Software Verification and
Abstraction

Rupak Majumdar

Spreading fastc

The worm slowly spread untl July 19, when
the number of computers attacking networks
skyrocketed. Now, the worm is hibernating,
ready o re-infect Aug. 1.

of infectad sarvers

Jul 19, 2001

2 840,030

Code Red:

B, 000
' Buffer overrun

B, a0

=%:4% Estimated.cost $2.6 billion
2 CHH]

2

Source: Chermical abstracts Service

Hindows

An exception 06 has occured at 0028:C11B3ADC in WD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in WxD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue,
* Press CTRL+ALTH+RESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

The Premise

Reliability is important

e« More computers are used in embedded, networked,
safety critical applications

o Cost of failure or fixing bug is high

Building large, complex, yet reliable systems is hard

These lectures: What can we do about it?

e Survey research on automatic tools for
ensuring a system is “correct”

Systems and Models

Calculate [Model

Test

] Mathematics

Abstract
Build Model

V

Predict
Analyze Model

[System

Aircraft

} Bridges
Hardware

Software

Mathematical Abstractions

Bridges Programs
Building Blocks Mechanics Logic
1. Relevant facts* Mass, Tensile Strength ?
2. Model ODEs/PDEs ?
3. Analysis Solve Equations ?

* w.r.t. property of interest

System Verification Problem

I E S

/ |
“Implementation” “Specification™
System model System properties

“models” “implements” “refines
Satisfaction relation

Example

C code for device driver A: “Driver does not deadlock”

“Implementation” “Specification™
System model System properties

“models” “implements” “refines
Satisfaction relation

Example

Microprocessor design :T ISA
“Implementation” “Specification”
System model System properties

“models” “implements” “refines
Satisfaction relation

Example

Electronic Control Unit :A “Controller is stable”
“Implementation” “Specification™
System model System properties

“models” “implements” “refines
Satisfaction relation

Example

Transactional memory = Strict serializability
“Implementation” “Specification™
System model System properties

“models” “implements” “refines
Satisfaction relation

Lecture 1: Model Checking
Basic Concepts

Rupak Majumdar

Model checking,

Automatic algorithmic techniques for
system verification which operate on a
system model (semantics)

Somewhat General View

Model checking,

Decision procedures for checking if a given Kripke
structure is a model for a given formula of a modal
logic (CTL or LTL).

Our view includes
- Dataflow analysis in compilers
- Symbolic execution based methods
Our view excludes
- Language design for ensuring properties
- Proof calculi and interactive theorem proving

There are many different model checking
algorithms, depending on

e The system model
e The specification formalism

Discrete Systems Theory

Trajectory: dynamic evolution of state
sequence of states

Model: generates a set of trajectories N\
transition graph

Property: assigns boolean values to trajectories

temporal logic formula “red and green
alternate”

—->0->0—>0—~

Algorithm: compute values of the trajectories
generated by a model

Paradigmatic Example: Mutual Exclusion

loop 1 loop
out: x1:=1;last =1 out: x2:=1; last := 2
req: await x2=0 or last=2 req: await x1=0 or last =1
int x1:=0 int x2:=0
end loop. end loop.
P1 P2

Property: It is never the case that P1 and P2 are both at "in’

System Modeling

e Various factors influence choice of model
- State based vs event based
- Concurrency model

o While the choice of system model is important for ease
of modeling in a given situation,

the only thing that is important for model checking is that
the system model can be translated into some form of
state-transition graph.

e So: Will not focus much on syntactic constructs

Syntax: Finite State Programs

e Parallel composition of C programs,
without function calls

e Each variable has a finite range

e We’ll write such programs as guarded
commands

Semantics: State Transition Graph

Q set of states {,,0,,05}
do initial state d,
transition relation q, - q,

set of atomic observations {a,b}

observation function [q,] = {a}

Important Restriction

Until notified, restrict attention to
finite-state transition systems

Q is finite

Example: Mutual Exclusion

loop 1 loop
out: x1:=1;last =1 out: x2:=1; last := 2
req: await x2=0 or last=2 req: await x1=0 or last =1
int x1:=0 int x2:=0

end loop. end loop.

P1 P2

@ @‘ pcl: {o,r I}

pc2: {o,r,i}
x1: {0,1}

@ x2:{0,1}
last: {1,2}
‘/ \ 33121212 =72 states

State Explosion Problem

The translation from a system description to
a state-transition graph usually involves an
exponential blow-up !!!

e.g., n boolean variables = 2" states

System Verification Problem

I E S

;o

“Implementation” “Specification”
System model System properties

“models” “implements” “refines
Satisfaction relation

System Properties

Some orthogonal dimensions in choosing specification
formalisms

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear time

2 prohibiting bad vs. desiring good behavior:
safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems

Safety vs Liveness

» Safety: Something “bad” will never happen

- Program does not produce bad result
“partial correctness”

: Mutual exclusion

e Liveness: Something “good” eventually
happens

- The program produces a result “termination”

: A process wanting to go to the critical
section eventually gets in

Safety vs Liveness Contd.

e Safety: those properties whose violation
always has a finite witness
- “if something bad happens on an infinite run,

then it happens already on some finite
prefix” --- Can be checked on finite runs

e Liveness: those properties whose
violation never has a finite witnhess
- “no matter what happens along a finite run,

something good could still happen later” ---
Must be checked on infinite runs

Two Remarks

1. The vast majority of properties to be
verified are safety

2. While nobody will ever observe the
violation of a true liveness property,
liveness is a useful abstraction that turns
complicated safety into simple liveness

Accordingly, we focus on safety for most of the
lectures

Safety Model Checking

e Requirement: The system should always stay
within some safe region

e |Input: A state transition graph
e Input: A set of good states “invariants”

e Output: “Safe” if all executions maintain the
invariant, “Unsafe” otherwise (and a trace)

From Safety to Reachability

e Input: A state transition graph
e Input: A set of bad states

e Output: “Safe” if there is no run from an

initial state to any bad state, “Unsafe”
otherwise (and a trace)

Model Checking Algorithm

e Graph Search
- Linear time in the size of the graph
- Exponential time in the size of the

Enumerative Model Checking

e Provide access to each state

e For each state, provide access to
neighboring states

e Implement classical graph algorithms
- Depth-first or breadth-first search

- Starting from initial states and searching
forward for bad states

- Or starting from bad states and searching
backward for initial states

State Space Explosion

» Biggest problem is state space explosion
- N bits = 2N states

e Many heuristics
- Search on-the-fly,

- partial order and symmetry reduction
- Do not store dead variables

e Many successful implementations
e Spin, Murphi, Verisoft, ... [Protocol verification]

Symbolic Model Checking

o |dea: Work with sets of states, rather
than individual states

Given: Transition graph G, target states o'
begin
- oR = set of Initial states
- repeat forever

if oR N o # Othen return “yes”

if Post(oR)C oR then return “no”

oR := oR U Post(oR)

end

Here, Post(o) = {s’| [ko. s — s’}

Encoding Sets through Formulas

e ldea: Represent sets of states
symbolically, using constraints

e £.g., 1 < x <100 represents the 100
states x =1, x =2, ..., x =100

e Represent both sets of initial states and
transition relation implicitly

Representing States as Formulas

[F]

states satisfying F {s | sE F }

[F I [F2]
[F U [F,]
[F]

[F] < 1F]

F

FO fmla over prog. vars

F, AF,
F,VF,
- F

F, implies F,

i.e. F,A— F, unsatisfiable

Symbolic Transition Graph

e A transition graph
- A Formula Init(x) representing initial states

- A Formula TR(x,x’) representing the
transition relation

e Example: C program
X:=€e TR(x,x’): loc=pcloc’=pc’ X’ = e[{ y’=y|y#x}
Assume(p) TR(x,x’): loc=pclloc’=pc’p

Symbolic Transition Graph

e Operations:
- Post(X) ={s’ | [0OX.s - s’}
= [k. X(s) L TR(s,s’)

- Pre(X) ={s | ('0X.s - s’}
= [k’. TR(s,s’) LJX(s’)

e Can implement using formula manipulations

Symbolic Model Checking

Given: Transition graph G, target states o'
begin
- oR = Formula representing set of Initial states
- repeat forever

if oR 0 oT is satisfiable then return “yes”

if Post(oR) = oR then return “no”

oR := oR O Post(o®)

end

Here, Post(o)(s’) = (k. a(s) OTR(s,s’)

Can be implemented using decision procedures for the
language of formulas

Finite State Systems

e Symbolic representation in propositional logic
o State described by n bits X

e A region is a propositional formula with free
variables in X

e Can implement symbolic operations using
propositional formula manipulations

Example: Mutual Exclusion

loop || loop
out: x1:=1; last =1 out: x2:=1; last := 2
req: await x2=0 or last=2 req await x1=0 or last =1
ini x1:=0 int x2:=0

end loop. end loop.

Symbolic representation has variables
pc1,pc2, x1, x2, last
Initial states: |
pcl1=out [Ipc2=out [0x1=0 [Ix2=0 E,? é@?snam
Transition relation:
pc1=outld x1’=10last’=10 pc2’=pc2] x2’=x2
...

Additional Desirable Properties

e All operations must be efficient in practice

e Should maintain compactness whenever
possible

e Canonical representations

e Representing initial states and transition

relation from the program description should be
efficient

Binary Decision Diagrams

o Efficient representations of boolean functions
[Bryant86]

e Share commonalities
e Ordered BDDs:

- Fix a linear ordering of the variables in X

- BDD = DAG, with nodes labeled with boolean
variables

Each variable occurs 0 or 1 times along a path

- Paths in the DAG encode assighments to variables

e Extremely successful in hardware verification

More on Safety Properties

e Not all safety properties can be written
as invariants on the program state space

e For example, if correctness depends on
the order of events

- Locks can be acquired and released in
alternation, it is an error to acquire/release
a lock twice in succession without an
intermediate release / acquire

Monitors

e Write the ordering of events as an automaton
(called the monitor)

o Take the product of the system with the
monitor

- The monitor tracks the sequence of events

- It goes to a special “bad” state if a bad sequence
occurs

« Now we can express the property as an
invariant: the monitor state is never bad

Symbolic Search

e« Guaranteed to terminate for finite state
systems

e And can be applied to infinite state
systems as well

- Although without guarantees of termination
in general

- Application to infinite state requires richer
languages for formulas and associated
decision procedures

What about Software?

e Can construct an infinite state transition system
from a program

o States: The state of the program
- (stack, heap, pc location)

e Transitions: g— q’ iff in the operational
semantics, there is a transition of the program
fromqtoq’

e |nitial state: Initial state of the program

Termination

e Each operation can be computed

e But iterating Pre or Post operations may
not terminate

« What do we do now?

Observation

o Often, we do not need the exact set of
reachable states

- We need a set of states that separates the reachable
states from the bad states

One Possibility

e User gives an estimate (inductive invariant)
A set of states Inv such that
-Init O Inv - Inv n bad = [- Post(Inv) O Inv

* Can show that this implies system is safe (How?)

* Given Inv, and decision procedures, this
procedure is guaranteed to terminate

- This is the idea of classical loop invariants

- Problem: In general, it can be hard to manually
construct Inv

Before we proceed

e What is the sign of the following product:

- 12433454628 * 94329545771 ?

ldea

e One can “abstract” the behavior of the
system, and yet reason about certain
aspects of the program

e Abstraction:
-ve * +ve = -ve

Model Checking Algorithm

e Graph Search

Abstract Interpretation

e The state transition graph is large/infinite
e Suppose we put a finite grid on top

Existential Abstraction

e Every times — s’, we put [s] — [s]
e This allows more behaviors

Abstract Model Checking

e Search the abstract graph until fixpoint
- Can be much smaller than original graph
- Can be finite, when original is infinite

Simulation Relations

e Arelation <X C Qx Q is a simulation relation if
s< s’ implies
- Observation(s) = Observation(s’)
- For all t such that s— t

there exists t’ such that s’— t’
ands’ < t’

Formally captures notion of “more behaviors”
Implies containment of reachable behaviors

Main Theorem

e s =<[s]is asimulation relation

e |f an error is unreachable in Abs(G) then it
is unreachable in G

e Plan:
1. Find a suitable grid to make the graph
finite state

2. Run the finite-state model checking
algorithm on this abstract graph

3. |If abstract graph is safe, say “safe” and
stop

What if the Abstract Graph says Unsafe?

e The error may or may not be reachable in
the actual system

- Stop and say “Don’t know”

What if the Abstract Graph says Unsafe?

e Or, put a finer grid on the state space

e And try again
- The set of abstract reachable states is smaller
- Where do these grids come from?

Grids: Predicate Abstraction

e Suppose we fix a set of facts about program variables
- E.g., old = new, lock =0, lock =1

e Grid: Two states of the program are equivalent if they
agree on the values of all predicates

- N predicates = 2N abstract states

« How do we compute the grid from the program?

Predicate Abstraction

Region Representation: formulas over predicates
B R R B

Piix=y P,iz=t+y
-P,—P,
—Py, P, P3:X < 7z+1 P4:*U:X
P P J Set of states
Pl’ _'P2

Abstract Set: P,P,P,v-P, P, P; P,
Karnaugh Map

Predicate Abstraction

J]
~BU
J
~BU
~BU
J
~BU

Piix=y P,iz=t+y
-P,—P,
=Py, P P3:X < z+1 P4:*U:X
" J
Pl’ _|P2

Karnaugh Map

e Box: abstract variable valuation
e BoxCover(S): Set of boxes covering S
e Theorem prover used to compute BoxCover

Post# Pre

PP,

=Py, P,
post P, P, ‘ post(S)

S P, —P post#(S)

e pre(S,op) ={s | Js’eS. s —° s’} (Weakest Precondition)
e post(S,op) ={s | ds’eS. s’ —°P s} (Strongest Postcondition)

e Abstract Operators: post”
post(S,op) C post*(S,op)

Computing Post?

B Re-Fe
—-P,,—P,
—Py, P,
post P, P, ‘ post(S)
#
S P, —R, post®(S5)
e For each predicate p, check if
- S= Pre(p, op) then have a conjunct p
- S= Pre(— p, op) then have a conjunct - p
- Else have no conjunct corresponding to p

e Use a theorem prover for these queries

Example

e | have predicates

- lock=0, new=old, lock=1
e My current region is lock = 0 A new= old
e Consider the assignment new = new+1

e What is abstract post?

Example

WP(new:=new+1, lock=0) is lock=0
WP(new:=new+1, lock=1) is lock=1
WP(new:=new+1, new=old) is new+1=old

lock=0A new=old = lock =0 YES
lock=0A new=old = lock # 0 NO
lock=0A new=old = lock =1 NO
lock=0A new=old = lock # 1 YES
lock=0A new=old = new+1=0ld NO
lock=0A new=old=- hew+1% old YES

So post is lock = 0 A lockz 1 A new# old

Symbolic Search with Predicates

Symbolic representation:
Boolean formulas of (fixed set of) predicates

e Boolean operations: easy
« Emptiness check: Decision procedures

e Post: The abstract post computation algorithm

e Can now implement symbolic reachability search!

Big Question

e Who gives us these predicates?

e Answer 1: The user

- Manual abstractions

e Given a program and property, the user figures
out what are the interesting predicates

- Dataflow analysis

e For “generic” properties, come up with a family
of predicates that are likely to be sufficient for
most programs

Abstract Interpretation

o Abstract model checking is formalized
through abstract interpretation

- Formalizes and unifies semantics-based
program analysis

More Approximations

e Many program dataflow analyses do not
perform exact reachability analysis on
the abstract state space

e Instead, use the structure of the control
flow graph to further approximate the
result

Example: Flow Sensitive Analysis

e For each control flow node, keep track of
the set of reachable states (along any
program path) to that node

- Information may be lost at merge points by
abstracting [1by something coarser

o Assumption: All paths of the control flow
graph can be executed

- Ignore conditional statements

Flow Insensitive Analysis

e Even more approximate

e Disregard the order of operations in the
program!

e Much faster analysis than abstract model
checking

- But results are much cruder of course!

- Can still be useful: e.g., primary way to
perform alias analysis

When | run a model checker, it goes to
compute the result and never comes
back. When | run a dataflow analysis, it
comes back immediately and says “Don’t
know”!

- Patrick Cousot

Questions?

Lecture 2:
Software Model Checking
and
Counterexample-Guided Refinement

Rupak Majumdar

Recap

e Model checking is an algorithmic
technique to verify properties of systems

 In conjunction with abstractions, can be
effective in proving subtle properties

e Today: Consider the problem of abstract

model checking of (sequential) software
implementations

Setting: Property Checking

e Programmer gives partial specifications

e Code checked for consistency w/ spec

e Different from program correctness
- Specifications are not complete
- |s there a complete spec for Word ? Emacs ?

Interface Usage Rules

UNIIX

PROGRAMMING

) Must-have references for the Microseft
Windows™ Driver Development Kit

Driver _
Development Kit

e Rules in documentation

- Order of operations & data access
- Resource management

- Incomplete, unenforced, wordy

 Violated rules = bad behavior
- System crash or deadlock

- Unexpected exceptions

- Failed runtime checks

Property 1: Double Locking

unl ock . | ock

“An attempt to re-acquire an acquired lock or
release a released lock will cause a deadlock.”

Calls to lock and unlock must alternate.

Property 2: Drop Root Privilege

setuid(1) setuid(1)

R=0E=1,5=0)) setuid(1) @

setuid(0) setwd

R=0,E=0,S= setuid(0) i setuid(1)

[Chen-Dean-Wagner '02]

“User applications must not run with root privilege”

When execyv is called, must have suid # 0

Property 3

IRP Handler

!!art NP

completion

CallDriver

Complete

start P Mark [Pending R iPL CallDriver SKIP2
Ski
.. v) CaIDrlver
MPR3 synch
W NP — | CallDriver
/ ; / MPR Complete
completion

MPR2 GallDriver

MPR1

no prop
completion
N/A

CallDriver

return
Pending

2N
.

[Fahndrich]

Does a given usage rule hold?

e Undecidable!
- Equivalent to the halting problem

e Restricted computable versions are
prohibitively expensive (PSPACE)

e« Why bother ?

- Just because a problem is undecidable,
it doesn’t go away!

Example

Exanpl e (){

1: dof
| ock();
old = new;
q= q->next;

2: if (g != NULL){

3: g->data = new;
unl ock() ;
new ++;

}

4:} while(new != old);
5. unlock ();
return;

}

unl ock

| ock

What a program really is...

State
Transition
@ - @
pc 13 3: unlock(); pc 04
lock 0 @ new++; lock 0 Q
old (15 4:}___ old (15
new [15 new (16
q 1 0x133a q 1 0x133a
Exampl e (){
1: do{
| ock();
old = new,
q = g->next;
2: if (q!= NULL)Y
3: g->data = new;
unl ock();
new ++;

}
4: } while(new != old);
5: unlock ();
turn;

eturn;}

The Safety Verification Problem

Error

Safe

Initial

Is there a path from an initial to an error state ?
Problem: Infinite state graph
Solution : Set of states ~ logical formula

ldea 1: Predicate Abstraction

0 0 5. o o e Predicates on program state:
j /T e 4\¢4/_I lock

~J old = new

are equivalent
1 - Merged into one abstract state

:
.

4; « States satisfying same predicates
I
.

—

*—
7]
o
)
—rl—y '/; « #abstract states is finite
L

Abstract States and Transitions

3: unlock(); pc 4

new++; lock 0 O
4} ... old 115
new 16
Ox133a q 1 0x133a
—>
Theorem Prover

lock — lock
old=new — old=new

Abstraction

State

@ - @

pc 113 3: unlock(); pc 4

lock [@ new++; lock 0 O
old 5 4;} old 115
new 15 new [6
q Ox133a q 1 0x133a

—p
Theorem Prover

lock — lock

Existential Lifting old=new —
old=new

Abstraction

4
I
A A) |
HNENR R
I b |4 (AN |
SRR
i

State

& - @

pc U3 3: unlock(); pc 4

lock © @ new++; lock = O

old 5 4;}___ old 5

new 5 new [6

q 1 0x133a g [10x133a

—

lock — lock
old=new -

old=new

Analyze Abstraction

Analyze finite graph

Over Approximate:
Safe = System Safe

No false negatives

Problem

Spurious counterexamples

ldea 2: Counterex.-Guided Refinement

Solution

Use spurious counterexamples
to refine abstraction !

ldea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples

to refine abstraction

1. Add predicates to distinguish
states across cut

— - — ImBried 1Isibnediusb toactarge

lterative Abstraction-Refinement

Solution

Use spurious counterexamples
to refine abstraction

1. Add predicates to distinguish
\f\ states across cut
s _IF‘> 2. Build refined abstraction
/ B I -eliminates counterexample
3. Repeat search

Till real counterexample
or system proved safe

[Kurshan et al 93] [Clarke et al 00]
[Ball-Rajamani 01]

Lazy Abstraction

C Program —>

Property ——

BLAST

Yes

No
>Trace

Problem: Abstraction is Expensive

Problem

#abstract states = 2#predicates
Exponential Thm. Prover queries

i
|/

—_—

Reachable

Observe

Fraction of state space reachable
#Preds ~ 100’s, #States ~ 2100
#Reach ~ 1000’s

Solution1: Only Abstract Reachable States

|/

—_—

Problem

#abstract states = 2#predicates
Exponential Thm. Prover queries

Safe

Solution
Build abstraction during search

Solution2: Don’t Refine Error-Free Regions

Problem Solution

#abstract states = 2#predicates Don’t refine error-free regions
Exponential Thm. Prover queries

Reachability Tree

Initial

1 Unroll Abstraction

! 1. Pick tree-node (=abs. state)
2 2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

Reachability Tree

Initial
1
;
3
L\
4 5
8 OB

Error Free

Unroll Abstraction

1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

Reachability Tree

Initial
1

\4

2

Unroll

1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

«1 Find min spurious suffix

\. - Learn new predicates

~N
_\/

11 - Rebuild subtree with new preds.

Error Free

SAFE

S1: Only Abstract Reachable States

S2: Don’t refine error-free regions

Build-and-Search

Exanmpl e (){
1: do{

| ock();

old = new;

q = g->next; 1] ~roek
2: if (g !'= NULLY
3: (g->data = new;

unl ock() ;
new ++;

4:}while(new != old);
5: unl ock ();
}

1

Reachability Tree

Predicates: Lock

Build-and-Search

Exanmpl e (){
1: do{
| ock();
old = new;
Q.= d->next; ey 1] ~rocK
2. it (g 1= NULLY{ old = new I @
3: (g->data = new; g=g->next
unl ock() ; 2 Lock
new ++;

4:}while(new != old);
5: unl ock ();
}

1——2

Reachability Tree

Predicates: Lock

Build-and-Search

Exanpl e () {
1: do{
| ock();

old = new;
Q.= d->next; 1] ~tock

2. if (q I= NULL){ \ ‘

3. (g->data = new;
unl ock() ; 2 HocK
new ++;

[q'=NULL]

}
4:}while(new != old);
5: unlock (); 3 Hoek

}

1—-2—1-3

Reachability Tree

Predicates: Lock

Build-and-Search

Exanpl e () {

1: do{
| ock();
old = new;
q = g->next;

2: if (q!= NULLY

3: (g->data = new;
unl ock() ;
new ++;

4:}while(new != old);
5: unl ock ();
}

wW— DA

12—

Predicates: Lock

1| - LOCK
\4 ‘
2 LOCK
g->data = new 3 LOCK
unl ock() O
new++ '
4 - LOCK

Reachability Tree

Build-and-Search

Exanpl e () {

1: do{
| ock();
old = new;
q = g->next;

2: if (q != NULLY

3: g->data = new;
unl ock() ;

new ++;
}

4:}while(new != old);

5: unlock ();
}

W— D= U1

12—

Predicates: Lock

1| - LOCK
\4 ‘
2| LOCK
3 LOCK
4 - LOCK
[new==old] v
5 - LOCK

Reachability Tree

Build-and-Search

Exanpl e (){
1: do{
| ock();
old = new;
0= gonext 1| - LOCK
2. if (1= NULLY I @
3: g->data = new;
unl ock() ; 2 LOCK
new ++;
twh I}(Id)
4:Wwhile(new != old);
5: unlock (); 3 Lock
; - O
4 - LOCK
\4
5 - LOCK

unl ock() O
- LOCK

Reachability Tree

W—.h—1> U1

1—4—2—4

Predicates: Lock

Analyze Counterexample

Exanpl e (){
1: do{
| ock();
old = new;
q = g->next 1| “LOCK |ock()
2: if (g '= NULLX ! o old = new
3: g->data = new; g=g->next
unl ock() ; 2 Lock
} new =, [q!=NULL]
4:}while(new != old);
5: unlock (); 3 LOCK g->data = new
} ' O unl ock()
new++
4 - LOCK
il [new==0ld]
- LOCK
> unl ock()

“ O
- LOCK

Reachability Tree

W—.h—1> U1

1—4—2—1

Predicates: Lock

Analyze Counterexample

Exanpl e (){
1: do{
| ock();
old = new;
g = g->next;
2: if (g '= NULL)
3: g->data = new;
unl ock() ;
new ++;

4:}while(new != old);
5: unl ock ();
}

W— A= U1

1—4—2—1

Predicates: Lock

1| —Lock
! @ old = new
2| Lock
3 LOCK
O newt+
4 - LOCK
v [new==ol d]
O Inconsistent
~LOCK
new == old

Reachability Tree

Repeat Build-and-Search

Exanpl e (){
1: do{
| ock();
old = new;
g = g->next;
2: if (g '= NULL)
3: g->data = new;
unl ock() ;
new ++;

4:}while(new != old);
5: unl ock ();
}

1

Predicates: LOCK, new==old

1| —LOCK

Reachability Tree

Repeat Build-and-Search

Exanpl e (){
1: dof

| ock();
old = new;
g = g->next;

2: if (g '= NULL)

3: g->data = new;
unl ock() ;
new ++;

4:}while(new != old);
5: unl ock ();
}

1

—1 2

Predicates: LOCK, new==old

11 - LOCK
‘ | ock()
LOCK , new==old 2 old = new
g=g->next

Reachability Tree

Repeat Build-and-Search

Exanpl e (){

1: do{
| ock();
old = new;
g = g->next;

2: if (q!= NULLX

3: g->data = new;
unl ock() ;

new ++;

4:}while(new != old);

5: unlock ();
}

44

1

23

LOCK , new==old

LOCK , new==o0ld | 3

- LOCK

g->data = new

O | unlock()

- LOCK , —new = old 4

new++

Reachability Tree

Predicates: LOCK, new==old

Repeat Build-and-Search

Exanpl e (){

1: do{
| ock();
old = new;
g = g->next;

2: if (q!= NULLY

3: g->data = new;
unl ock() ;

new ++;
}

4:}while(new != old);

5: unlock ();
}

44

1

23

1| —LOCK

LOCK , new==old 2

LOCK , new==old | 3

O

- LOCK , = new = old 4

A/‘ [new==0ld]

Reachability Tree

Predicates: LOCK, new==old

Repeat Build-and-Search

Exanpl e (){

1: do{
| ock();
old = new;
g = g->next;

2: if (q!= NULLY

3: g->data = new;
unl ock() ;

new ++;
}

4:}while(new != old);

5: unlock ();
}

4,

1<

23

1| —LOCK

LOCK , new==old 2

LOCK , new==old | 3

O

- LOCK , = new = old 4

A/‘ [new!=0ld]

1

- LOCK,
- new == old

al

Reachability Tree

Predicates: LOCK, new==old

Repeat Build-and-Search

Exanpl e (){

1: do{
| ock();
old = new;
g = g->next;

2: if (q!= NULLY

3: g->data = new;
unl ock() ;

new ++;

4:}while(new != old);

5: unlock ();
}

5

4, [4
y |
1——+2——+3

1| —LOCK

LOCK , new==old 2

LOCK , new==old | 3 SAF E

O 4 !
- LOCK , —new = old 4 4| Lock , hew=old
A 4
1 5
- LOCK, O v
- new == old

- LOCK , new==old

Predicates: Lock, new==old ReaChabi hty Tree

Reachability Tree

Initial
1

\4

2

Unroll

1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

«1 Find min spurious suffix

\. - Learn new predicates

~N
_\/

11 - Rebuild subtree with new preds.

Error Free

SAFE

S1: Only Abstract Reachable States

S2: Don’t refine error-free regions

Lazy Abstraction

Yes

C Program —>{ —»| Abstract

Refine

Property —— LTrace

Problem: Abstraction is Expensive

Solution: 1. Abstract reachable states,
2. Avoid refining error-free regions

Key Ildea: Reachability Tree

Technical Details

Technical Details

» Q: How to compute “successors”?

» Q: How to find predicates ?
[Interpolation]

» Q: How to analyze (recursive)
procedures? [Context-free reachability]

Technical Details

Q. How to compute “successors” ?

Predicate Abstraction

e From last lecture

Technical Details

Q. How to find predicates ?

#Predicates grows with program size

while(1){___
Te1: if(p| 1)| 1ock() ;
F Tp| o] unfockD = Tracking lock not enough

Te2:if(@ ,) lock() :
if(p ,) unlock() ;

niif() |ock() :
if(p) unlock() ;
}

Problem:
p.,...,p, needed for verification
Exponential reachable abstract states

#Predicates grows with program size

while(1){

1. if(p)
f(p 1)

2:1f (p 5)
f(p)

n: if (p)
f(p)

}

Problem:
p.,...,p, needed for verification
Exponential reachable abstract states

| ock() ;

unl ock() ;

| ock()

unl ock() ;

| ock()

unl ock() ;

- LOCK

* ™\
LOCK, p,
- LOCK, p,
)
O O
- LOCK

ﬁLOCK,ﬁP,

ﬁLOCK,ﬁP,

A\ B o

T

2" Abstract States

Predicates useful locally

while(1){
1: if (p
P i
2:if (p
pz{ if (p

n: if (p
pn{ if (p
}

1)
1)

2)
2)

>
N

- LOCK

AW
|0:3k(|)((; LOCK , L ~LOCK, - p,
unl oc ;
ﬂLoc;em,CKﬁ@/O /\D—ILOCK ~p,
| ock() : N
unl ock() LOCK , p, 1] ~LOCK , - p,
o - LOCK
l ock() ; :
unl ock() ;

2N Abstract States

Solution: Use predicates only where needed
Using Counterexamples:

Q1. Find predicates

Q2. Find where predicates are needed

Lazy Abstraction

C Program —>

Property ——

» Abstract

Refine

Yes

No
—— s Trace

Problem: #Preds grows w/ Program Size
Solution: Localize pred. use, find where preds. needed

Ctrex.
Trace I:>

Refine

Pred. Map
PC (] Preds.

Counterexample Traces

| ock() |0(';|(1 =1

= S old; = new,
g=g->next 4, = go->next
[q!=NULL] assunme(qg,; != NULL)

(g, -> data) ; = new,

g->data = new
| ock, = O

unl ock()

new++ new;, = newg +1
[new==o0ld] assunme(new;=ol d,)
117l @@k) assert (I ock,=1)
Trace SSA Trace

lock, =1 A
old; = newy £
d; = (p->next /

g, '= NULL A

(g, -> data) ; = new, /
| ock, = 0 A
new, = new, +1 /

new;=ol d;

Trace Feasibility
Formula

Thm: Trace is feasible & TF is satisfiable

Proof of Unsatisfiability

|l ock, =1 A

old, = new, 4

q,; = Qp->hext A
g, '= NULL A

(g, -> data); = new, /
| ock, = 0 A

new, = new, +1j A

new,=ol d,

Trace Feasibility
Formula

old; = new, new;, = new, + 1|

new,; = old,+1 new; = old,

g
Proof of Unsatisfiability

[Predicates: old=new, new=new+1, new=old]

[

Add: old=new]

[HenzingerJhalaM.Sutre02]

Counterexample Traces: Take 2

1: x=ctr; 13 x = ctr

2. ctr=ctr+1; 2: ctr = ctr + 1

3. y=ctr, 3: y = ctr —

g L ()i(f?yl_!i)g){ 4: assune(x = i-1) L
5. assune(y # 1)

ERROR }

Trace Formulas

a & W M R

X = ctr

ctr = ctr+1
y = ctr
assune(x=i-1)

assune(y#i)

Trace

a B @ N =

X, = Ctry,

ctr, = ctry+1
y, = ctr,
assume(x;=i 5- 1)

assume(y #i ;)

SSA Trace

x, = ctr,
ctr, = ctry+ 1
y, = ctr,

X; = 1Ip- 1

D N U

y, Z i

Trace Feasibility
Formula

Proof of Unsatisfiability

x, = ctr,

A ctr, = ctr, + e

Y
Ay, =ctry /00

Y v
/‘ X1 - ’0' 1‘

ANy, Z 1, v

Trace Formula

X]:Ctro XI:io—]

ctryp = ip-1 ctry= ctry+1

ctry =1y, y;=ctr;

Vi=lp yiZiy

7

Proof of Unsatisfiability

The Present State...

Trace
;1: X = ctr
;2: ctro=ctr+ 1 s all the information the
3: y = ctr executing program has here
. ------—--—-
: 4. assunme(x = 1-1)
v |
5. assune(y # 1)
State...

1. ... after executing trace past (prefix) At pc4, which predlcate on
present state shows
infeasibility of future ?

2. ... knows present values of variables

3. ... makes trace future (suffix) infeasible

What Predicate is needed ?

a & @ N R

Trace

X = ctr

ctr = ctr + 1

y = ctr

assune(x =1 -

assune(y # 1)

Trace Formula (TF)

x, = ctr,

ctr, = ctr, +1

What Predicate is needed ?

Trace Trace Formula (TF)
i1 x = ctr X, = ctr,
52: ctr = ctr + 1 : A ctry = ctryt 1
v3: y = ctr Y y, = ctr,
T e >
4: assume(x = i-1) A Xy = 0g- 1
5: assune(y # i) A Y Z
Relevant Information Predicate ...

1. ... after executing trace prefix ... implied by TF prefix

What Predicate is needed ?

Trace
1: x = ctr
2. ctr = ctr + 1
3: y = ctr .
4: assume(x = i-1)
oS!

assune(y # 1)

Relevant Information

1. ... after executing trace prefix

2. ... has present values of variables

Trace Formula (TF)

x, = ctr,

A ctr, = ctryt 1
A = ctr
Y 1

Predicate ...
... implied by TF prefix

... on common variables

What Predicate is needed ?

Trace
1: x = ctr
2. ctr =ctr + 1
3.y = ctr oo
4: assume(x = i-1)
S:

assune(y # 1)

Relevant Information

1. ... after executing trace prefix
2. ... has present values of variables

3. ... makes trace suffix infeasible

Trace Formula (TF)
x, = ctr,

A ctr, = ctryt 1
/

Predicate ...
... implied by TF prefix
... ON common variables

... & TF suffix is unsatisfiable

Interpolant = Predicate !

Trace Trace Formula
1: x = ctr X, = ctr
! 0 Predicate at 4:
2. ctr = ctr + 1 AN ctr, = ctr,* 1 l_lJ_ y= x+1
3 y=etr oo A Yy = cetry . Interpolate » (P
4. assune(x =1-1) A X, = ip- 1 l.|J+ A
A |
5: assume(y # i) Ay, i,
Craig Interpolant Predicate ...

[Craig 57] .. implied by TF prefix

Computable from
Proof of Unsat

... ONn common variables

... & TF suffix is unsatisfiable

Another interpretation ...

Trace Formula

[_
Xy = cth Predicate at 4:
After ~
exec A ctr, = ctrov 1 LlJ_ y= Xx+1
() prefi _
_______________________ A Y= ctry _______[interpolate ()
Can _
exec A X = - l.|J+ y,=x, +1
suffix Ay, Z i

Unsat = Empty Intersection = Trace Infeasible

Interpolant @ =

Overapproximation of states after prefix
that cannot execute suffix

Main Questions

Q. How to find good predicates ?
Where to track each predicate?

Q: How to compute interpolants?
And do they always exist?)

Another Proof of Unsatisfiability

x (-1) x 1
X;=Cctryg Xx;=1)-1 X;-Ctry=0 X;=lp+1=0 1
X
ctryp = Ip-1 ctr;= ctry+1 ctro—ip+1=0 ctr;- ctry-1=0 1
ctr; =i, y;=ctr; ctr;—ip =0 y;=ctr;=0

Vi=ly yiZi

7

Proof of Unsatisfiability

x 1

y,—/0:0 y]_/'07-‘0

0z0

Rewritten Proof

Interpolant from Rewritten Proof ?

x (-1 x 1
_ Vs CD .
X1 — Ctro Xl—CtTo:O X]_/0+l:0
2 all

N ctr, = ctr, + 1 Ctro=ig+1=0 ctry= ctry=1=0 ——

/\ y1 j— Ctr1t Ct/‘;—/ozo y,—Ctr,:O 1
""""""""" Interpolate>)) x

/‘ X1 - ’0' 1 y,—IO:O y]—/07-‘0

A v, Z iO 0Z0

Trace Formula Rewritten Proof

Interpolant from Rewritten Proof ?

x; = ctry x;-ctry=0 | x (-1)

A ctry = ctry + 1 ctr;- ctry-1=0 | X1

~ctr;=0 x 1
Ay, = ctr, V4 7
—————————] — =~ =~~~ "]Interpolate

ANy, Z

y yaxpei =0

Trace Formula Interpolant !

Building Predicate Maps

Predicate Map
Trace Trace Formula 2: x=ctr

1: X = ctr X, = ctr, l'lJ >
-- Interpolate » X; = ctr,
2. ctr =ctr +1 A ctr, = ctryt 1 l.|J+

3: y =ctr Ay, = ctr,

4: assune(x =i-1) X, = ip- 1

5. assunme(y # 1) Ay E

«Cut + Interpolate at each point
«Pred. Map: pc; [1 Interpolant from cut i

Building Predicate Maps

Predicate Map

Trace Trace Formula 2: x =ctr
3: x= ctr-1

X = ctr x, = ctr,

1
2. ctr =ctr +1 A ctr, = ctryt 1 l'lJ
—— Interpolate

: x,=ctr,-1

3.y = ctr /) y1zctr1 L|J+
4: assune(x =i-1) X, = ip- 1
5. assunme(y # 1) Ay E

«Cut + Interpolate at each point
«Pred. Map: pc; [1 Interpolant from cut i

Building Predicate Maps

Predicate Map

Trace Trace Formula 2: x =ctr
3: x=ctr -1
1: x = ctr x, = ctr, 4:y=x+1
2. ctr =ctr +1 A ctr, = ctryt+ 1
3: y =ctr Ay, = ctr, LlJ
----------------- —--—-------------------------Interpolate
4. assunme(x =i-1) A X, = i,- 1 l.|J+ y,= X, +1
5. assunme(y # 1) Ay E

«Cut + Interpolate at each point
«Pred. Map: pc; [1 Interpolant from cut i

Building Predicate Maps

Trace Trace Formula
1l: X = ctr x, = ctr,
2. ctr = ctr + 1 Y ctr, = ctry+ 1
3. y = ctr Ay, = ctr,
4. assune(x =1i1-1) A X, = ig- 1

5. assunme(y # 1) Ay E

«Cut + Interpolate at each point
«Pred. Map: pc; [1 Interpolant from cut i

Predicate Map
2: x = ctr

3: x=ctr -1
4: y=x+ 1
5:y=i

l.|J+

Interpolat>
Y= 1

Local Predicate Use

Use predicates needed at location :
Predicate Map

. . 2: x = ctr

e #Preds. grows with program size 3: x=ctr- 1
. 4: y=x+ 1
e #Preds per location small 5:y =i

<XP
0
<

D

<P
D

XL

N Verifigatiot

Local Predicate use Global Predicate use

)

gales ...

Ex: 2n states Ex: 2" states

Question: When Do Interpolants Exist?

e Craig’s Theorem guarantees existence for

e But we are interpreting formulas over
theories (arithmetic, theories of data
structures)

The Good News

e Interpolants always exist for recursively
enumerable theories

- The proof is a simple application of compactness

e S0: interpolants exist for Presburger arithmetic,
sets with cardinality constraints, theory of lists,
(quantifier-free) theory of arrays, multisets, ...

The Bad News

e “The proof is a simple application of
compactness”

- May be algorithmically inefficient

- Daunting engineering task to construct
interpolating decision procedure for each
individual theory

An Alternate Path: Reduction

« Want to compile formulas in a new theory to formulas in
an old theory such that interpolation in the old theory
imply interpolation in the new theory

« T reduces to R: can compile formulas in theory T to
formulas in theory R

- And use decision procedures for R
to answer decision questions for T

e Technically: Given theories T and R, with RC T, a

reduction is a computable map p from T formulas to R
formulas such that for any T-formula ©:

¢@and (o) are T-equivalent
¢ is T-satisfiable iff p(p) is R-satisfiable

Example: Theory of Sets

Theory of sets reduces to theory of equality with
uninterpreted functions

X =Y Ve.eex& ecy

X= vV e.ellX

x=U VYV e.ec X

x={e} ecxAVvVe.eex=e=¢€

X=yU z Veecxsecyveez
X=yN z VeecxsecyANeez

Example: Theory of Multisets

Theory of multisets reduces to the combination theory of
equality with uninterpreted functions and linear
arithmetic

X=Y vV e. count(x,e) = count(y,e)
x=() V e.count(x,e) =0
x=[(e,n)] count(x,e)=max(0,n)
AV e’.e’#£ e = count(x,e’)=0
X=yW Z YV e.count(x,e)= count(y,e)+count(z,e)
X=yU z YV e. count(x,e) = max(count(y,e), count(z,e))

X=yN z YV e. count(x,e) = min(count(y,e), count(z,e))

Reduction and Interpolation

W-and W in Theory T

\ Reduction from T to R

@ and ®* in Theory R

\ Interpolate in R

Interpolant o in
Theory Raswellas T

Eliminate quantifiers in T or R

Quantifier-free
interpolant

[KapurM.ZarbaO6]

Reduction Theorem

e Interpolants for the theory of arrays,
sets, and multisets can be computed by
reduction to the combination theory of
linear arithmetic and equality with
uninterpreted functions

- We already have interpolating decision
procedures for this latter theory

Lazy Abstraction

C Program —>{ —»| Abstract

Property ——

Refine

Yes

No
—— s Trace

Problem: #Preds grows w/ Program Size
Solution: Localize pred. use, find where preds. needed

Refine Trace

Ctrex.
Trace

Feas I:> Thm Pvr

Formula

|:>P

roof of
Unsat

Pred. Map
PC (1 Preds.

Interpolate

So far ...

Lazy Abstraction

e Predicates:
- Abstract infinite program states
e Counterexample-guided Refinement:

- Find predicates tailored to prog, property
1. Abstraction : Expensive

2. Refinement : Find predicates, use locations
of unsat of TF +

So how well does all this work?

Quite well, if the program and
property are control-dominated

Not so well when data is involved...

Propertya3:

Localizing i
Program | Lines*| Previous Time Predicates
Time(mins) (mins)| Total Average
kbfiltrm™ 12k 1 3 72 6.5
floppy ™ 17k 7/ 25 240 7.7
di skpr f 14Kk 5 13 140 10
cdaudi o 18Kk 20 23 256 7.8
parport ™ 61k DNF 74 753 8.1
parcl ss™ 138k DNF 77 382 7.2

* Pre-processed

Refinement Failure: Unrolling Loops

e counterexample:
x=0; y=50; x>=100; y==100
refinement: x==
e counterexample:
x=0; y=50; x<100; x=x+1; x>=100; y==100
refinement: x==
e counterexample:
x=0; y=50; x<100; x=x+1; x<100; x=x+1;
x>=100; y==100
refinement: x==

Refinement Failure: Unfolding Arrays

e counterexample:
i=0; i<n; a[i]=i; i++; i>=n;
j=0; j<n; a[j]!=]
refinement: a[0]==0

e counterexample:
i=0; i<n; a[i]=i; i++; i<n; a[i]=1; i++; i>=n;
J=0; j<n; a[j]==j; j++; j<n; a[j]!=]
refinement: a[1]==1

What went Wrong?

e Consider all unrolled counterexamples at once
- Convergence of abstraction discovery

e Inspect families of counterexamples of
unbounded length

- Justification for unbounded universal
quantification

e Looking at one counterexample path at a time
is too weak [JhalaMcMillan05,JhalaMcMillan06]

[BeyerHenzingerM.Rybalchenko07]

Path Programs

e Treat counterexamples as programs
- “Close” the loops

(A
stmtl

stmt2
—y | G
stmt3

4 stmt4

4 1 D

(path program,
gegtains loops,

Meaning of Path Programs

Path program * (Possibly unbounded) sets of
counterexamples:

—
.

e
e e

e Unbounded counterexamples

e Property-determined fragment of original program
- Can be analyzed independently to find good abstractions

Path Invariants

e Invariant for path programs ~ path invariant

o Abstraction refinement using path invariants

- Elimination of all counterexamples within path
program

- Justification for unbounded quantification

Invariant Generation

e Given a path program, with a designated
error location, find an invariant that
demonstrates error is not reachable

- Can scale: Reduced obligation to program
fragment

- Outer model checking loop integrates path
invariants into program invariant

e Can use any technique
e We use constraint-based invariant generation

[SankaranarayananSipmaManna04,BeyerHenzingerM.Rybalchenko07]

Lazy Abstraction

C Program —>{ —»| Abstract

Property ——

Refine

Yes

No
—— s Trace

Problem: #Preds grows w/ Program Size
Solution: Localize pred. use, find where preds. needed

Refine Trace

Ctrex.
Trace

Feas I:> Thm Pvr

Formula

|:>P

roof of
Unsat

Pred. Map
PC (1 Preds.

Interpolate

So far ...

Lazy Abstraction

e Predicates:
- Abstract infinite program states
e Counterexample-guided Refinement:

- Find predicates tailored to prog, property
1. Abstraction : Expensive

2. Refinement : Find predicates, use locations
of unsat of TF +

Questions?

Lecture 3:
Technical Extensions
and
Termination

Rupak Majumdar

Recap ...

Lazy Abstraction

e Predicates:
- Abstract infinite program states
e Counterexample-guided Refinement:

- Find predicates tailored to prog, property
1. Abstraction : Expensive

2. Refinement : Find predicates, use locations
of unsat of TF +

Technical Details

Q. How to analyze recursive procedures ?

An example

mai N4
L]
1: if (flag){ | nc(int a, int sign){
2: Yy =inc(x,flag); 1:if (sign){
3: if (y<=x) ERROR; 2. 1v=atl;
} else { } else {
4. y=inc(z,flag); 3: rv=a-l;
5: if (y>=2) ERROR; }
} 4: return rv;
N }
return;

}

Inline Calls in Reach Tree

mai n(){
]
|f (ﬂag){

= Inc(z,flag);

5: if (y>=2) ERROR;
}
[

return;

I nc(int a, int sign){

1:if (sign){
2. rv=atl,

3. IVv=a-l1,
1
8| 4: return rv;

}

Initial

1

‘e

Inline Calls in Reach Tree

Problem

Repeated analysis for “inc”
Exploding call contexts

int x; //global
f10{

f 20){
f 304

Fn({

1: x ++;

return;

}

2" nodes in Reach Tree

Inline Calls in Reach Tree

Problem
Repeated analysis for “inc”
Exploding call contexts

Cyclic call graph (Recursion)
Infinite Tree!

: Procedure Summaries

Summaries: Input/Output behavior
e Plug summaries in at each callsite

... instead of inlining entire procedure
[Sharir-Pnueli 81, Reps-Horwitz-Sagiv 95]

e Summary =set of (F (1 F’)
- F : Precondition formula describing input state
- F’ : Postcondition formula describing output state

: Procedure Summaries

I nc(int a, int sign){

2 o e (—sign=00 rv > a)
3: Evelsg-g; ® (Sign - 0 Ll rv < a)

}

4: return rv;

}

Summary = set of (F 1 F’)
- F : Precondition formula describing input state
- F’ : Postcondition formula describing output state

Q. How to compute, use summaries ?

Lazy Abstraction + Procedure Summaries

Yes

C Program —>| —»| Abstract

Refine

N
Property —— ° »Trace

Q. How to compute, use summaries ?

Abstraction with Summaries

mai n(){ main
0
1: if (flag){

1
2.y = Inc(x,flag); /)
3T M (y<=X) FRROR, [flag!=0]
2

} else { _ _
4: y=inc(zflag); flag=0

5: if (y>=2) ERROR; a.=x
.Y.. sign=flag
. = 5ign=0
return;

}

I nc(int a, int sign){
1: if (sign){
2: rv=atl;
} else {
3: rv=a-l;

}

4: return rv,

}
Predicates: flag=0, y>x, y<z

sign=0 , rv>a , rv<a

Abstraction with Summaries

mai n(){
O

- if (flag){

!\)H

y = Inc(x,flag);

3T 1T (Y<=X) ERROR,

} else { _ _
4: y=inc(z,flag); flag=0

5: if (y>=2) ERROR;

[~ sign=0t

return,;

}

i nc(int a, int sign){

| 1:if (sign){
2: rv=a+l;

yersey
3: rv=a-l;
}

4: return rv,

}
Predicates: flag=0, y>x, y<z

sign=0, rv>a , rv<a

main
1 - sign=0] 1

/ [sign!=0] /
_2 —,Sign 0] 2
a=x

: ian= rv=a+1
ey sign=flag <4
rv>a | 4

Summary: (-sign=0 [

L1} [e

rv>a),

Summary Successor

i N0y main 1nc
0 .
1: if (flag){ L 7 sign=0] 1
2: y =inc(x,flag); /
3T 1T (y<=X) ERROR ¥ eeeeeeeeen,
} else { - flag=0 | 2 a=x
4: y=inc(z flag); sign=flag | 2
5. if (y>=2) ERROR: \L : :
assume rv>a§ !
0 y>x| 3 | :y=rv 3
eturn: T R rv>a | 4

}

I nc(int a, int sign){
1: if (sign){
2: rv=atl;
} else {
3: rv=a-l;

}

4: return rv,

}

Predicates: flag=0, y>x, y<z Summary: (-sign=0 [1 rv>a),
sign=0, rv>a , rv<a

Abstraction with Summaries

main inc

mai n(){
]
1: if (flag){
2.y =inc(x,flag);
3: if (y<=x ERROR:

4: vy =Inc(zflag);
5: if (y>=2) ERROR;

]
return,;
} a=z

- sign=flag
I nc(int a, int sign){ L 4

1: if (sign){
2. rv=atl:
} else {
3. v=al;

}

4: return rv;

}

Predicates: flag=0, y>x, y<z Summary: (-sign=0 [1 rv>a),
sign=0, rv>a , rv<a

rv>a | 4

Abstraction with Summaries

i 0 main inc

D ° o
- if (flag){ 1 ~ sign=0| 1 1 | sign=0

y = inc(x,flag);
i (y<=x) ERROR; A / /‘ \\

1 else { - flag=0 2 4 flag=0

SN

4: vy =inc(zflag);

5: if (y>=2) ERROR; \L

(] y>x| 3 i i sign=0
return; “"‘ ATTTIIIIL
} R a=z

- sign=flag
I nc(int a, int sign){ L 4

1: if (sign){

2. rv=atl;
} else {

3: rv=a-l;

1

rv>a | 4 4| rv<a

4: return rv,

i

Predicates: flag=0, y>x, y<z Summary: (-sign=0 [1 rv>a),
sign=0, rv>a , rv<a (sign=0 [rv<a)

Summary Successor

mai n(){

H

- if (flag){

.y =inc(x,flag);
if (y<=x) ERROR;
} else {

| 4: y=inc(zflag);
5. T (y>=z) ERROR

SN

[
return,;

}

I nc(int a, int sign){
1: if (sign){
2: rv=atl;
} else {
3: rv=a-l;
}

4: return rv,

}

main inc

sign=0

rv>a | 4 4

rv<a

sign=flag

: assume rv<ai

Predicates: flag=0, y>x, y<z
sign=0, rv>a , rv<a

Summary: (-sign=0 [1 rv>a),
(sign=0 0O rv<a)

Abstraction with Summaries

e main inc

D ° o
- if (flag){ 1 ~ sign=0| 1 1 | sign=0

y = inc(x,flag);
i (y<=x) ERROR; A / /‘ \\

}else { - flag= -
4: y=inc(z,flag); flag=0] 2 4 | flag=0

5: |}f (y>=2) ERROR; \L \L

SN

] v>x| 3 3| v<z
return; - rv>a | 4 4 | rv<a

}

I nc(int a, int sign){ - L 4 v -

1: if (sign){

2. rv=atl;
} else {

3: rv=a-l;

}

4: return rv,

}

Predicates: flag=0, y>x, y<z Summary: (-sign=0 [1 rv>a),
sign=0, rv>a , rv<a (sign=0 [rv<a)

Another Call ...
i nO{ main M inc

D ° o
- if (flag){ 1 ~ sign=0| 1 1 | sign=0

y = inc(x,flag);
i (y<=x) ERROR; A / /‘ \\

} else { - - =
4: 'y = inc(z,flag); flag=0 | 2 4 | flag=0 2 3112 3

5: i}f(y>=z) ERROR i ¢

6: yl=inc(z1,1); y>x| 3 3| vy<z
(11 (yl<=z1) ERROR;
return; R A~

SN

rv>a | 4 4| rv<a

I nc(int a, int sign){
1: if (sign){ é 6

2: rv=atl,; :
} else { H

3. rv=a-l; . """" a=z1
} P osign=1
4: return rv,

Predicates: flag=0 ,y>x,y<z, y1>z1 Summary: (-sign=0 [1 rv=>a),
sign=0, rv>a , rv<a (sign=0 0 rv<a)

Another Call ...

mai n(){ main
p 1
1: if (flag){
2.y =inc(x,flag); A
3: if (y<=x) ERROR
} else { ~ flae=0 lag=0
4: y = inc(z,flag); flag 2 4 | flag
5. if (y>=2) ERROR \L \L
6: vl =inc(z1,1); v>x| 3 3| v=<z
7:if (yl<=z1) ERROR;
return; R A~
i nc(int a, int sign){ v :
1: if (sign){ 6 6
2: rV:a+1; ----; ---------------
} else { \ 2 a=z1
3: rv=al; yisz1| 7] : sign=1
.) . : assume rv>a:
4: return rv; _l_ : :

Predicates: flag=0 ,y>x,y<z, y1>z1

sign=0, rv>a , rv<a

Summary: (- sign=0 [

inc

sign=0

rv>a | 4 4

rv<a

SAFE

rv>a),
(sign=0 0 rv<a)

Technical Details

Q. How to perform interpolation in the
presence of recursive calls?

Traces with Procedure Calls

Trace Trace Formula

Cy: X4 = 3
: assunme (x,>0)

pea: g ®3TT(Kqf Xy)
PC4 P¥ =YY= vV,
pes: Y3 FpEe(Ys) = fo(y,)
pCG: 22 :md-é].i 22 = Zl+1 (“i
pc;i z3 H Pz z; = 2%z,
pcg: |I et updy: 2'38'[urn Zg
PCot Egetmmury@ y3
D Xg = Xl
foxs %5 T3(Kl Xy)
peass ue e by, <5)
pcl eliugtnumg w,

: assune x,>5 ‘
. assune(&x7xx122)

Interprocedural Analysis

Trace Trace Formula

Find predicate
needed at point i

Require at each point i:
Scoped predicates
: Variables visible at i

r |_ NO: Caller’s local variables

Problems with Cutting

Trace Trace Formula

Caller variables common to (- and ¢*
e Unsuitable interpolant: not well-scoped

Scoped Cuts

Trace Trace Formula
|_ 0 Call begins
< - <-j

Scoped Cuts

Trace Trace Formula

|_ | Call begins
v T

— " | I F—
<]

| B

Predicate at pc, = Interpolant from cut i

Common Variables

Trace Trace Formula

I Eol'mabn Var|ab|es

l_l_j"' T ED' Formals

<-j L===i Current locals

Well-scoped

— -

Predicate at pc; = Interpolant from i-cut

Lazy Abstraction: Summary

C Program —

Property ——¢

» Abstract

Path
Slice

Refine

n

Yes
—

No
——>Trace

Lazy Abstraction: Summary

e Predicates:
- Abstract infinite program states

e Counterexample-guided Refinement:
- Find predicates tailored to prog, property

1. Abstraction : Expensive

2. Refinement : Find predicates, use locations
irrelevant details
of unsat of TF +

Extension

Merging CEGAR and Abstract Domains

Comparing dataflow and CEGAR

Dataflow

CEGAR with
predicate
abstraction

Precision

- Propagates facts over
infeasible branches

+ Analysis considers only
feasible branches

- Dataflow facts lost at
join points

+ Path sensitive analysis
considers each path
iIndependently

Comparing dataflow and CEGAR

Dataflow CEGAR with
predicate
abstraction

Fact Eager Analysis Lazy Analysis
discovery + Quickly computes - Analysis expensive and
relevant facts predicates not always
found
- Not adaptive, may + Discovers relevant facts
become overwhelmed through counterexamples
with irrelevant facts
Domain- + Easily adapted, flexible |- Predicates not
specific representation of facts convenient for domain-
analyses specific analyses
Can we conbi ne the best of both approaches?

Predicated lattices

e For each program location, track a set of first-
order predicates over program variables
e Rather than track dataflow facts directly, track a

predicated lattice:

- New dataflow facts:
map: predicates — original dataflow facts

- Only join facts associated with the same set of predicates
- Default predicate: true

e Instance of reduced cardinal powers of lattices
[Cousot? 79]

Example

1: out = fopen(...);

trub out -O
2. fprintf(out,) ;

3: fclose(out); 65659

trub out -C

Example

4.

flag = {0, 1};

true

i f (flag)

out = fopen(...);

true

el se

true

Facts | ost due to join

true

it (flag)

Add predicates:

flag!=0, flag==0

true

fprintf(out,

)

1111

!

out -C

out -0

out -C

out »T

out -»T

Repeat with new predicates

4: flag = {0, 1};

true out -C
5. if (flag) —

6: out = fopen(...);
fl ag!“ out -O

7. else
fl agrﬂ out -»C
: Both facts kept at f{phag! “ out -0
| fl agrﬂ out -»C
8. 1f (flag)
. p , \ fl | 3 —
9: fprintf(Cout, . 7); ag“ out ~O

-

Symbolic execution lattice

e Tracks values of program variables and
heap

- Facts at each program point represented as
map from names to values

- Symbolic execution used to compute new
facts after each statement

- A “static” version of the DART algorithm

mt—x—70-
int y = 1;
Nt *z;
x-0,y -1,z -T

if(*

z = &, X-0,y -1,z -X
}
el se {
\ z = &, X-0,y -1,z -y

: x>0,y -1,z ->{Xy}=>T
*Z = b

x>T,y -T,z ->{Xy}=>5

assert(*z == 5); @

How to extend this to liveness properties?

Specifically: Reasoning about termination

When does a Program Terminate?

e Iff its reachable transition relation is
well-founded

e Reachable transition relation =
TR(x,x’) n Reach(x)xReach(x’) =

Restriction of the transition relation to
the set of reachable states

Well-Founded Relation

e A binary relation > is well-founded if
there is no infinite descending sequence

e No sO, s1, s2,... such that
sO > s1 >s2 > ...

Example: > on natural numbers
But not > on integers

ldea: Rank Functions

e Fix a set X, and > a wf relation on X

e Suppose | can map each reachable state s
of the transition graph to a rank r(s)LX
s.t.

s — s’ implies r(s) > r(s’)

Then the system must terminate
The converse is also true

Example

Input X, n
While(x <= n) x++;

Terminates, using (roughly) the rank
function n-x

Does it, really?

Disjunctive Rank Functions

e In many cases, finding a single wf relation
can be difficult

e Suppose | can find wf relations T1,...,Tk
such that RTR O T1 O ... O Tk

e Does the program terminate?
- Not in general (Why?)

Disjunctive Well-foundedness

If T1...Tk are wf relations and
R*OT10..0Tk
Then: R is well-founded

Such R is called disjunctively well-founded

Disjunctive Well-foundedness

P terminates if TR n ReachxReach is
disjunctively well-founded

Useful: Can consider individual portions of
the program independent of other parts

Incremental Termination

T = emptyset
While TR+ not included in T:
invariant: T is a finite union of wf relations
find abstract counterexample to wf
if concretely feasible
does not terminate
otherwise find wf relation T’
T=TOT

Counterexample to Termination

e Lasso = Stem + Cycle
- Represents infinite execution
Stem Cycle Cycle ...

Needs rank-finding technique to find a wf
relation showing lasso cannot be
executed arbitrarily (Heuristics exist)

Reduction to Safety

e How to check if R* O T for the reachable
transition relation?

e Can reduce check to safety

e Run program parallel with a monitor for T
- runs in parallel with the program
- inspects pairs of states wrt. T
- goes to error if observes (s, s’) U T
- Use non-determinism to perform check

Reduction to Safety: Idea

selected := |
phase := SELECT

while True {
switch (phase) {

SELECT: if (nondet()) {
selected := current

phase := CHECK

h
CHECK: if ((selected, current) O T) { ERROR: }
}
}

Terminator

Input: program written in C

Language features supported

- nested loops, gotos

- aliasing

- (mutually) recursive function calls

Output:

- termination proof: transition invariant
- counterexample: lasso = stem + cycle

Scalability: (on drivers from WinDDK)

Questions?

Lecture 4:
Some Techniques for Infinite State

Rupak Majumdar

Topics

1. Safety and liveness verification for
asynchronous programs

1. Case splitting and symmetry reduction
for parameterized programs

Topic 1

Safety and liveness verification for
asynchronous programs

Asynchronous Programs

Requests Responses

Requests queued and
executed asynchronously
by cooperative scheduler

Useful Model: Languages and Libraries:

« Distributed Systems e LibAsync, L}'bEvent,
« Web Servers NesC and TinyOS

« Embedded Systems * Go
o AJAX

Asynchronous Programs

gl obal bit b = 0;

mai n() { : : : :
E— e main ends in dispatch location
) | e Calls asynchronously posted
h1(){ functions
if(b == 0)
async hl1()
async h2(); Async calls stored in task buffer
return;
} e Scheduler picks a pending task
} and runs it to completion
h2() {
b = 1;

return;

}

Asynchronous Program Execution

gl obal bit b = 0;

emai n() { : : :
Jsync hi(): « Execution starts in main
- | o Task buffer empty
hi(){
if(b == ﬁié)
async , .
’ Pending Calls
async h2();
return; h1
}
}
h2() {
b= 1. State: b=0

return;

}

Asynchronous Program Execution

gl obal bit b = 0;

in(){ : :
”:.'S.;nc . « Execution enters dispatch loop
o | o Picks pending call and executes it
h1(){ e Returns to dispatch loop on return
® if(b == 0){
async hl();
h2(); 0
asyne hz() Pending Calls
return,
} h1
} h2
h2(){
b = 1;
L State: b=0
return,

}

Asynchronous Program Execution

gl obal bit b = 0;

mai n() { : :
e Pick another pending call
async hil();
o
hl
® "tlb == 0
async hl();
h2(); .
asyne hz0) Pending Calls
return;
} h1
} h2
h1
h2
h2(){
b = 1;
L State: b=0
return;

}

Asynchronous Program Execution

gl obal bit b = 0;

mai n() { . .
e Pick some pending task
async hil();
h1(){
if(b == 0){
async hl();
h2() ; .
asyne hz0) Pending Calls
} return; h?
} h1
h2
g 20
b = 1;
L State: b = 1
return,

}

Asynchronous Program Execution

gl obal bit b = 0;

mai n() { : :
e Pick some pending task
async hil();
%}. .
® hl(){

if(b == 0){

async hl();

h2() ; .

asyne hz0) Pending Calls
} return; hz
} h1
h2() {
b = 1,
L State: b = 1
return,;

}

Asynchronous Program Execution

gl obal bit b = 0;
mai n() {

e And the program terminates
async hil();

l#’}m
h1(){

1 f(b == 0){
async hl();

h2() ; 1
async h2() Pending Calls
return;

} h2
}

Bs "0
b = 1;

return;

}

State: b=1

Observations

gl obal bit b = 0;

e (Call stack for a handler can be

. unbounded
async hl();
o
h1() { « Shared global state can change
if(b ==0){ between posting and execution
async hl();
async h2();
Ceturn e Task Buffer can be unbounded
} e Consider n runs of h1 before h2
} o Task buffer contains n h1, 1 h2
h2(){
b = 1.

return;

}

Properties:

Safety

gl obal bit b = 0;
mai n() {

async hi():

async h2();

return;

}
}

h2(){
b = 1;

return;

}

Given a Boolean asynchronous program
and a control location in a handler

Is there an execution which reaches
the control location?

We do not care about the task buffer

- Handlers cannot take decisions

based on the contents of the task
buffer

Properties: Termination

gl obal bit b = 0;

Given a Boolean asynchronous program,

mai n() { ‘ . R
S YTERRLOE Does it terminate?
o
" - o
async h1(); e main does not terminate on all runs
async h2(): « What if h1 is chosen over h2
ret ur n; forever?
}
}
h2() {
b = 1

return;

}

Fairness

gl obal bit b = O;
mai n() {

ééync hi();

async h2();

return;

}
}

h2(){
b = 1;

return;

}

An infinite execution is fair if
For every handler h that is pending

The scheduler eventually picks and
runs an instance of h

So: the run choosing h1 over h2
always is not fair

Will focus on fair runs

- Captures the intuition that
scheduling is fair

Asynchronous Program Analysis

Main Result:

Safety and Liveness decidable for asynchronous programs
[SenViswanathan06,JhalaM07,GantyMRybalchenko09,GantyM09]

This is hard because: Not finite state or context free:
- potentially unbounded stacks,
- potentially unbounded request queue

This is useful because:

- Asynchronous programs used in many correctness-critical
settings

- The style breaks up control flow, making it difficult to
reason about code

First Attempt: Does not Work

e Treat asynchronous calls as synchronous
and use interprocedural reachability

e« Why?

- Global state can change between posting a
task and executing it

First Attempt: Does not Work

Jiobal Bt b = 0. * In synchronous computation,
mai n(){ the assert holds

b = 0;
async pl(); async p2();

e In asynchronous

P ot (b==0) computation, p2 can
} execute before p1
p2() {

b = 1;

return;

}

Second Attempt

gl obal bit b = O;

Reduce to sequential analysis

mai n() {

ééync hi();

y - Add a counter for each handler

h1() { (tracks number of pending

i1(b == 0){ instances)

async hl();

async h2();

Ceturn: - An async call increments counter
\ ,

) - Dispatch loop chooses a non-zero
counter, decrements it and runs
corresponding handler

h2(){

b = 1;

return;

}

Second Attempt

gl obal bit b = O;
ch1=0, ch2=0:;
mai n() {

éhi++;

whi | e(ch1>0| | ch2>0) {
pick h s.t. ch >0
ch--;
h();

}

}
hi(){

1 f(b == 0){
chl++;
ch2++;
return;

}
}

h2(){
b = 1;

return;

}

Reduce to sequential analysis

Add a for each handler
(tracks number of pending
instances)

An async call

Dispatch loop chooses a non-zero
counter,

Sound, but decidability not obvious

- In general, analyses undecidable
for sequential programs with
counters

Technique

1. Convert an AP to one without recursion

2. Convert recursion-free AP to Petri nets

Removing the Stack

e Need to summarize the effect of handlers on the
task buffer

- Observation: Just the number of async calls matter,
not the order in which they are made

e Parikh’s Lemma: For every context free language
L, there is a regular language L’ such that:

- For every w in L, there is a permutation of w in L’ and
conversely

e 50: can replace a recursive handler with a non-
recursive one while maintaining the summary

Example

H() 1 H() 1
if (*){ while (*) {
async a(); async a();
H(); — async b();
async b() }
} }
}

This gets rid of unbounded stacks in handlers
From now on, only consider recursion-free AP

But there is a second source of unboundedness (the task buffer)

Petri Nets

Can convert an asynchronous program into
a Petri net (PN) s.t. every execution of
the async program is equivalent to an
execution of the Petri net

In particular:

- The asynchronous
Petri net is covera

- The asynchronous

program is safe iff the
ole

brogram fairly terminates

iff the Petri net has no fair infinite runs

Petri Nets 101

Set of places
Set of transitions e

Places marked with tokens®

Transition function takes
tokens from sources of
transitions to destinations

With an initial marking,
defines an infinite state
system

But with good decidability
properties

Petrification

!Code 1

Ifor h1 H‘

pending

hl

pending

Tokens:

- Control flow in each handler
- Pending handler calls

set
b:=1

gl obal bit b = O;
mai n() {

ééync hi();
}.”
h1(){

if(b == 0){
async hl();

async h2();

return;

}
}

h2(){
b = 1;

return;

}

That’s Good, Because...

Can apply algorithmic results on Petri Nets
to reason about async programs

- Many strong decidability results

Coverability Problem for PN

« Given Petri net P
- (Places, transitions, initial marking)

e Target marking m
- Places of P -> tokens

e Is there an execution of P to a marking
m’ withms=m’?
- m<m’ if m(p) < m’(p) for each place

Karp Miller Tree

(d,h1,h2,hb)
e Build a tree with (1,1,%0)b=o
markings as nodes (0,0,0,1)b=0

e Transitions as edges
(1,1,1,0)b=0

e Infinite tree (0,0,1)b=0 (1,1.0,0)b=1

e But accelerate J |
(1,150,0)b=0 (0,0,0

« Terminates by (1,0,0,1)b=0 (1,1,0,0)b=1

Dickson’s Lemma / T~

(1,1,0,00b=0 (1,0,050)b=1 (1,1,0,0)b=1

0)b=1

Safety Verification

Corollary to Coverability Graph: Safety
verification decidable

e Remove recursion using Parikh’s lemma
e Build Petri net, construct coverability tree

e Check if there is a node in the coverability tree
with a non-zero entry in the special location

e Similar proof in [SenViswanathan06] using multiset rewrite
systems

e Independent, alternate algorithm in [Jhalamo7]

Boundedness Verification

An AP is bounded if there is some N such
that the task buffer always has fewer
than N tasks

Reduce to checking boundedness of PN

- Algorithm based on coverability tree
construction

Fair Termination

Given:

- An asynchronous program with Boolean

variables

Check:

- There is no fair infinite run

Two checks:
(a)Each called handler terminates &

LTL model checking
for pushdown systems
[Walukiewicz,Steffen]

(b)There is no infinite fair execution of handlers

Hardness: PN Reachability

« Given Petri net P
- (Places, transitions, initial marking)

e Target marking m
- Places of P -> tokens

e Is there an execution of P to marking m?

o Known: Decidable, EXPSPACE-hard

e Best known algorithms: non-primitive
recursive space

From FT to PN Reachability

e Given PN and place p, construct AP such
that AP has fair infinite run iff PN reaches
a marking where p has no tokens

- Known to be equivalent to PN reachability

e Simulate a PN using an AP
- One task for each place
- One task to simulate transitions

e Post a task to guess when p has no tokens

ldea of Reduction

e Simulate a PN using an AP
- One task for each place
- One task to simulate transitions

e Post a task to guess when p has no tokens

- If task for p is scheduled after guess, then
guess was wrong, so shut down program

- Otherwise execute a simple infinite loop

Fairness ensures the guess is eventually
made and eventually falsified (if wrong)

Fair Termination is Decidable

e First part the same:
- Remove stack using Parikh’s lemma
- Construct Petri net

e Use a logic over Petri nets [Yen90] to
encode the fairness condition

- Complexity of the logic: polynomial
reduction to PN reachability

- Note: Original paper [Yen90] had a mistake

Main Result

Theorem: [GantyM.09]

Checking safety and fair termination is
decidable for asynchronous programs

Safety EXPSPACE-complete for asynchronous
automata

- Using a more careful construction

Observations

e For async programs, fair termination computable

Unlike threads [Ramalingam 00]
Known that threads and events are dual [NeedhamLauer]

So what gives?
We restrict global state to be finite!
A thread can encode unbounded information in its stack

Topic 2

Parameterized Verification of Software

A Simple Example
- Global int ctr = 0;

- Arbitrary number of threads

- Each thread executes:
ctr = ctr + 1;
assert (ctr > 0)
ctr = ctr - 1;

Show assertion holds

Parameterized Verification

e Intuitively, the assertion holds

e For any fixed number N of threads, can
prove the assertion by finite state model
checking

- Ctr bounded by N

« How can we prove the system for any
number of threads?

ldea: Temporal Case Splitting

e To show the property for all threads,
- fix an arbitrary thread, and
- prove the property for that thread

o Abstraction: Consider thread tid, and

environment “not tid” for all threads whose id
is not tid

e In general, has Skolem variables and abstract
system into Skolems and others

Conclusion

Verification by Theorem Proving

Exanple (){ .
1: do{ 1. Loop Invariants
| ock() ; .
ol = (n)e\’/v; 2. Logical formula
q = g->next; o g
2. if (q 1= NULL){ 3. Check Validity
3: g->data = new;
unl ock() ;
new ++;
} Invariant:
4: } while(new != old); lock /\ new = old

5: unlock ();
return;
}

V

— lock N new Zold

Verification by Theorem Proving

Exampl e () { .
1: do{ 1. Loop Invariants
| ock() ; .
of()f: %W; 2. Logical formula
g = g->hext; e
2: i (q 1= NULL) 3. Check Validity
3: g->data = new;
unl ock();
new ++;
}
4:} while(new != old); - Loop Invariants
5: unlock (); - Multithreaded Programs
\ return; + Behaviors encoded in logic

+ Decision Procedures
Precise [ESC]

Verification by Program Analysis

Exanpl e (){

1: dof 1. Dataflow Facts
Lfﬂ%w’ ° 2. Constraint System
qg=g->next; @ :

2. if (q 1= NULL){ ~ 3. Solve constraints

3: g->data = new; ®

unl ock();
new ++;

4: }Whné(new 1= old): - Imprecision due to fixed facts

> :Jer;'uronc_k 0 ® + Abstraction

} + Type/Flow Analyses

Scalable [CQUAL, ESP, MC]

Verification by Model Checking

Exanpl e () { o
1: dof 1. (Finite State) Program
| ock(); oy
of()f: %W; 2. State Transition Graph
q = g->next; .o
2 if (q 1= NULL){ 3. Reachability
3: g->data = new;
unl ock();
new ++;
} - Pgm — Finite state model
4: } while(new != old);) .
=" il @ek () State explosion
return; + State Exploration
J + Counterexamples

Precise [SPIN, SMV, Bandera,JPF]

Combining Strengths

Theorem Proving Program Analysis
: ' i - Imprecise
loop invariants ; j 1 azy t 2 p |
+ Behaviors encoded in logic , + Abstraction
Refine Abstraction Shrink state space

+ Theorem provers
Computing Successors,Refine I |

Model Checking

- Finite-state model, state explosion
+ State Space Exploration

Path Sensitive Analysis

+ Counterexamples

Finding Relevant Facts

Toward More Reliable Systems

e Tools and theory are equally important

- Tools reinforce process change, amplify
programmer productivity, ensure quality

- Theoretical progress drives better tools
- Applications motivate good theory

e System development is too complex to be
reduced to a single problem or solution
- Model checking is not the only tool
- Just tools will not make software perfect
- How can developers and verifiers interact better?

Conclusions

e Software systems need to be more reliable
- Enormous resources spent in stabilizing software

e Long way to go
- Inadequate languages, inaccurate tools
- Make system developers and system verifiers interact

e Tools, by themselves, are not enough

- Tools and analysis is one view, but social aspects are
also important

Thank You!

Acknowledgments:

Tom Ball, Dirk Beyer, Michael Emmi, Jeff
Fischer, Pierre Ganty, Tom Henzinger,
Ranjit Jhala, Shaz Qadeer, Sriram

Rajamani, Andrey Rybalchenko, and many
others ...

