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Approximations and correctness

Consider the problem of identifying the set of initialized
variables at a point in the program. Assume that the precise
set of initialized variables at a point is {a, b, c}.

The ‘guaranteed’ version

Solution {a, b} is
approximate and correct.

Solution {a, b, c, d} is
incorrect.

So, the ‘fastest but most
useless’ analysis for this
problem is one that
returns {} for all points.

The ‘may be’ version

Solution {a, b, c, d} is
approximate and correct.

Solution {a, b} is
incorrect.

So, the ‘fastest but most
useless’ analysis for this
problem returns the
universal set.
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Sets and relations

A (binary) relation R between sets S1 and S2 is just a
subset of S1 × S2. Similarly, any subset R of S1 × S2 is a
relation between sets S1 and S2. That is, for any sets S1, S2,
R is a relation between S1 and S2 iff

R ⊆ S1 × S2

If (s1, s2) ∈ R, we also write s1Rs2
Let S1 = {a, b, c, d}, S2 = {1, 2, 3}
R1 = {(a, 1), (b, 2), (c, 3), (d, 1)} ?
R2 = {(a, 1), (b, 1), (c, 1), (c, 2), (c, 3)} ?
R3 = {} ?
R4 = {(a, a), (b, b), (c, c)} ?
R5 = {(a, x), (b, y)} ?
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Some ‘real’ relations

S1 = {Rajeev, Sanjay, Bhim, Mohandas, Duryodhan}
S2 = {Pandu, Gandhari, Indira, Feroz, Bhishma}
Child = {(Rajeev, Indira), (Rajeev,Feroz),
(Sanjay, Indira), (Sanjay,Feroz),
(Bhim,Pandu), (Duryodhan,Gandhari)}

Z = {· · · ,−2,−1, 0, 1, 2, · · ·}
<= {· · · , (−2,−1), (−2, 0), (−2, 1), (−2, 2), (−1, 0), · · ·}
double = {· · · , (−1,−2), (0, 0), (1, 2), (2, 4) · · ·}

Relations can be N −N , 1−N , N − 1 or 1− 1.

Relations can be ‘total’ (all of S1) or ‘onto’ (all of S2)

Functions are just N − 1 relations!
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Kinds of relations

A relation R from S to S is

reflexive iff ∀a ∈ S. (a, a) ∈ R. Example: ≤ is reflexive,
but < is not.

symmetric iff (a, b) ∈ R ⇒ (b, a) ∈ R. Example: 6= and =
are symmetric, but ≤ is not.

anti-symmetric iff a 6= b ∧ (a, b) ∈ R ⇒ (b, a) 6∈ R.
Example: ≤ is anti-symmetric, while 6=, = are not.

transitive iff (a, b) ∈ R∧ (b, c) ∈ R ⇒ (a, c) ∈ R. Example:
<, ≤, Ancestor are transitive, but 6=, Parent are not.

Note: R is symmetric and transitive 6⇒ R is reflexive!
Example: the empty relation!!
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Equivalence relations

Relation ≡ from S to S is an equivalence relation iff it is
reflexive, symmetric and transitive. ≡ partitions S into
disjoint subsets (equivalence classes) where all elements of
each sub-set are ≡-related to each other, and no two
elements across the subsets are ≡-related. Examples:

= partitions Z into an infinite number of singleton
equivalence classes: {· · · , {−1}, {0}, {1}, · · ·}.

=mod n partitions N into n infinitely large equivalence
classes: {{0, n, 2n, · · ·}, {1, n+ 1, 2n+ 1, · · ·} · · · {n−
1, 2n− 1, 3n− 1 · · ·}}.

sibling partitions the entire human population into
equivalence classes, where a sibling b iff a and b

have both parents in common.
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Partial orders

Relation v from S to S is a partial order iff it is reflexive,
anti-symmetric and transitive. Note that there may be
elements a, b in S such that neither a v b nor b v a. If either
a v b or b v a for all a, b, then v is called a total order.
Examples:

≤ is a total order over Z.

Relation ⊆ is a partial order over any set S of sets. For
all sets A,B,C: A ⊆ A; A ⊆ B ∧ A 6= B ⇒ B 6⊆ A; and
A ⊆ B ∧ B ⊆ C ⇒ A ⊆ C. And of course, there exist
sets S1, S2 such that neither S1 ⊆ S2 nor S2 ⊆ S1.

Relation | (divides) is a partial order over N . For any
natural numbers a, b, c, a|a; a|b ∧ a 6= b⇒ b6 |a; and
a|b ∧ b|c⇒ a|c.
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Approximations

Partial orders capture the notion of approximations!

Everything approximates itself (perfectly!).

a approximates b and a 6= b⇒ b definitely does not
approximate a.

a approximates b and b approximates c⇒ a

approximates c. In such cases, b is a ‘more precise’
approximation of c than a.

There will usually be some a and b such neither of them
approximates the other.

In analysis a v b is usually defined such that a is more
precise than b.
Example: 3 A 3.1 A 3.14 A 3.141 A · · · A π.
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Exercises

Which of the following are reflexive, symmetric,
anti-symmetric, equivalence relations, partial orders?
{(a, a), (b, b), (c, c)} over set S = {a, b, c}

{(a, a), (b, b), (c, c), (a, b), (b, a)} over set S = {a, b, c}

R = {} over any set S.
R = S × S over any set S.
f(x) = x2

f(x) = −x

R is defined over S, the set of functions from N to N ,
as fRg iff ∀x.f(x)|g(x).

Give examples of other ‘real’ equivalence classes and
partial orders.
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Posets

If partial ordering v is defined over set S, then (S,v) is
called a partially-ordered set or a poset.

b w a is the same as a v b. Note that if v is a partial
order, then so is w.

a @ b is the same as a v b and a 6= b. @ is not a partial
order. Similarly A.

Element b is a minimal element or lower bound of poset
(S,v) iff ∀x ∈ S.x 6@ b.

Similarly t is a maximal element or upper bound of the
poset iff ∀x ∈ S.x 6A t. Note: Minimal and maximal
elements may not be unique for a poset.
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Maximal and minimal elements

a b

c

d e

f

a

b

c

d

a

b c

d

e f

a b
c

d

e f

a

b c

d e

f

�����

�����

�����

�����

a
b

c

d

Introduction to Lattice Theory – p.11



Lower and upper bounds

Consider a poset (L,v) and a subset Y of L. Element

l ∈ L is an upper bound of Y if ∀l′ ∈ Y.l′ v l. Sim-

ilarly, l is a lower bound if ∀l′ ∈ Y.l′ w l. Note: l

may not belong to the subset Y . l may not be unique,

i.e. Y may have many (or no) lower and upper bounds.

a

b

c

d

a b
c

d

e f

a

b c

d

e f

Introduction to Lattice Theory – p.12



Lower and upper bounds

Consider a poset (L,v) and a subset Y of L. Element

l ∈ L is an upper bound of Y if ∀l′ ∈ Y.l′ v l. Sim-

ilarly, l is a lower bound if ∀l′ ∈ Y.l′ w l. Note: l

may not belong to the subset Y . l may not be unique,

i.e. Y may have many (or no) lower and upper bounds.
a

b

c

d

a b
c

d

e f

a

b c

d

e f

Introduction to Lattice Theory – p.12



LUBs and GLBs

l ∈ L is a least upper bound (LUB) of a subset Y iff l is
an upper bound of Y and l v l′ for all other upper
bounds l′ of Y .

Similarly, greatest lower bound (GLB) of a subset Y is a
lower bound that is w all other lower bounds.

LUB of a set Y is denoted as
⊔

Y and is also called the
join operator.

GLB of a set Y is denoted as
d
Y and is also called the

meet operator.

A subset Y may be such that
⊔

Y or
d
Y do not exist.

But if they exist, they are unique.
⊔

{y1, y2} is also written y1 t y2. Similarly
d
{y1, y2} =

y1 u y2.
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Lattices

A poset (L,v) is a complete lattice (L,v,
⊔

,
d
,⊥,>) iff

all subsets Y of L have greatest lower bounds as well
as least upper bounds.

⊥ =
⊔

φ =
d
L is the least element of L.

> =
d
φ =

⊔

L is the greatest element of L.

x t > = >, x t ⊥ = x

x u ⊥ = ⊥, x u > = x
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More on lattices

For any set S, (2S ,⊆,
⋃

,
⋂

, φ, S) is a complete lattice.

Is (Z,≤) a complete lattice? And what about (N,≤)?

The following statements are equivalent:
x t y = y; x u y = x; x v y

Properties of t,u:

Idempotence x t x = x u x = x

Commutativity x t y = y t x and x u y = y u x

Associativity x t (y t z) = (x t y) t z. Similarly for u.

Absorption x t (x u y) = x
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Exercises

Prove the following:

If v is a partial order, then so is w.

When they exist,
⊔

Y and
d
Y are unique for any

subset Y of a poset (L,v).

(x t y = y) ⇔ (x v y)

The idempotence, commutativity, associativity and
absorption properties of t.
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Chains

Any totally ordered subset S of poset (L,v) is called a
chain.

That is, ∀l1, l2 ∈ S. (l1 v l2) ∨ (l2 v l1).

Note: An empty subset of L is also a chain!!

A sequence of elements l1, l2, · · · is an ascending chain iff
i < j ⇒ li v lj. Similarly, a sequence is a descending chain
iff i < j ⇒ li w lj.

Example ...
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Chains · · ·

The height of a poset (L,v) is h if the largest chain in the
lattice contains h+ 1 elements.

Poset (L,v) has a finite height iff all chains are finite, i.e. all
ascending and descending chains are of the form
l1, l2, · · · lk, lk+1, lk+2, · · · where lj = lk ∀j ≥ k.

Obviously finite posets have finite heights!

Examples of infinite posets with finite and infinite heights?
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Product lattices

Given two posets (L1,v1) and (L2,v2), (L,v) is also a
partial order where

L = {(l1, l2)|l1 ∈ L1 ∧ l2 ∈ L2}

and

(l11, l12) v (l21, l22) iff l11 v1 l21 ∧ l12 v2 l22

Prove the above!
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Product lattices · · ·

If each Li is a complete lattice, then so is
(L,v,

⊔

,
d
,⊥,>) as follows:

⊔

Y = (
⊔

1

{l1|∃l2 : (l1, l2) ∈ Y },
⊔

2

{l2|∃l1 : (l1, l2) ∈ Y }

Similarly for
d

⊥ = (⊥1,⊥2)
> = (>1,>2)

L often referred to as L1 × L2, the cartesian product of
L1 and L2.

Cartesian products can be extended to any number of
posets or lattices, i.e. L1 × L2 × L3 × · · · × Lk
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Functions

Consider posets (L1,v1), (L2,v2), and a function
f : L1 → L2.

f is a monotonic (or monotone) function iff
∀x, y.x v y ⇒ f(x) v f(y)

f is a completely additive (or distributive) function if
∀Y ⊆ L1.f(

⊔

1 Y ) =
⊔

2{f(l′)|l′ ∈ Y } whenever
⊔

1 Y

exists.

Similarly, it is completely multiplicative if
∀Y ⊆ L1.f(

d
1 Y ) =

d
2{f(l′)|l′ ∈ Y } whenever

d
1 Y

exists.

A function is strict if f(⊥1) = ⊥2. f is completely
additive ⇒ f is strict.
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Functions, fixed points · · ·

Consider a monotone function f : L→ L on a complete
lattice (L,v,

⊔

,
d
,⊥,>).

A fixed point of f is some l ∈ L such that f(l) = l.

What, if any, are the fixed point(s) of the following
functions over Z?

f(x) = x+ 3

f(x) = x2

f(x) = x

f(x) = x! (factorial, over N )

Fix(f) = {l ∈ L|f(l) = l}, the set of fixed points of
f : L→ L.
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Reductive and extensive regions

f : L→ L is reductive at l ∈ L if f(l) v l.
Red(f) = {l ∈ L|f(l) v l}

f : L→ L is extensive at l ∈ L if f(l) w l.
Ext(f) = {l ∈ L|f(l) w l}

The function f itself is reductive (extensive) if
Red(f) = L (Ext(f) = L).

Example: f(x) = x+ 3 over (Z,≤) is extensive, while
f(x) = x− 3 is reductive.
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Reductive, extensive regions
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Computation of fixed points

For a monotone function f over a complete lattice L:

Least fixed point lfp(f) =
d
Fix(f)

Greatest fixed point gfp(f) =
⊔

Fix(f)

Tarski’s theorem: For a complete lattice (L,v,t,u,⊥,>)
and monotone f : L→ L

lfp(x) =
d
Red(f) ∈ Fix(f)

gfp(x) =
⊔

Ext(f) ∈ Fix(f)

lfp(f) is a fixed point of f that is v all other fixed points.
Similarly, gfp(f).

If all chains in L are finite, lfp(f) can be computed as
the limit of the chain fn(⊥), i.e. ⊥, f(⊥), f 2(⊥) · · ·. In
other words, lfp(f) = fk(⊥) such that fk(⊥) = fk+1(⊥)
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Analysis and lattices

Lattices can be used to model approximations

a v b means a is more precise than b in the semantics
and some analysis literature.

But in data flow analysis literature, it means a is less
precise than b. This means · · ·

v and w are interchanged;

⊥ and > are interchanged;

t and u are interchanged;

lfp and gfp are interchanged.

Basically, the lattice is hung ‘upside down’.
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Analysis and fixed points

Analysis equations of the form:
Io(n) = fn(Ii(n))
Ii(n) = f ′n(Io(n1), Io(n2) · · · Io(nk))

If there are k nodes, there are 2k pieces of information,
namely Ii(1), Io(1), Ii(2), Io(2) · · · Ii(k), Io(k) defined
mutually recursively by the above equations.

Let I define a tuple of the above 2k pieces of
information. That is I = 〈Ii(1), Io(1), · · · Ii(k), Io(k)〉.

So, the above equations can be together written as:
I = F (I) where F (I) = 〈f ′1(I), f1(I), · · · f

′
k(I), fk(I)〉

So, the answer we seek, namely I is nothing but a fixed
point of F ! And the most precise answer is the least
fixed point of F !!
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Home work!

1. Let L be a complete lattice (L,vL,
⊔

L,
d

L,⊥L,>L).
Consider the space of total functions over L, say F .
That is, F consists of all total functions from L to L.
Prove that (F,vF ,

⊔

F ,
d

F ,⊥F ,>F ) is also a complete
lattice, where:
f vF g iff ∀x ∈ L.f(x) vL g(x)
∀Y ⊆ F.

⊔

F Y = λx.
⊔

L{f(x)|f ∈ Y }
∀Y ⊆ F.

d
F Y = λx.

d
L{f(x)|f ∈ Y }

⊥F = λx.⊥L

>F = λx.>L

2. Prove that the limit of the chain ⊥, f(⊥), f 2(⊥) · · · for
monotone f over a complete lattice with only finite
chains is indeed lfp(f).

f = λx.e is the same as f(x) = e.
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