
Program Analysis
Chris Hankin(clh)

Data Flow

Analysis

Control Flow

Analysis

Abstract

Interpretation

Type and Effect

Systems

Correctness

Efficiency

Program Analysis – p.1/23

Overview

Introduction

Data Flow Analysis

Control Flow Analysis

Algorithms

Program Analysis – p.2/23

Introduction

Program analysis is an automatic technique for finding out
properties of programs without having to run them.

Optimising compilers

Automated program verification

Security

Program Analysis – p.3/23

Some techniques:

Data Flow Analysis

Control Flow Analysis

Types and Effects Systems

Abstract Interpretation

Book: Principles of Program Analysis by F. Nielson, H.R.

Nielson and C. Hankin, Springer Verlag, 1999.

Program Analysis – p.4/23

A first example:

�

input � � � ;

� �� � � � �

;

while

� � 	
 � �
do

� �� � � � � �

;

� �� � ���
 � �

;
�

output � � �;

Program Analysis – p.5/23

We can statically determine that the value of m at statement
6 will be even for any input n. A program analysis can
determine this by propagating parity information forwards
from the start of the program.

We can assign one of three properties to each variable:

even – the value is known to be even

odd – the value is known to be odd

unknown – the parity of the value is unknown

Program Analysis – p.6/23

(Take care of loop)

1: m: unknown n: unknown

2: m: unknown n: unknown

3: m: even n: unknown

4: m: even n: unknown

5: m: even n: unknown

6: m: even n: unknown

Program Analysis – p.7/23

The program computes 2 times the factorial of n for any
positive value of n. Replacing statement 2 by:

� �� �
 � �

;

gives a program that computes factorials but then the
program analysis is unable to tell us anything about the
parity of m at statement 6.

This is correct because m could be even or odd. However,

even if we fix the input to be positive and even, by some

suitable conditional assignment, the program analysis will

still not accurately predict the evenness of m at statement 6.

Program Analysis – p.8/23

This loss of accuracy is a common feature of program
analyses: many properties that we are interested in are
essentially undecidable and therefore we cannot hope to
detect them accurately. We have to ensure that the answers
from program analysis are at least safe.

yes means definitely yes, and

no means possibly no.

In the modified factorial program, it is safe to say that the

parity of m is unknown at 6 – it would not be safe to say that

m is even.

Program Analysis – p.9/23

We identify three facets of program analysis:

specification,

efficient implementations, and

correctness

Program Analysis – p.10/23

The starting point for data flow analysis is some
representation of the control flow graph of the programs.

The Data Flow Analysis is usually specified as a set of
equations which associate analysis information with
program points. Program points correspond to nodes in
the graph.

Analysis information may be propagated forwards
through the program, as in the parity analysis, or
backwards.

When the control flow graph is not explicitly given, we
need a preliminary Control Flow Analysis.

Program Analysis – p.11/23

Reaching Definitions determines which set of definitions
(assignments) are current when control reaches a certain
program point. The analysis can be specified by equations
of the following form:

�� �� ���� ��� � � � if � is initial

� !" � � # $ � % �� �& ' � ��� (�

otherwise

�� �& ' � �� � � � �� �� � �� ��� �) *+ , , ��� � � - ./ 0 �� �

Program Analysis – p.12/23

Each program point kills some definitions (those which
define the same variable as the program point) and
generates new definitions.

A suitable representation for properties is sets of pairs
where each pair is a variable and a program point –��132 � �

. The initial value in this case is:

� � 4 ��132 5 �6 1 is a variable in the program

7

Reaching Definitions is a forwards analysis.

Program Analysis – p.13/23

�� �� � �� �
 � � 4 � �2 5 �2 � �2 5 � 7

�� �� � �� � 8 � � �� �& ' � � � � - �� �& ' � � 9 �

�� �� � �� �� �& ' �

 4 � �2 5 �2 � �2 5 � 7 4 � �2 5 �2 � �2
 � 7

� 4 � �2 5 �2 � �2
 � 7 4 � �2 � �2 � �2
 � 7

8 4 � �2 � �2 � �2 : �2 � �2
 �2 � �2 9 � 7 4 � �2 � �2 � �2 : �2 � �2
 �2 � �2 9 � 7

: 4 � �2 � �2 � �2 : �2 � �2
 �2 � �2 9 � 7 4 � �2 : �2 � �2
 �2 � �2 9 � 7

9 4 � �2 : �2 � �2
 �2 � �2 9 � 7 4 � �2 : �2 � �2 9 � 7

; 4 � �2 � �2 � �2 : �2 � �2
 �2 � �2 9 � 7 4 � �2 � �2 � �2 : �2 � �2
 �2 � �2 9 � 7

Program Analysis – p.14/23

INPUT: A control flow graph

OUTPUT: RD

METHOD: Step 1: Initialisation
for all program points, p do

RD(p) :=

<

;

RD(1) := �;

Program Analysis – p.15/23

Step 2: Iteration
change := true;

while change do

change := false;

for all program points, p do

new := = !" � � # $ = % f(RD,p’)

if RD(p)

> � new then

change := true;

RD(p) := new;

USING: f(RD,p) = (RD(p)

)

kill(p))

-

gen(p);

Program Analysis – p.16/23

Some example data flow analyses:

1. Reaching Definitions – Constant Folding

2. Available Expressions – Avoiding recomputation

3. Very Busy Expressions – Hoisting

4. Live Variables – Dead Code Elimination

5. Information Flow – No Read-up, No Write-down

Program Analysis – p.17/23

To illustrate the ideas we shall show how Reaching
Definitions can be used to perform Constant Folding. There
are two ingredients in this:

One is to replace the use of a variable in some
expression by a constant if it is known that the value of
the variable will always be that constant.

The other is to simplify an expression by partially
evaluating it: subexpressions that contain no variables
can be evaluated.

Program Analysis – p.18/23

RD

? �1 � � @ � A B �1 � � @ ��CD E � � � A

if

C F

FV

� @ � G � C2 5 �H F IJ �� ���� �K � G

L ��M2 K (� F IJ �� ���� �K �� ��M � C N �PO O O � A
is

�C � � � � A �

RD

? �1 � � @ � A B �1 � � � � A

if FV

� @ � � < G @H F QSR T G @ evaluates to �

RD

? U � B U (�

RD

? U � V U � B U (� V U �

Program Analysis – p.19/23

RD

? U � B U (�

RD

? U � V U � B U � V U (�

RD

? U � B U (�
RD

?W X �Y � AZ [�\] U � \ ^�_ \ U � B W X �Y � AZ [�\] U (� \ ^�_ \ U �

RD

? U � B U (�

RD

?W X �Y � AZ [�\] U � \ ^�_ \ U � B W X �Y � AZ [�\] U � \ ^�_ \ U (�

RD

? U B U (

RD

?` [W ^ \ �Y � Aa b U B ` [W ^ \ �Y � A a b U (

Program Analysis – p.20/23

To illustrate the use of the transformation consider the
program:

�1 � �
c � � V �C � � 1 d
c � � V �M � � C d
c � �

A solution to the Reaching Definitions Analysis for this
program is:

IJ �� � �� �
 �

=

4 ��132 5 �2 � C2 5 �2 ��M2 5 � 7

IJ �& ' � �
 �

=
4 ��132
 �2 � C2 5 �2 ��M2 5 � 7

IJ �� � �� � � �

=
4 ��132
 �2 � C2 5 �2 ��M2 5 � 7

IJ �& ' � � � �
=

4 ��132
 �2 � C2 � �2 ��M2 5 � 7

IJ �� � �� � 8 �
=

4 ��132
 �2 � C2 � �2 ��M2 5 � 7

IJ �& ' � � 8 �
=

4 ��132
 �2 � C2 � �2 ��M2 8 � 7

Program Analysis – p.21/23

We can obtain the following transformation sequence:

RD

? �1 � �
c � � V ��C � � 1 d
c � � V �M � � C d
c � �

B �1 � �
c � � V ��C � �
c d
c � � V �M � � C d
c � �

B �1 � �
c � � V ��C � � �c � � V �M � � C d
c � �

B �1 � �
c � � V ��C � � �c � � V �M � � �c d
 c � �

B �1 � �
c � � V ��C � � �c � � V �M � � 8 c � �

after which no more steps are possible.

Program Analysis – p.22/23

The above example shows that we shall want to perform
many successive transformations:

RD

? U � B U � B O O O B Ufe g �
This could be costly because once

U � has been transformed

into

U � we might have to recompute Reaching Definitions

Analysis for

U � before the transformation can be used to

transform it into

U � etc. It turns out that it is sometimes possi-

ble to use the analysis for

U � to obtain a reasonable analysis

for

U � without performing the analysis from scratch.

Program Analysis – p.23/23

	
	Introduction
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

