <- A-1;

f();

ret <- A*ret;

}

}

main f

10 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Inlining
Call Graph

abs(){

b_1 <- b;

b_2 <- -b;

max();

}

max(){

if (b_1 < b_2) ret <- b_2;

else ret <- b_1;

}

abs max

11 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Inlining

transformation PI:

u

v

f ()

copy of f

u

v

Af = 0; A ∈ Loc

;

12 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Inlining
example

abs(){

b_1 <- b;

b_2 <- -b;

max();

}

max(){

if (b_1 < b_2) ret <- b_2;

else ret <- b_1;

}

abs(){

b_1 <- b;

b_2 <- -b;

if (b_1 < b_2) ret <- b2;

else ret <- b_1;

}

13 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Remove Last Calls

→ no own stack frame needed; only replace local variables
(unconditional jump to function body)
! only possible if local variables of calling function are not
accessible any more

transformation LC:

f ():

u

v

f ()

u

v

A = 0; (A ∈ Loc)

f ():

14 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Remove Last Calls
example

f(){

if (b_2 <= 1) ret <- b_1;

else {

b_1 <- b_1*b_2;

b_2 <- b_2 - 1;

f();

}

}

f(){

_f: if (b_2 <= 1) ret <- b_1;

else {

b_1 <- b_1*b_2;

b_2 <- b_2 - 1;

goto _f;

}

}

15 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Introduction

Simple Interprocedural Optimisations

Operational Semantic

Functional Approach

Related Approaches

Summary

16 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Operational Semantic
intraprocedural

I computations are described by paths through the control
flow graph

I computations transform the current program state

I program state: s = (ρ, µ) with
ρ : Vars → int ... value of variables
µ : N→ int ... content of memory

I edge k = (u, lab, v)
... entry node u, exit node v , edge annotation label

I edge effect: transformation [[k]] on program states
defined by the edge k
[[k]] = [[lab]]

17 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Operational Semantic
Edge Effects - intraprocedural

J; K (ρ, µ) = (ρ, µ)

JNonZero (e)K (ρ, µ) = (ρ, µ) ,

if JeKρ 6= 0

JZero (e)K (ρ, µ) = (ρ, µ) ,

if JeKρ = 0

Jx ← eK (ρ, µ) =
(
ρ⊕ {x 7→ JeKρ} , µ

)
Jx ← M[e]K (ρ, µ) =

(
ρ⊕ {x 7→ µ (JeKρ)} , µ

)
JM[e1]← e2K (ρ, µ) =

(
ρ, µ⊕ {Je1Kρ 7→ Je2Kρ}

)
18 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Stack Representation

Call Stack:

main() {

b <- 3;

f();

M[17] <- ret;

}

f(){

A <- b;

if (A <=1) ret <- 1;

else {

b <- A-1;

f();

ret <- A*ret;

}

}

05 A 7→ 1

05 A 7→ 2 07 A 7→ 2 08 A 7→ 2

05 A 7→ 3 07 A 7→ 3 08 A 7→ 3 08 A 7→ 3 08 A 7→ 3

01 02 02 02 02 02

10 A 7→ 1

08 A 7→ 2 08 A 7→ 2 10 A 7→ 2

08 A 7→ 3 08 A 7→ 3 08 A 7→ 3 08 A 7→ 3 10 A 7→ 1

02 02 02 02 02 02

19 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Stack Representation

call stack:

I describes called and not yet finished functions

I basis of operational semantic

config = stack × globals × store

globals = Glob → Z
store = N→ Z
stack = frame · frame∗

frame = point × locals

locals = Loc → Z
! function body is a scope with own local variables

20 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Modeling of Function Call

I call k = (u, f () , v): ! ρf = {x 7→ 0|x ∈ Loc}
(
σ · (u, ρLoc ) , ρGlob, µ

)
︸ ︷︷ ︸

config

`
(
σ ·

(
v, ρLoc

)
·
(

uf, ρf
)
, ρGlob, µ

)

I effect of function itself
I return from call:

(
σ · (v, ρLoc ) ·

(
rf,
)
, ρGlob, µ

)
`

(
σ · (v, ρLoc ) , ρGlob, µ

)

σ ... stack
ρGlob ... global variables
µ ... store
(u, ρLoc) ... frame (point × locals)

21 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Path Effects

π : ((u, ρLoc) , ρGlob, µ) ((v , ρ′Loc) , ρ′Glob, µ
′)

path π defines a partial function JπK, that transforms
((u, ρLoc) , ρGlob, µ) into ((v , ρ′Loc) , ρ′Glob, µ

′)

⇒ compute transformation inductive over the structure of the
path:

JπkK = JkK ◦ JπK

for a normal edge k (composition of edge effects)

22 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Paths Effects
I same-level: all entered functions are also left again
π = π1〈f〉π2〈\f〉

05 A 7→ 1 10 A 7→ 1

05 A 7→ 2 07 A 7→ 2 08 A 7→ 2 08 A 7→ 2 08 A 7→ 2

08 A 7→ 3 08 A 7→ 3 08 A 7→ 3 08 A 7→ 3 08 A 7→ 3

02 02 02 02 02

→ height of the stack stays the same

Jπ1〈f〉π2〈\f〉K = H (Jπ2K) ◦ Jπ1K

with

H (g) (ρLoc , ρGlob, µ) = let
(
ρ′Loc , ρ

′
Glob, µ

′) = g (0, ρGlob, µ)

in
(
ρLoc , ρ

′
Glob, µ

′)
23 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Path Effects

I computation that reaches a program point:
π〈f〉π′ with π, π′ is same-level

05 A 7→ 1 10 A 7→ 1

05 A 7→ 2 07 A 7→ 2 08 A 7→ 2 08 A 7→ 2 08 A 7→ 2

07 A 7→ 3 08 A 7→ 3 08 A 7→ 3 08 A 7→ 3 08 A 7→ 3 08 A 7→ 3

02 02 02 02 02 02

Jπ〈f〉π′K (ρLoc , ρGlob, µ) = let
(
, ρ′Glob, µ

′) = JπK (ρLoc , ρGlob, µ)

inJπ′K
(
0, ρ′Glob, µ

′)

24 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Introduction

Simple Interprocedural Optimisations

Operational Semantic

Functional Approach

Related Approaches

Summary

25 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Program Analysis

D ... lattice
→ all possible sets of analysis information that may hold at a
program point

idea: collect information along all paths leading to a program
point to yield analysis information that holds there

→ transformation of analysis information along edge k
according to abstract edge effect JkK# : D→ D

26 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Program Analysis
interprocedural

enter# : D→ D
→ initialise information for the starting point of a function

combine# : D2 → D
→ combines information at the end of function body and
information before entering the function

⇒ JkK#D = combine#
(
D, JfK#

(
enter#D

))

27 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Example: Copy Propagation
intraprocedural

Copy Propagation:
computes for variable x at each program point the set of
variables that contain the same value
→ usage may be replaced by usage of x

abstract edge effects: (JkK# : D→ D)

Jx ← eK#V = {x}
Jx ← M[e]K#V = {x}

Jz ← yK#V = (y ∈ V )?V ∪ {z} : V \{z},
x 6≡ z , y ∈ Vars

Jz ← rK#V = V \{z},
x 6≡ z , r /∈ Vars

28 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Example: Copy Propagation
interprocedural

I all variables global:

enter#V = V
combine# (V1,V2) = V2

I with local variables:
•: auxiliary local variable to store value of x before the
function call

enter#V = V ∩ Glob ∪ {•}
combine# (V1,V2) = (V2 ∩ Glob)∪((• ∈ V2)?V1 ∩ Loc• : ∅)

with Loc• = Loc ∪ {•}

29 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effect of Function f

→ JfK#: upper bound for abstract effect JπK# of every
same-level computation π for f
→ approximated via

JstartfK# w Id

JvK# w H#
(
JfK#

)
◦ JuK#,

k = (u, f () , v) function call

JvK# w JkK# ◦ JuK#,
k = (u, lab, v) normal edge

JfK# w JstopfK#

with JvK# : D→ D describes effects of all same-level
computations from the beginning of f to program point v

30 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f

right side of inequalities is monotone
→ system of inequalities has smallest solution

J.K# be the smallest solution of the system of inequalities

1. JvK# w JπK#
∀ same-level computations π from startf to v

2. JfK# w JπK#
∀ same-level computations π of f

⇒ every solution of the system of inequalities can be used to
approximate the abstract effect of a function call

31 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Problems
I not always closed representation of monotone functions in

the system of inequalities

I infinite ascending chains

⇒ in the case of copy propagation:

I complete lattice V = {V ⊆ Vars•|x ∈ V } is atomic
I edge effects are distributive (→ monotone)

I no infinite ascending chains: only finitely many variables

→ compact representation of monotone functions exists:

g (V ) = b t
⊔
{h (a) |a ∈ A ∧ a v V }

with h : A→ V, b ∈ V,A ⊆ V
32 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

main() {

A <- M[0];

if (A) print();

b <- A;

work();

ret <- 1-ret;

}

work() {

A <- b;

if (A) work();

ret <- A;

}

33 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

Vars• = {A, b, ret, •}, investigate b
⇒

JA← bK#C = C ∪ {A}
:= g1 (C )

Jret← AK#C = (A ∈ C )? (C ∪ {ret}) : (C\{ret})
:= g2 (C )

34 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

represent edge effects g1, g2 by (h1,Vars•) , (h2,Vars•):
(enumerable for finite lattice)

h1 h2

{b, ret, •} Vars• {b, •}
{b,A, •} {b,A, •} Vars•
{b,A, ret} {b,A, ret} {b,A, ret}

g1 (C ) = C ∪ {A}
g2 (C ) = (A ∈ C )? (C ∪ {ret}) : (C\{ret})

35 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)

Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Abstract Effects of Function f
ex. Copy Propagation

C : set of variables that initially have the same value as b
work ():

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

JA← bK#C = C ∪ {A} := g1 (C)

Jret← AK#C = (A ∈ C)? (C ∪ {ret}) : (C\{ret}) := g2 (C)

ID (C)

g1 (C)

g1 (C)

g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

first approximation for call of work:
combine#

(
C , g3

(
enter# (C )

))
= C ∪ {ret} := g4 (C )

ID (C)

g1 (C)

g1 (C)

g1 (C)

g3 (C) = C ∪ {A, ret}

ID (C)

g1 (C)

g1 (C)

Zero (A)

work ()

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g1 (C) ∩ g4 (g1 (C)) = C ∪ {A} = g1 (C)

g2 ◦ g1 (C) = C ∪ {A, ret} =: g3 (C)

fixpoint reached after first iteration:
work approximated by g4 (C ) = C∪{ret}

36 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Coincidence Theoreme

I ∃ same-level computation from startf to v ∀v ∈ f,
edge effects and transformation H# are distributive

⇒ JvK# =
⊔
{JπK#|π ∈ Tv}∀v ∈ f

(Tv ...set of all same-level computations from startf to v)

I enter# distributive, combine# (x1, x2) = h1 (x1) t h2 (x2)
⇒ H# distributive: H# (

⊔
F) =

⊔
{H# (g) |g ∈ F}

37 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Coincidence Theoreme
ex. Copy Propagation

enter#V = V ∩ Glob ∪ {•}
→ distributive

combine# (V1,V2) = (V2 ∩ Glob) ∪ (• ∈ V2)?V1 ∩ Loc : ∅
= ((V1 ∩ Loc•) ∪ Glob) ∩

((V2 ∩ Glob) ∪ Loc•) ∩
(Glob ∪ (• ∈ V2)?Vars• : Glob)

→ intersection of distributive functions of first and second
argument

⇒ coincidence theoreme holds for copy propagation

38 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
effects JfK# are approximated
→ compute for program point u a safe approximation of
property D[u] that holds when u is reached

D[startmain] w enter# (d0)

D[startf] w enter# (D[u]) ,

(u, f () , v) calling edge

D[v ] w combine#
(
D[u], JfK#

(
enter# (D[u])

))
,

(u, f () , v) calling edge

D[v ] w JkK# (D[u]) ,

k = (u, lab, v) normal edge

39 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability

smallest solution for system of inequalities exists because of
monotonicity and it holds:

D[v ] w JπK#d0

for all paths that reach v
(d0 ∈ D: information at the beginning of program execution)
for distributive abstract edge effects and distributive
transformation H#:

D[v ] =
⊔
{JπK#d0|π ∈ Pv}

with Pv ... set of all paths that reach v

40 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]{b}

JNonZero (A)K# (D[1]) = D[1]{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2]){b}

Jb ← AK# (D[3]){b}

enter# (D[4]) = {b, •}{b}

JA← bK# (D[7]){b, A, •}

JNonZero (A)K# (D[8]){b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10]){b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2]){b}

Jb ← AK# (D[3]){b}

enter# (D[4]) = {b, •}{b}

JA← bK# (D[7]){b, A, •}

JNonZero (A)K# (D[8]){b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10]){b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2]){b}

Jb ← AK# (D[3]){b}

enter# (D[4]) = {b, •}{b}

JA← bK# (D[7]){b, A, •}

JNonZero (A)K# (D[8]){b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10]){b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3]){b}

enter# (D[4]) = {b, •}{b}

JA← bK# (D[7]){b, A, •}

JNonZero (A)K# (D[8]){b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10]){b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3])

{b}

enter# (D[4]) = {b, •}{b}

JA← bK# (D[7]){b, A, •}

JNonZero (A)K# (D[8]){b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10]){b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3])

{b}

enter# (D[4]) = {b, •}

{b}

JA← bK# (D[7]){b, A, •}

JNonZero (A)K# (D[8]){b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10]){b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3])

{b}

enter# (D[4]) = {b, •}

{b}

JA← bK# (D[7])

{b, A, •}

JNonZero (A)K# (D[8]){b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10]){b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3])

{b}

enter# (D[4]) = {b, •}

{b}

JA← bK# (D[7])

{b, A, •}

JNonZero (A)K# (D[8])

{b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10]){b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3])

{b}

enter# (D[4]) = {b, •}

{b}

JA← bK# (D[7])

{b, A, •}

JNonZero (A)K# (D[8])

{b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10]){b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3])

{b}

enter# (D[4]) = {b, •}

{b}

JA← bK# (D[7])

{b, A, •}

JNonZero (A)K# (D[8])

{b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10])

{b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))
{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3])

{b}

enter# (D[4]) = {b, •}

{b}

JA← bK# (D[7])

{b, A, •}

JNonZero (A)K# (D[8])

{b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10])

{b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))

{b, ret}

Jret ← ret − 1K# (D[5]){b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3])

{b}

enter# (D[4]) = {b, •}

{b}

JA← bK# (D[7])

{b, A, •}

JNonZero (A)K# (D[8])

{b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10])

{b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))

{b, ret}

Jret ← ret − 1K# (D[5])

{b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Interprocedural Reachability
example

0

1

2

3

4

5

6

main ():

A← M[0]

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

D[startmain] w {b}

{b}

JA← M[0]K# (D[0]) = D[0]

{b}

JNonZero (A)K# (D[1]) = D[1]

{b}

JZeroK# (D[1]) ∩ Jprint ()K# (D[2])

{b}

Jb ← AK# (D[3])

{b}

enter# (D[4]) = {b, •}

{b}

JA← bK# (D[7])

{b, A, •}

JNonZero (A)K# (D[8])

{b, A, •}

JZero (A)K# (D[8])

∩ JworkK# (D[9])

work approximated by
g4 (C ) = C ∪ {ret}

{b, A, •}

Jret ← AK# (D[10])

{b, A, •, ret}

combine#
(
D[4], JfK#

(
enter# (D[4])

))

{b, ret}

Jret ← ret − 1K# (D[5])

{b}

⇒ within the call of work:
global var. b may be
used instead of local var. A

41 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Introduction

Simple Interprocedural Optimisations

Operational Semantic

Functional Approach

Related Approaches

Summary

42 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Demand-Driven Interprocedural Analysis

sometimes: lattice not finite, functions cannot be represented
in a compact form
→ only analyse calls in situations that really occur

! this is the case e.g. for constant propagation

→ use local fixpoint algorithm:
only compute solutions for certain inequalities;
only solve part of the system that is needed therefor

43 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Demand-Driven Interprocedural Analysis
system of inequalities

D[v , a] w a,

v entry point

D[v , a] w combine#
(
D[u, a],D[f, enter# (D[u, a])]

)
,

(u, f () , v) calling edge

D[v , a] w JlabK# (D[u, a]) ,

k = (u, lab, v) normal edge

D[f, a] w D[stopf, a]

with D[f, a] ... abstract state when reaching program point v
of a function called in abstract state a (D[f, a] ∼ JvK# (a))

⇒ compute D[main, enter# (d0)]
44 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Demand-Driven Interprocedural Analysis
ex. Constant Propagation

Constant Propagation:
move as many computations as possible from runtime to
compile time
complete lattice: D =

(
Vars → Z>

)
⊥

→ ! not finite
>

0−1−2... 1 2 ...

enter#D =

{
⊥ D =⊥
D ⊕ {A 7→ >|A local} otherwise

combine# (D1,D2) =

{
⊥ D1 =⊥ ∨D2 =⊥
D1 ⊕ {b 7→ D2 (b) |b global} otherwise

45 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Constant Propagation
Abstract Edge Effects - intraprocedural

J; K#D = D

JNonZero (e)K#D =

{
⊥ if 0 = JeK#D

D otherwise

JZero (e)K#D =

{
⊥ if 0 6v JeK#D

D if 0 v JeK#D

Jx ← eK#D = D ⊕ {x 7→ JeK#D}
Jx ← M[e]K#D = D ⊕ {x 7→ >}

JM[e1]← e2K#D = D

46 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Demand-Driven Interprocedural Analysis
ex. Constant Propagation

0

1

2

3

4

5

6

main ():
d0 = {A 7→ >, b 7→ >, ret 7→ >}

A← 0

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

d1 = {A 7→ >, b 7→ 0, ret 7→ >}

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

A b ret

0, d0 > > >
1, d0 0 > >
2, d0 ⊥
3, d0 0 > >
4, d0 0 0 >
7, d1 > 0 >
8, d1 0 0 >
9, d1 ⊥

10, d1 0 0 >
11, d1 0 0 0
5, d0 0 0 0
6, d0 0 0 1

main, d0 0 0 1

47 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Call-String-Approach

→ compute set of all reachable call stacks
! restrict call stacks to fixed size d
→ (complexity increases with depth)

here: call stack of depth 0
→ function call as unconditional jump

48 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Call-String-Approach
system of inequalities

D[startmain] w enter# (d0)

D[startf] w enter# (D[u]) ,

(u, f () , v) calling edge

D[v ] w combine# (D[u],D[v ]) ,

(u, f () , v) calling edge

D[v ] w JlabK# (D[u]) ,

k = (u, lab, v) normal edge

D[f] w D[stopf]

49 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Call-String-Approach
ex. Copy Propagation

0

1

2

3

4

5

6

main ()

A← 0

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

7

8

9

10

11

work ():

interprocedural supergraph

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

combine#

enter#

t

enter#

combine#

50 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Call-String-Approach
ex. Copy Propagation

D[5] w combine# (D[4],D[work])

D[7] w enter# (D[4])

D[7] w enter# (D[9])

D[10] w combine# (D[9],D[work])

51 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Call-String-Approach
ex. Copy Propagation

! for depth 0: impossible paths may occur

()0

1

2

3

4

5

6

0

1

2

3

4

5

6

A← 0

Zero (A)

NonZero (A)

print ()

b ← A

work ()

ret ← 1− ret

work ():

7

8

9

10

11

7

8

9

10

11

A← b

NonZero (A)

Zero (A)

work ()

ret ← A

combine#

enter#

enter#

combine#

52 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Introduction

Simple Interprocedural Optimisations

Operational Semantic

Functional Approach

Related Approaches

Summary

53 / 54



Introduction Simple Optimisations Operational Semantic Functional Approach Related Approaches Summary

Summary

I Interprocedural Analysis is an extension of intraprocedural
analysis which takes into account the calling context of
functions.

I Interprocedural Analysis is more demanding than
intraprocedural analysis, but yields more precise results.

I Functional Approach:
approximate abstract effect of function call by solving
system of inequalities describing the edge effects within
the function

I lattice of possible analysis solutions has to fullfill certain
properties to ensure that the analysis terminates

54 / 54


	Introduction
	Simple Interprocedural Optimisations
	Operational Semantic
	Functional Approach
	Related Approaches
	Summary

