Lecture 5, 22 January 2026

Java: abstract classes, interfaces
Storage allocation

Madhavan Mukund, S P Suresh

Programming Language Concepts
January—April 2026

Grouping together classes

m Sometimes we collect together classes under a common heading S\MW\’L
m Classes Circle, Square and Rectangle are all shapes ovenk 1%“1&
m Create a class Shape so that Circle, Square and Rectangle extend Shape

m We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

m What if this doesn’t happen?

m Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Abstract classes

m A better solution

m Provide an abstract definition in Shape

public @ double perimeter()4;.

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Abstract classes

m A better solution
m Provide an abstract definition in Shape

public abstract double perimeter();

m Forces subclasses to provide a concrete implementation

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Abstract classes

m A better solution

m Provide an abstract definition in Shape

public abstract double perimeter(); S‘ll .

m Forces subclasses to provide a concrete implementation

m Cannot create objects from a class that has abstract functions (, ﬂ/\
W& %M T

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Abstract classes

m A better solution
m Provide an abstract definition in Shape

public abstract double perimeter();
m Forces subclasses to provide a concrete implementation
m Cannot create objects from a class that has abstract functions
m Shape must itself be declared to be abstract

public abstract class Shape{

public abstract double perimeter();

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Abstract classes . ..

m Can still declare variables whose type is an abstract class

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Abstract classes . ..

m Can still declare variables whose type is an abstract class

Shape shapearr[] = new Shape[3];
int sizearr[] = new int[3];

shapearr[0] = new Circle(...);

shapearr[1] = new Square(...);
shapearr[2] = new Rectangle(...);

for (i = 0; i < 3; i+H){ A:
sizearr[i] = shapearr[i].perimeter(); — %Wt ‘M

// each shapearr[i] calls the appropriate method

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Generic functions

m Use abstract classes to specify generic properties

public abstract class Comparable{
public abstract int cmp(Comparable s);
// return -1 if this < s,
// 0 if this == 0,
// +1 if this > s

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Generic functions

m Use abstract classes to specify generic properties

public abstract class Comparable{
public abstract int cmp(Comparable s);
// return -1 if this < s,
// 0 if this == 0,
// +1 if this > s
}

m Now we can sort any array of objects that extend Comparable

oy “Ul’lf‘ (}mr,..llc
public class SortFunctions{ [’¢ 4 JL

public static void quicksort(Comparable[] a){

// Usual code for quicksort, except that
// to compare ali] and al[j] we use ali].cmp(aljl)
}
}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Generic functions . ..

public class SortFunctions{
public static void quicksort(Comparable[] a){

}
}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan—Apr 20:

. . \
Generic functions ... — S

public class SortFunctions{
public static void quicksort(Comparable[] a){

}
}

m To use this definition of quicksort, we write

public class Myclass extends Comparable{
private double size; // quantity used for comparison

public int cmp(Comparable s){

if (s instanceof Myclass){
// “compare this.size and ((Myclass) s)
P Aoy

// Note the cast to access s.size

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Multiple inheritance

m Can we sort Circle objects using the generic functions in SortFunctions?

m Circle already extends Shape
m Need Circle to also extend Comparable

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Multiple inheritance

m Can we sort Circle objects using the generic functions in SortFunctions?

m Circle already extends Shape
m Need Circle to also extend Comparable

m Can a subclass extend multiple parent classes?

C1 Cc2

C3 extends C1,C2

PLC Jan—Apr 2026

Lecture 5, 22 January 2026 Java: abstract classes, interf:

Madhavan Mukund/S P Suresh

Multiple inheritance

m Can a subclass extend multiple parent classes?
C1 C2

C3 extends C1,C2

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Multiple inheritance

m Can a subclass extend multiple parent classes?
C1 C2

public int £(); public int £Q);

C3 extends C1,C2

m If £() is not overridden, which £ () do we use in C37?

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Multiple inheritance

m Can a subclass extend multiple parent classes?
C1 C2

public int £(); public int £Q);

C3 extends C1,C2

m If £() is not overridden, which £ () do we use in C37?

m Java does not allow multiple inheritance

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Multiple inheritance

m Can a subclass extend multiple parent classes?
C1 C2

public int £(); public int £Q);

C3 extends C1,C2

m If £() is not overridden, which £ () do we use in C37?
m Java does not allow multiple inheritance

m C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Interfaces and Multiple inheritance

m An interface is an abstract class with no concrete components

public interface Comparable{
public abstract int cmp(Comparable s);
b

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Interfaces and Multiple inheritance

m An interface is an abstract class with no concrete components

public interface Comparable{
public abstract int cmp(Comparable s);
b

m A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{
public double perimeter(){...}
public int cmp(Comparable s){...}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Interfaces and Multiple inheritance

m An interface is an abstract class with no concrete components

public interface Comparable{
public abstract int cmp(Comparable s);
b

m A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{
public double perimeter(){...}
public int cmp(Comparable s){...}

}

m Can extend only one class, but can implement multiple interfaces

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Interfaces and Multiple inheritance

m An interface is an abstract class with no concrete components Bk - -.

public interface Comparable{
public abstract int cmp(Comparable s); TM“. nWw AMNJ

¥ ver ke QM
m A class that extends an interface is said to implement it: ™ \wa’g
public class Circle extends Shape implements Comparable{
public double perimeter(){...}
public int cmp(Comparable s){...}
}
m Can extend only one class, but can implement multiple interfaces
m Interfaces describe relevant aspects of a class

m Abstract functions describe a specific “slice” of capabilities
m Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Java class hierarchy

m No multiple inheritance — tree-like C(C‘l_

foresy)‘1 esces _; ¢

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Java class hierarchy

m No multiple inheritance — tree-like

m In fact, there is a universal superclass Object

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Java class hierarchy

m No multiple inheritance — tree-like
m In fact, there is a universal superclass Object
m Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the
// instance variables to String

PLC Jan—Apr 2026

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf:

Java class hierarchy

m No multiple inheritance — tree-like
m In fact, there is a universal superclass Object
m Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the
// instance variables to String

m For Java objects x and y, x == y invokes x.equals(y)

PLC Jan—Apr 2026

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf:

Java class hierarchy

No multiple inheritance — tree-like

m In fact, there is a universal superclass Object
m Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the
// instance variables to String

m For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

m Implicitly invokes o.toString ()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Java class hierarchy

m Can exploit the tree structure to write generic functions

m Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){
if (objarr[i] == o) {return i};

}

return (-1); OL“—lk . Z{M‘ (—)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Java class hierarchy

m Can exploit the tree structure to write generic functions

m Example: search for an element in an array

public int find (Object[] objarr, Object o){
int i;

for (i = 0; i < objarr.length(); i++){
if (objarr[i] == o) {return i};
}
return (-1);
}
m Recall that ==

is pointer equality, by default

Madhavan Mukund/S P Suresh

Lecture 5, 22 January 2026 Java: abstract classes, interf:

PLC Jan—Apr 2026

Java class hierarchy

m Can exploit the tree structure to write generic functions

m Example: search for an element in an array
public int find (Object[] objarr, Object o){
int i;
for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};
. D_L\r)m[}] ,zi‘mk (v)

return (-1);

}
m Recall that == is pointer equality, by default

m If a class overrides equals (), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Overriding functions

m For instance, a class Date with instance
variables day, month and year

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Overriding functions

m For instance, a class Date with instance
variables day, month and year

m May wish to override equals () to
compare the object state, as follows

public boolean equals((Date d){
return ((this.day == d-day) &&
(this.month == d.month) &&
(this.year == d.year));

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Overriding functions

m For instance, a class Date with instance
variables day, month and year

m May wish to override equals () to
compare the object state, as follows

public boolean equals(Date d){
return ((this.day == d.day) &&
(this.month == d.month) &&
(this.year == d.year));
}

m Unfortunately,
boolean equals(Date d)
does not override
boolean equals(Object o)!

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Overriding functions

m For instance, a class Date with instance m Should write, instead

variables day, month and year public boolean equalg(Object d){

if (d instanceof Date)X

Date myd = (Date) d;

return ((this.day == myd.day) &&
« (this.month == myd.month)
(this.year == myd.year));

m May wish to override equals () to
compare the object state, as follows
! 7 fns

public boolean equals(Date d){
return ((this.day == d.day) &&
(this.month == d.month) && b
(this.year == d.year)); return(false);
} }
m Note the run-time type check and the

m Unfortunately, t
cas

boolean equals(Date d)
does not override
boolean equals(Object o)!

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Overriding functions

m Overriding looks for “closest” match

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Overriding functions

m Overriding looks for “closest” match

m Suppose we have public boolean equals(Employee e) but no equals() in
Manager % \

Masapen

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Overriding functions

m Overriding looks for “closest” match

m Suppose we have public boolean equals(Employee e) but no equals() in
Manager

m Consider

Manager ml = new Manager(...);
Manager m2 = new Manager(...);

1f (m1. equals(mQ)){ oL

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Overriding functions

m Overriding looks for “closest” match

m Suppose we have public boolean equals(Employee e) but no equals() in
Manager

m Consider

Manager ml = new Manager(...);
Manager m2 = new Manager(...);

iél(ml.equals(mQ)){ ... }

m public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Overriding functions

m Overriding looks for “closest” match

m Suppose we have public boolean equals(Employee e) but no equals() in
Manager

m Consider

Manager ml = new Manager(...);
Manager m2 = new Manager(...);

iél(ml.equals(mQ)){ oo 1

m public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

m Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Subclasses, subtyping and inheritance

m Class hierarchy provides both subtyping and inheritance

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Subclasses, subtyping and inheritance

m Class hierarchy provides both subtyping and inheritance

m Subtyping
m Capabilities of the subtype are a superset of the main type

m If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

m Employee e = new Manager(...); is legal

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Subclasses, subtyping and inheritance

m Class hierarchy provides both subtyping and inheritance

m Subtyping
m Capabilities of the subtype are a superset of the main type

m If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

m Employee e = new Manager(...); is legal

m Inheritance
m Subtype can reuse code of the main type
m B inherits from A if some functions for B are written in terms of functions of A

m Manager.bonus () uses Employee.bonus ()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Subtyping vs inheritance

m Consider the following example
m queue, with methods insert-rear, delete-front
m stack, with methods insert-front, delete-front

m deque, with methods insert-front, delete-front, insert-rear, delete-rear

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Subtyping vs inheritance

m Consider the following example
m queue, with methods insert-rear, delete-front
m stack, with methods insert-front, delete-front

m deque, with methods insert-front, delete-front, insert-rear, delete-rear

m What are the subtype and inheritance relationships between these classes?

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Subtyping vs inheritance

m Consider the following example
m queue, with methods insert-rear, delete-front
m stack, with methods insert-front, delete-front

m deque, with methods insert-front, delete-front, insert-rear, delete-rear
m What are the subtype and inheritance relationships between these classes?

m Subtyping
m deque has more functionality than queue or stack

m deque is a subtype of both these types

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Subtyping vs inheritance

m Consider the following example
m queue, with methods insert-rear, delete-front
m stack, with methods insert-front, delete-front

m deque, with methods insert-front, delete-front, insert-rear, delete-rear
m What are the subtype and inheritance relationships between these classes?

m Subtyping
m deque has more functionality than queue or stack

m deque is a subtype of both these types

m Inheritance
m Can suppress two functions in a deque and use it as a queue or stack

m Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Subclasses, subtyping and inheritance

m Class hierarchy represents both subtyping and inheritance

m Subtyping
m Compatibility of interfaces.
m B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.
m Inheritance
m Reuse of implementations.
m B inherits from A if some functions for B are written in terms of functions of A.

m Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Variables, functions and storage

m Variables represent data residing in a memory location

m Compiler creates a map from variables to memory addresses

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Variables, functions and storage

m Variables represent data residing in a memory location
m Compiler creates a map from variables to memory addresses

m Functions represent blocks of (reusable) code
m Complexities introduced by recursion
m Many versions of the same local variable active at the same time
m Need a way to keep track of all copies of a local x

m Figure out which copy of x is referred to at any point of the execution

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Variables, functions and storage

m Variables represent data residing in a memory location
m Compiler creates a map from variables to memory addresses

m Functions represent blocks of (reusable) code
m Complexities introduced by recursion
m Many versions of the same local variable active at the same time
m Need a way to keep track of all copies of a local x

m Figure out which copy of x is referred to at any point of the execution

m Scope and lifetime of variables

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

m Consider the following program
block

' %ntx= ; @Y(lhk: _"—O')‘ \,\Cﬂ" (;H;(

int y = 3;
X = x+2; y = xty; ‘g

print(x,y);

X =x+2; y =
print(x,y);

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

m Consider the following program

block
{
int x = 2;
int y = 4;
{
int y = 3; Quter y is hidden.
X = x+2; y = xty; Updated y value is not propagated outside
print(x,y); 4, 7
+

x = x+2; y = xty;
print(x,y);

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

m Consider the following program
block

Quter y is hidden.
Updated y value is not propagated outside
4, 7

Outer y value and updated x value
6, 10

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Scope and Lifetime

m Scope — Region of text in which a declaration is visible

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Scope and Lifetime

m Scope — Region of text in which a declaration is visible

m Lifetime — Duration, at run-time, that a memory location is allocated for a specific
declaration

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

m Scope — Region of text in which a declaration is visible

m Lifetime — Duration, at run-time, that a memory location is allocated for a specific
declaration

m Consider the example below

{int x = ...;
{inty = ...;
{int x = ...
}
}
}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Scope and Lifetime

m Scope — Region of text in which a declaration is visible

m Lifetime — Duration, at run-time, that a memory location is allocated for a specific
declaration

m Consider the example below

1 int R -) m Scope of outer x is the two outer blocks

l/{ inty = ...;

{int x = ...

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Scope and Lifetime

m Scope — Region of text in which a declaration is visible

m Lifetime — Duration, at run-time, that a memory location is allocated for a specific
declaration

m Consider the example below

m Scope of outer x is the two outer blocks

{int x = ...;
{inty= ... m Scope of the inner x is the innermost block
m{ int)= ...;
}
}
}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Scope and Lifetime

m Scope — Region of text in which a declaration is visible

m Lifetime — Duration, at run-time, that a memory location is allocated for a specific
declaration

m Consider the example below

m Scope of outer x is the two outer blocks

{int x = ...;
{inty=.. m Scope of the inner x is the innermost block
(’{ mJ.C X ' m Lifetime of inner x is the time during which
} innermost block is active
}
}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Scope and Lifetime

m Scope — Region of text in which a declaration is visible

m Lifetime — Duration, at run-time, that a memory location is allocated for a specific
declaration

m Consider the example below

{int x = ... m Scope of outer x is the two outer blocks
{ int Vo= e m Scope of the inner x is the innermost block
¢ mJ.C X Co m Lifetime of inner x is the time during which
} innermost block is active
3 ¥ m Lifetime of outer x is the time during which

outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

static variables

m static variables are associated with a class as a whole

m Do not require instantiation of objects

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

static variables

m static variables are associated with a class as a whole

m Do not require instantiation of objects

public class A {
static int howManyAs = O;
int id;
public A(int id) {
hoyManvAs =1;
this.id = id;

Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Madhavan Mukund/S P Suresh

static variables

m static variables are associated with a class as a whole

m Do not require instantiation of objects

m The static variable howManyAs counts the

public class A { .
number of instances of A created

static int howManyAs = O;

int id;

public A(int id) {
howManyAs += 1;
this.id = id;

PLC Jan—Apr 2026

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf:

static variables

m static variables are associated with a class as a whole

m Do not require instantiation of objects

m The static variable howManyAs counts the

public class A { .
number of instances of A created

static int howManyAs = O;

int id;

public A(int id) {
howManyAs += 1;
this.id = id;

m Lifetime of howManyAs spans the execution of
the entire program

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

static variables

m static variables are associated with a class as a whole

m Do not require instantiation of objects

m The static variable howManyAs counts the

public class A { .
number of instances of A created

static int howManyAs = O;
int id; e ou- .
m Lifetime of howManyAs spans the execution of

public A(int id) { .
howManyAs += 1; the entire program

this.id = id; m Scope of howlManyAs is limited to the class A

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Activation Record

m For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Activation Record

m For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

m Activation record — collection of all data related to a function invocation

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Activation Record

m For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

m Activation record — collection of all data related to a function invocation

m Includes space for local variables, parameters, intermediate results, and some
pointers

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Call graph

m A call graph helps us visualize the
function calls during a program
execution

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Call graph

m A call graph helps us visualize the
function calls during a program
execution

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Call graph

m A call graph helps us visualize the m The set of active function calls at any
function calls during a program point of time lies on the path from the
execution root to the right most leaf

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Call graph

m A call graph helps us visualize the

m The set of active function calls at any
function calls during a program

point of time lies on the path from the

execution root to the right most leaf
main m If £ calls g, then g is completed before £
|
£ — £ ™~ g
/N VRN
g f f g
/ N\ |
f f h

Madhavan Mukund/S P Suresh

Lecture 5, 22 January 2026 Java: abstract classes, interf:

PLC Jan—Apr 2026

Call graph

m A call graph helps us visualize the m The set of active function calls at any
function calls during a program point of time lies on the path from the
execution root to the right most leaf

main m If £ calls g, then g is completed before £
P N
f f g m Store the activation records on a stack
/N VRN
g f f g
/ N\ |
f f h

Madhavan Mukund/S P Suresh

Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Call graph

m A call graph helps us visualize the
function calls during a program

execution
main
\
f/ £ \g
VRN /N
g f f g
/ N\ \
f f h

m The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

m If £ calls g, then g is completed before £
m Store the activation records on a stack

m Activation record is also called a stack
frame

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Activation records on stack

m Assume that main has local variables a

main “\L and b, f has x and vy, and g has z
\
0(,4 _ : . g
/N VAN
S f f g
/ N\ \
f f h

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Activation records on stack

m Assume that main has local variables a
main and b, f has x and vy, and g has z
\
£ / f \ g m Place activation records on a stack —
N VRN grows and shrinks as a program
f f

g g executes

/ \
f f h

/
\

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

Activation records on stack

m Assume that main has local variables a
main and b, f has x and vy, and g has z
\
/

v

m Place activation records on a stack —

AN grows and shrinks as a program
[g f f g executes
/ N\ \
f f h
m The stack evolves as follows:
main ’ a,b ‘ a,b a,b a,b a,b
f X,y X,y @ X,y
g z Z z

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

General layout of a program in memory

{ Stack

Code Segment

Data Segment T Heap

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interf: PLC Jan-Apr 2026

