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Approximations and correctness

-

Consider the problem of identifying the set of initialized T
variables at a point in the program. Assume that the precise
set of initialized variables at a point is {a, b, c}.
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Approximations and correctness

o N

Consider the problem of identifying the set of initialized
variables at a point in the program. Assume that the precise
set of initialized variables at a point is {a, b, c}.

The ‘guaranteed’ version

# Solution {a,b} Is
approximate and correct.

# Solution {a,b,c,d} IS
Incorrect.

#® S0, the ‘fastest but most
useless’ analysis for this
problem is one that
returns {} for all points.

o |
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Approximations and correctness

o N

Consider the problem of identifying the set of initialized
variables at a point in the program. Assume that the precise
set of initialized variables at a point is {a, b, c}.

The ‘guaranteed’ version The ‘may be’ version

# Solution {a,b} Is # Solution {a,b,c,d} IS
approximate and correct. approximate and correct.

# Solution {a,b,c,d} IS # Solution {a,b} Is
iIncorrect. Incorrect.

® S0, the ‘fastest but most ® So, the ‘fastest but most
useless’ analysis for this useless’ analysis for this
problem is one that problem returns the
returns {} for all points. universal set.

o |
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Sets and relations
L -

A (binary) relation R between sets S; and S, Is just a
subset of S x Sy. Similarly, any subset R of S| x Sy Is a
relation between sets S; and S;. That is, for any sets S, So,
R Is a relation between S; and S5 Iff

R C Sy x5y

If (s1,s2) € R, we also write s;Rso
Let S1 = {a,b,c,d}, So ={1,2,3}
R1=1(a,1),(0,2),(c,3),(d, 1)} 2

Ro = {(av 1)7 (bv 1)7 (Cv 1)7 (Cv 2)7 (C, 3)} ?
Rs={}7

Ra = {<a7 a)» (bv b)7 (Ca C)} ?

Rs = 1(a;x),(b,y)} ?
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Some ‘real’ relations

o | - N

S1 = {Rajeev, Sanjay, Bhim, Mohandas, Duryodhan}
= {Pandu, Gandhatri, Indira, Feroz, Bhishma}

Chi | d = {(Rajeev, Indira), (Rajeev, Feroz),

(Sanjay, Indira), (Sanjay, Feroz),

(Bhim, Pandu), (Duryodhan, Gandhari)}

Z ={-,-2,-1,01,2,---}
<={-,(=2,-1),(=2,0),(-21),(=2,2),(-1,0),-- -}
double = {---,(—1,-2),(0,0),(1,2),(2,4) - }

# Relationscanbe N—-N,1—-N,N—-1or1l1—1.

#® Relations can be ‘total’ (all of S;) or ‘onto’ (all of S5)
# Functions are just N — 1 relations!
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-

A relation R from Sto S Is

9

Kinds of relations

reflexive iff Va € S. (a,a) € R. Example: < Is reflexive,
but < IS not.

symmetric iff (a,b) € R = (b,a) € R. Example: # and =
are symmetric, but < is not.

anti-symmetric iff a b A (a,b) € R = (b,a) € R.
Example: < is anti-symmetric, while #£, = are not.

transitive Iff (a,b) € RA (b,c) € R = (a,c) € R. Example:
<, <, Ancest or are transitive, but #, Par ent are not.

Note: R Is symmetric and transitive A R Is reflexive!
Example: the empty relation!! J
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Equivalencereations

Relation = from S to S Is an equivalence relation iff it Is T
reflexive, symmetric and transitive. = partitions S into

disjoint subsets (equivalence classes) where all elements of
each sub-set are =-related to each other, and no two
elements across the subsets are =-related. Examples:

# = partitions Z into an infinite number of singleton
equivalence classes: {---,{—1},{0}, {1},---}.

o —, .4 partitions N into n infinitely large equivalence
classes: {{0,n,2n,---},{1l,n+1,2n+1,---}---{n —
1,2n —1,3n —1---}}.

# si bl i ng partitions the entire human population into
equivalence classes, where a si bl i ng b iff a and b
have both parents in common. J
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Partial orders

o N

Relation C from S to S Is a partial order iff it is reflexive,
anti-symmetric and transitive. Note that there may be
elements q, b In S such that neither « © b nor b C a. If either
aC borbLC qgforalla,b, then C is called a total order.

Examples:

® < |s atotal order over Z.

# Relation C Is a partial order over any set S of sets. For
allsets A, B,C: ACA,ACBANA+B= B¢ A,;and
ACBABCC= ACC(C. And of course, there exist
sets 51, S5 such that neither S; C S5 nor Sy C 9.

# Relation | (divides) is a partial order over N. For any
natural numbers a, b, ¢, ala; alb A a # b = bfa; and

L alb A\ blc = alc. J
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Approximations

o N

Partial orders capture the notion of approximations!



Approximations
fPartial orders capture the notion of approximations! T
# Everything approximates itself (perfectly!).

# ¢ approximates b and a # b = b definitely does not
approximate a.

#® ¢ approximates b and b approximates ¢ = a
approximates c. In such cases, b is a ‘more precise’
pproximation of ¢ than a.

a
# There will usually be some a and b such neither of them
approximates the other.

o |
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Approximations
fPartial orders capture the notion of approximations! T
# Everything approximates itself (perfectly!).

# ¢ approximates b and a # b = b definitely does not
approximate a.

#® ¢ approximates b and b approximates ¢ = a
approximates c. In such cases, b is a ‘more precise’
approximation of ¢ than a.

# There will usually be some a and b such neither of them
approximates the other.

In analysis « C b Is usually defined such that a iIs more
precise than b.

o |
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Approximations
fPartial orders capture the notion of approximations! T
# Everything approximates itself (perfectly!).

# ¢ approximates b and a # b = b definitely does not
approximate a.

#® ¢ approximates b and b approximates ¢ = a
approximates c. In such cases, b is a ‘more precise’
approximation of ¢ than a.

# There will usually be some a and b such neither of them
approximates the other.

In analysis « C b Is usually defined such that a iIs more
precise than b.
Example: 3 233.1 33.1433.141 3--- O .

o |
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Exercises

o N

# Which of the following are reflexive, symmetric,
anti-symmetric, equivalence relations, partial orders?

{(a,a),(b,b),(c,c)} overset S = {a,b,c}

{(a,a), (b,b),(c,c),(a,b), (b a)} over set S = {a,b,c}

R ={} over any set S.

R =5 x .5 overanysetS.

f(z) ==’

fla) = —x

R Is defined over S, the set of functions from N to NV,
as fRgiff V. f(x)|g(x).

# Give examples of other ‘real’ equivalence classes and
partial orders.

o |
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Posets
IS T

If partial ordering C is defined over set .S, then (S, C)
called a partially-ordered set or a poset.

b 1 als the same as a C b. Note that if C Is a partial
order, then so is .

aC bisthesame as a C band a # b. C IS not a partial
order. Similarly —.

Element b is a minimal element or lower bound of poset
(S,E) Iff Ve € S.x 7 b.

Similarly ¢ Is a maximal element or upper bound of the
poset iff Vo € S.x 2 t. Note: Minimal and maximal
elements may not be unique for a poset.

|
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Maximal and minimal elements

a b a a b c
b C
d
d € y
f e f e f

a_

-

b C

S




L ower and upper bounds
B -

Consider a poset (L,C) and a subset Y of L. Element
[ € L is an upper bound of YV if VI’ € Y.I'!' C [. Sim-

llarly, [ is a lower bound if VI € Y.’ 3 [. Note: I

may not belong to the subset Y. [ may not be unique,

l.e. Y may have many (or no) lower and upper bounds.

o |
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L ower and upper bounds

o |

Consider a poset (L,C) and a subset Y of L. Element
[ € L is an upper bound of YV if VI’ € Y.I'!' C [. Sim-

llarly, [ is a lower bound if VI € Y.’ 3 [. Note: I

may not belong to the subset Y. [ may not be unique,

l.e. Y may have many (or no) lower and upper bounds.




L UBsand GLBs
-

[ € L i1s a least upper bound (LUB) of a subset Y iff [ Is
an upper bound of Y and [ C [’ for all other upper
bounds I’ of Y.

Similarly, greatest lower bound (GLB) of a subset Y is a
lower bound that is I all other lower bounds.

LUB of a set Y is denoted as | |Y and is also called the
join operator.

GLB of aset Y Is denoted as [ | Y and Is also called the
meet operator.

A subset Y may be such that | |Y or [ |Y do not exist.
But if they exist, they are unigue.

| {y1,y2} is also written y; Ll yo. Similarly [{y1, y2} =

y111y2. J
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L attices

A poset (L,C) i1s a complete lattice (L,C, | |,[ ], L, T) iff

-

all subsets Y of L have greatest lower bounds as well

as least upper bounds.

1L =||o=[]LIisthe least element of L.

T =[]¢=|]|L is the greatest element of L.
zUU T =T, 241l =2

rMMl=1,2MNT =«

|

Introduction to Lattice Theory — p.14



Moreon lattices

® ForanysetsS, (2°,C,J,N, ¢,9) is a complete lattice.
® |Is (Z, <) acomplete lattice? And what about (N, <)?
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Moreon lattices

® ForanysetsS, (2°,C,J,N, ¢,9) is a complete lattice.
® |Is (Z, <) acomplete lattice? And what about (N, <)?

The following statements are equivalent:
rUy=y,xlNy=x,x Ly

|
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Moreon lattices

® ForanysetsS, (2°,C,J,N, ¢,9) is a complete lattice.
® |Is (Z, <) acomplete lattice? And what about (N, <)?

The following statements are equivalent:
rUy=y,xlNy=x,x Ly

Properties of LI, T

ldempotence zllx =xllx ==x

Commutativity x LUy =yUxandz My =yMNx
Associativity x U (y U z) = (x Uy) U z. Similarly for .
Absorption z U (xMy) =x

|
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Exercises

o N

Prove the following:
# |If C is a partial order, then so is —.

#® When they exist, | |Y and [ ]Y are unique for any
subset Y of a poset (L,C).

® (rUy=y)= (zCy)

# The idempotence, commutativity, associativity and
absorption properties of L.

o |
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Chains

o N

Any totally ordered subset S of poset (L,C) is called a
chain.

Thatis, Vi, 1y € S. (ll [ lQ) V (12 [ ll).
Note: An empty subset of L Is also a chain!!

A seguence of elements [, [», - - - IS an ascending chain iff
i < 7 =1; Cl;. Similarly, a sequence is a descending chain
iffi <j=1231.

Example ...

o |
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Chains - - -

o N

The height of a poset (L, C) is h if the largest chain in the
lattice contains i + 1 elements.

Poset (L, C) has a finite height iff all chains are finite, I.e. all
ascending and descending chains are of the form
1,02, Dy L1, Lo, - - - Where [ = 1, Vi > k.

Obviously finite posets have finite heights!

Examples of infinite posets with finite and infinite heights?

o |
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Product lattices
- -

# Given two posets (L1,Cq1) and (L9, Cs), (L,E) is also a
partial order where

L = {(ll,lz)ﬂl c 1Ny € LQ}
and

(111, l12) © (l21, lo2) Iff 111 54 log Al1o Ca log

® Prove the above!

o |
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Product lattices- - -

o N

# |f each L; Is a complete lattice, then so is
(L,C, | [,['], L, T) as follows:

p—

| Y =( [{ul3: (1 1o) e Y} | {3l : (I1,02) €Y}
1 2

Similarly for [ ]
1 =(1q,1g)
T=(Tq,To)

# [ often referred to as L; x Lo, the cartesian product of
14 and Lo.

# Cartesian products can be extended to any number of
posets or lattices, i.e. L1 x Lo x Lg X -+ x Ly

o |
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Functions

o N

Consider posets (L1,C5q), (L2, C9), and a function
f: L1 — Lo.

# fIs a monotonic (or monotone) function iff
Vr,yx Ty = f(z) C f(y)

#® fIs a completely additive (or distributive) function if
VY CLi.f(LLY) = LL{f)" € Y} whenever| |, Y
exists.

# Similarly, it is completely multiplicative if
VW CLi.f(0,Y)=TL{f)"'e Y} whenever[], Y
exists.

# Afunctionis strictif f(11) = 1o. f IS completely
additive = f Is strict.
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Functions, fixed points- - -
-

Consider a monotone function f : L — L on a complete
lattice (L, C, | |,[], L, T).

o A fixed point of f is some [ € L such that f(/) =

# What, if any, are the fixed point(s) of the following
functions over Z?

. f( )—:C—I—S

flz) =
flz) =
f(x) = az' (factorial, over N)

o Fz:z:( ) ={l € L|f(l) =1}, the set of fixed points of

f:L— L.
-

ntroduction to Lattice Theory — p.22



Reductive and extensive regions

-

f:L— Lisreductiveatl e Lif f(I) C L.
Red(f) =1l € L|f(l) E 1}

f:L— Lisextensiveat/ c Lif f(I) 3 1.
Ext(f) =1l € LIf(l) 2 1}

The function f itself is reductive (extensive) if
Red(f) = L (Ext(f) = L).

Example: f(z) =z + 3 over (Z, <) Is extensive, while
f(x) = x — 3 1s reductive.



Reductive, extensiveregions

o N



Computation of fixed points

o N

For a monotone function f over a complete lattice L:
® Least fixed point [ fp(f) =[] Fiz(f)
® Greatest fixed point g fp(f) = | | Fiz(f)

Tarski’'s theorem: For a complete lattice (L, C, 1,1, 1L, T)
and monotone f: L — L

[fp(x) =[ | Red(f) € Fiz(f)
gfp(z) = | Ext(f) € Fiz(f)

® [fp(f)Is afixed point of f that is C all other fixed points.
Similarly, gfp(f).

# If all chains in L are finite, [ fp(f) can be computed as
the limit of the chain (1), i.e. L, f(L), f2(L)---. In

L other words, [fp(f) = f*(L) such that f%(L) = f*+1(1) J
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© o o o 0

Analysis and lattices

-

Lattices can be used to model approximations

a = b means «a IS more precise than b in the semantics
and some analysis literature.

But in data flow analysis literature, it means « Is less
precise than b. This means - - -

C and I are interchanged,

1 and T are interchanged,

LI and M are interchanged,;

[fpand ¢gfp are interchanged.

Basically, the lattice is hung ‘upside down'’.

|
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Analysis and fixed points

-

# Analysis equations of the form:
[o(n) — fn(lz(n))
Ii(n) = " (Io(n1), Lo(n2) - - Lo(n))



Analysis and fixed points

o N

# Analysis equations of the form:
Io(n) = fn(li(n))
Ii(n) = [ (Io(n1), Io(ng) - - - Io(ny))

o |[f there are k£ nodes, there are 2k pieces of information,
namely I1;(1), I,(1), I;(2), 1,(2) - - - I;(k), I,(k) defined
mutually recursively by the above equations.
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Analysis and fixed points

o N

# Analysis equations of the form:
Io(n) = fn(li(n))
Ii(n) = [ (Io(n1), Io(ng) - - - Io(ny))

o |[f there are k£ nodes, there are 2k pieces of information,
namely I1;(1), I,(1), I;(2), 1,(2) - - - I;(k), I,(k) defined
mutually recursively by the above equations.

# Let I define a tuple of the above 2k pieces of
iInformation. Thatis I = (I;(1), I,(1),--- I;(k), I,(k)).
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Analysis and fixed points

-

Analysis equations of the form:

Io(n) = fn(Li(n))

Ii(n) = [ (Io(n1), Io(ng) - - - Io(ny))

If there are k nodes, there are 2k pieces of information,
namely I1;(1), I,(1), I;(2), 1,(2) - - - I;(k), I,(k) defined
mutually recursively by the above equations.

Let I define a tuple of the above 2k pieces of
iInformation. Thatis I = (I;(1), I,(1),--- I;(k), I,(k)).

So, the above equations can be together written as:
I = F(I) where F(I) = (f'y (1), (1), f'x(I), fk(1))
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Analysis and fixed points
-

Analysis equations of the form:

Io(n) = fn(Li(n))

Ii(n) = [ (Io(n1), Io(ng) - - - Io(ny))

If there are k nodes, there are 2k pieces of information,
namely I1;(1), I,(1), I;(2), 1,(2) - - - I;(k), I,(k) defined
mutually recursively by the above equations.

Let I define a tuple of the above 2k pieces of
iInformation. Thatis I = (I;(1), I,(1),--- I;(k), I,(k)).

So, the above equations can be together written as:
I = F(I) where F(I) = (f'y (1), (1), f'x(I), fk(1))

So, the answer we seek, namely I is nothing but a fixed
point of F'! And the most precise answer is the least
fixed point of F'!! J
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Home wor k!

o N

1. Let L be a complete lattice (L,Cyr, ||, ,[ ;. L, Tr).
Consider the space of total functions over L, say F.
That Is, F' consists of all total functions from L to L.
Prove that (F,Cp,| |, [ |, Lr, TF) IS also a complete
lattice, where:

fCrgiitve e L.f(z) Cf g(z)

VY CF Y =Xe. ||, {f(@)|feY}
VY C F.[pY =M., {f(2)|f € Y}
J_F:)\$.J_L

TF:)\.f.TL

2. Prove that the limit of the chain L, f(L), f2(L)--- for
monotone f over a complete lattice with only finite
chains is indeed [ fp(f).

o |

f = Azx.eisthe same as f(x) = e.
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