Lecture 6, 27 January 2026

Storage allocation

Madhavan Mukund, S P Suresh

Programming Language Concepts
January-April 2026

m Consider the following program

block . \
SC&fe, % lexicad
{
int x = 2; 4 <
int y = 4; j"-%@
{
int y = 3; Quter y is hidden.
X = x+2; y = xty; Updated y value is not propagated outside
print(x,y); 4, 7
}
X = X+2; y = x4y Outer y value and updated x value
print(x,y); 6, 10

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Scope and Lifetime

m Scope — Region of text in which a declaration is visible

m Lifetime — Duration, at run-time, that a memory location is allocated for a specific
declaration

m Consider the example below

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

m Lifetime of inner x is the time during which
innermost block is active

|l!_, ¥ m Lifetime of outer x is the time during which

N . L e
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

static variables

m static variables are associated with a class as a whole

m Do not require instantiation of objects

m The static variable howManyAs counts the
number of instances of A created

m Lifetime of howManyAs spans the execution of
the entire program

m Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

static variables

m static variables are associated with a class as a whole

m Do not require instantiation of objects

m The static variable howManyAs counts the

public class A { .
number of instances of A created

v static int howManyAs = 0;

W per °L\)¢d’ m Lifetime of howManyAs spans the execution of

puprric A(int id) { .
howManyAs += 1; the entire program

this.id = id; m Scope of howlManyAs is limited to the class A

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Activation Record

m For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

m Activation record — collection of all data related to a function invocation

m Includes space for local variables, parameters, intermediate results, and some
pointers

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Call graph

m A call graph helps us visualize the m The set of active function calls at any
function calls during a program point of time lies on the path from the
execution root to the right most leaf

. main v/’ m If £ calls g, then g is completed before £
|
/ f %T§ g v m Store the activation records on a stack
NS SINN
/ g /k\’f f}\>g/ m Activation record is also called a stack
/AN \ frame
N

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Activation records on stack

L m Assume that main has local variables a
main and b, f has x and vy, and g has z
A4 |
£ / f \ g m Place activation records on a stack —
/2N VRN grows and shrinks as a program
g f f g executes
/ N\ \
f f

m T he stack evolves as follows:

main ’ a,b ‘ a,b a,b a,b a,b
f X,y X,y X,y X,y

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

General layout of a program in memory

Code Segmen /_\ re-e
[43) .

ol B o
Data Segment 1 ® 0 Heap ®

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Activation record

m Contains information pertaining to a function invocation
m Added to the top of the stack at the start of the function invocation

m Removed from the stack at the end of the function invocation

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Activation record

m Contains information pertaining to a function invocation
m Added to the top of the stack at the start of the function invocation

m Removed from the stack at the end of the function invocation

m Stores parameters, local variables, temporary variables used in running the function

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Activation record

m Contains information pertaining to a function invocation
m Added to the top of the stack at the start of the function invocation

m Removed from the stack at the end of the function invocation
m Stores parameters, local variables, temporary variables used in running the function

m Various pointers — Control link, access link, return address

J)
dﬁvwwu— Sm{o

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Activation record

S

m Contains information pertaining to a function invocation
m Added to the top of the stack at the start of the function invocation
m Removed from the stack at the end of the function invocation TOS [LZ

. . . s — .
m Stores parameters, local variables, temporary variables used in running the function
m Various pointers — Control link, access link, return address

m System-wide pointers
m Program counter — address of the next instruction to execute
m Stack pointer — points to the top of the system stack
m Frame pointer — points to the start of the topmost frame on stack

m Data in topmost frame accessed via offsets from the frame pointer or stack pointer —
offsets can computed at compile time

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

\v\kﬁl a

n
R~ el (W [()20’]}

Activation record . ..

Control link (SFrame pointer

Access link

Return address grd'JL
1<
Return value gm)

Parameters

Locals/Temporaries k— Stack pointer

&

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Activation record

7

- m Control link points to activation record
of caller

Control link k— Frame pointer

Access link

Return address

Return value

Parameters

Locals/Temporaries k— Stack pointer

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Activation record

m Control link points to activation record
of caller

Control link k— Frame pointer

m Access link is for non-local variable
access

Access link

Return address

Return value

Parameters

Locals/Temporaries k— Stack pointer

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

tivation reco :

m Control link points to activation record
of caller

Control link k— Frame pointer

m Access link is for non-local variable
access

Access link

B 2eelEss m Return address is the address of first

instruction to execute after the function
call returns

Return value

Parameters

Locals/Temporaries k— Stack pointer

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Activation record . ..

m Control link points to activation record
of caller

Control link k— Frame pointer

m Access link is for non-local variable
access

Access link

B 2eelEss m Return address is the address of first

instruction to execute after the function

Return value

call returns
Parameters
m Return value stores the return value,
Locals/Temporaries — Stack pointer which should be picked up by the caller

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

tivation reco :

Control link

«— Frame pointer

Access link

Return address

Return value

Parameters

Locals/Temporaries

4— Stack pointer

Control link points to activation record
of caller

Access link is for non-local variable
access

Return address is the address of first
instruction to execute after the function
call returns

Return value stores the return value,
which should be picked up by the caller

Temporaries are locations to store
intermediate values

Madhavan Mukund/S P Suresh

Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Access links

func £ £ m Count the number of additions in fib(4)

int x = 0;
int fib(int n) {
if n <= 1 then return n;

else {
x += 1;
return 1ib(n-1) + fib(n-2);
}
}
print (£fib(4));

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Access links

P m Count the number of additions in £ib(4)
unc f {

int x = 0;
int fib(int n) {
if n <= 1 then return n;

m x is non-local

else {
x += 1;
return fib(n-1) + fib(n-2);
}
}
print (£fib(4));

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Access links

m Count the number of additions in £ib(4)

func f {
int x = 0; m x is non-local
int fib(int n) {
if n <= 1 then return n; m fib(4) is called by f, so x can be
else { accessed by following the control link
x += 1;
return fib(n-1) + fib(n-2);
}
}
print (£fib(4));
}

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Access links

P m Count the number of additions in £ib(4)
unc f {

int x = 0;
int fib(int n) {

m x is non-local

if n <= 1 then return n; m fib(4) is called by f, so x can be
else { accessed by following the control link
x +=1;
return fib(n-1) + fib(n-2); m But £ib(3) is called by fib(4), so
+ control link cannot be used to access x
}
print (£fib(4)); ﬁ

) g J—'.L(u)\’
ﬁé[&)

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Access links

func f {
int x = 0;
int fib(int n) {
if n <= 1 then return n;

else {
x += 1;
return fib(n-1) + fib(n-2);
}
}
print (£fib(4));

Count the number of additions in £ib(4)
% is non-local

fib(4) is called by f, so x can be
accessed by following the control link

But £ib(3) is called by fib(4), so
control link cannot be used to access x

Need a new kind of link — access link
pointing to “outer” activation record

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Dynamic allocation

m Functions can handle complex data types — arrays /

class A {
classes, ...

int x, y, z;

Alx,y,z) {
this.x = x;

}

public int f(int n) {
int arr[n];

}

}

main {
A a0bj(2,5,7);
a0bj. £ (100);

}

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Dynamic allocation

m Functions can handle complex data types — arrays /

class A {
int x, y, z; classes, ...
Alx,y,2) { m Dynamic data structures like linked lists / graphs
this.x = x; ...
} m No pre-specified bound on the number of elements

public int f(int n) {
int arr[n];

}

}

main {
A a0bj(2,5,7);
a0bj. £ (100);

}

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Dynamic allocation

m Functions can handle complex data types — arrays /

class A {
int x, y, z; classes, ...
Alx,y,2) { m Dynamic data structures like linked lists / graphs
this.x = x; ...
} m No pre-specified bound on the number of elements

public int f(int n) { L . .
int arr(n]; m The activation record for main will store a pointer

} (or reference) to the object a0bj stored on the
} heap!
main {

A adbj(2,5,7);

a0bj. £ (100) ;

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Dynamic allocation

m Functions can handle complex data types — arrays /

class A v
int msianee var classes, ...
A(X’y’?) ‘ N Consty. m Dynamic data structures like linked lists / graphs
this.x = x; ...
} m No pre-specified bound on the number of elements

public int(f(int n)){

int arr[nts m The activation record for main will store a pointer

} (or reference) to the object a0bj stored on the
} heap!
main { .

A abbj(2,5,7); m a0bj itself has pointers to the class definition

a0bj.f (100);

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Dynamic allocation

m Functions can handle complex data types — arrays /

class A {
int x, y, z; classes, ...
Alx,y,2) { m Dynamic data structures like linked lists / graphs
this.x = x;
} m No pre-specified bound on the number of elements

public int f(int n) {

int arr[n]; m The activation record for main will store a pointer

} (or reference) to the object a0bj stored on the
} heap!
main { .

A abbj(2,5,7); m a0bj itself has pointers to the class definition

Obj.f£(100); .
&by m The AR for £ has a pointer to an array stored on

heap

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

maan ()

B

5‘“‘“)
N

(qy 3704

Heap

m Heap — just a chunk of memory

m Unstructured

m Nothing to do with the heap data
structure used to implement priority
queues!

PLC Jan—Apr 2026

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation

m Heap — just a chunk of memory
m Unstructured
m Nothing to do with the heap data + Stack
structure used to implement priority
queues!

m Typically depicted as “growing upward”
(and the stack grows downward)

" Skade overvuns hasy' !

Heap

PLC Jan—Apr 2026

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation

m Heap — just a chunk of memory

m Unstructured

m Nothing to do with the heap data
structure used to implement priority
queues!

{ Stack

m Typically depicted as “growing upward”
(and the stack grows downward)

m Consist of chunks of allocated and T Heap
unallocated memory

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Stack and heap

main albj x = 2 constructor
f n = 100 = y =5 code for f
arr ? z =7 Code segment
Stack class % »AC. L) /
3
2 £C..0)
100 integers

Heap

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to CI&QS B Md-q"’“"“ A

table for superclass

A vuble

B LI

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to
table for superclass

m Overloaded function

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to
table for superclass
m Overloaded function

m Find its pointer in the table for the
class

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to
table for superclass

m Overloaded function

m Find its pointer in the table for the
class

m Otherwise look at parent’s table

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to
table for superclass
m Overloaded function

m Find its pointer in the table for the
class

m Otherwise look at parent’s table
m Might need to follow a chain of pointers

to determine the code to run on a
method call

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to

table for superclass

m Overloaded function

m Find its pointer in the table for the

class

m Otherwise look at parent’s table

m Might need to follow a chain of pointers
to determine the code to run on a

method call

Madhavan Mukund/S P Suresh

implementation

ﬁwq‘njzﬁ. {3

Lecture 6, 27 January 2026 Storage allocation

N —

m Runtime polymorphism has a simple

o eade ety
e e bonwc)

Englnye
—— Etuable

M bl

PLC Jan—Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to m Runtime polymorphism has a simple
table for superclass implementation
m Overloaded function m Consider an array of Shape, each
= Find its pointer in the table for the element being an instance of a subclass
class

m Otherwise look at parent’s table

m Might need to follow a chain of pointers
to determine the code to run on a
method call

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to m Runtime polymorphism has a simple
table for superclass implementation
m Overloaded function m Consider an array of Shape, each

= Find its pointer in the table for the element being an instance of a subclass

I .
class m Elements of the array are pointers to

m Otherwise look at parent’s table objects

m Might need to follow a chain of pointers
to determine the code to run on a
method call

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to m Runtime polymorphism has a simple
table for superclass implementation
m Overloaded function m Consider an array of Shape, each

= Find its pointer in the table for the element being an instance of a subclass

I .
class m Elements of the array are pointers to
m Otherwise look at parent’s table objects
m Might need to follow a chain of pointers m The object data has a pointer to the
to determine the code to run on a precise subclass it is an instance of!
method call

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Overriding, inheritance etc.

m Table for each class has a pointer to m Runtime polymorphism has a simple
table for superclass implementation
m Overloaded function m Consider an array of Shape, each

= Find its pointer in the table for the element being an instance of a subclass

I .
class m Elements of the array are pointers to
m Otherwise look at parent’s table objects
m Might need to follow a chain of pointers m The object data has a pointer to the
to determine the code to run on a precise subclass it is an instance of!
method call

m Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Heaps and memory management

m As functions are called, they allocate data on the heap

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Heaps and memory management

m As functions are called, they allocate data on the heap

m At the end of the function, the allocated data on heap might not be needed

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Heaps and memory management

m As functions are called, they allocate data on the heap
m At the end of the function, the allocated data on heap might not be needed

m Some data might be inaccessible from stack!

heed

s
s

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Heaps and memory management

m As functions are called, they allocate data on the heap
m At the end of the function, the allocated data on heap might not be needed

m Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself
might be in heap

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Heaps and memory management

m As functions are called, they allocate data on the heap
m At the end of the function, the allocated data on heap might not be needed

m Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself
might be in heap

m Allocated data might no longer have a reference from the stack (direct or indirect)

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Heaps and memory management

m As functions are called, they allocate data on the heap
m At the end of the function, the allocated data on heap might not be needed
m Some data might be inaccessible from stack!

m All computation and reference to data starts from the stack, but the data itself
might be in heap

m Allocated data might no longer have a reference from the stack (direct or indirect)

m This is called garbage — waste of memory

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Explicit memory management

m Older languages expect programmer to manage memory

m nalloc / freein C, new / delete in C++

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Explicit memory management

m Older languages expect programmer to manage memory
m nalloc / freein C, new / delete in C++

m free / delete tells the system to take back ownership of memory locations from
the program — deallocation

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

Explicit memory management

m Older languages expect programmer to manage memory
m nalloc / freein C, new / delete in C++

m free / delete tells the system to take back ownership of memory locations from
the program — deallocation

m Can cause the problem of dangling pointers — pointers to deallocated variables

int *x = malloc(sizeof(int));
*x = 10; x $ 10
free(x); y freed!
gime Wocshon,
Stack

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

m Dangling pointers are a serious problem! lwh A,[w'oj

m Accessing a deallocated location could give arbitrary results I b

m Huge security risk! —
m Garbage is not so serious, but wastes resources!

Can happen even with explicit deallocation k{l&v]

ALIASING S —

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

m Dangling pointers are a serious problem!
m Accessing a deallocated location could give arbitrary results

m Huge security risk!

Garbage is not so serious, but wastes resources!

Can happen even with explicit deallocation

int *x = malloc(sizeof(int));
*x = 10;
x = NULL;

x = 0x0...0 10

Stack inaccessible!

Madhavan Mukund/S P Suresh Lecture 6, 27 January 2026 Storage allocation PLC Jan-Apr 2026

I, (Rt — borbage (Meohin,

S*Wupm

Wlaw all Viriddle, A sirdc &
mande Al hesp i nse

Mat b W(’Ajnv\o doe @ wwged

