
Lecture 5, 22 January 2026
Java: abstract classes, interfaces

Storage allocation

Madhavan Mukund, S P Suresh

Programming Language Concepts
January–April 2026



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 2 / 34

simula

eventaneue



Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 3 / 34

O



Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 3 / 34



Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 3 / 34

Shape

Circlesquare·



Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

public abstract class Shape{

...

public abstract double perimeter();

...

}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 3 / 34



Abstract classes . . .

Can still declare variables whose type is an abstract class

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 4 / 34



Abstract classes . . .

Can still declare variables whose type is an abstract class

Shape shapearr[] = new Shape[3];

int sizearr[] = new int[3];

shapearr[0] = new Circle(...);

shapearr[1] = new Square(...);

shapearr[2] = new Rectangle(...);

for (i = 0; i < 3; i++){

sizearr[i] = shapearr[i].perimeter();

// each shapearr[i] calls the appropriate method

...

}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 4 / 34

- Dynanc dispatch



Generic functions

Use abstract classes to specify generic properties

public abstract class Comparable{

public abstract int cmp(Comparable s);

// return -1 if this < s,

// 0 if this == 0,

// +1 if this > s

}

Now we can sort any array of objects that extend Comparable

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 5 / 34



Generic functions

Use abstract classes to specify generic properties

public abstract class Comparable{

public abstract int cmp(Comparable s);

// return -1 if this < s,

// 0 if this == 0,

// +1 if this > s

}

Now we can sort any array of objects that extend Comparable

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

// Usual code for quicksort, except that

// to compare a[i] and a[j] we use a[i].cmp(a[j])

}

}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 5 / 34

-

- any subtype ofComparable



Generic functions . . .

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

}

}

To use this definition of quicksort, we write

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 6 / 34



Generic functions . . .

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

}

}

To use this definition of quicksort, we write

public class Myclass extends Comparable{

private double size; // quantity used for comparison

public int cmp(Comparable s){

if (s instanceof Myclass){

// compare this.size and ((Myclass) s).size

// Note the cast to access s.size

}

}

}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 6 / 34

- "Structural Polymorphism"

-

-

-- o



Multiple inheritance

Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape

Need Circle to also extend Comparable

Can a subclass extend multiple parent classes?

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 7 / 34



Multiple inheritance

Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape

Need Circle to also extend Comparable

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 7 / 34



Multiple inheritance

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 8 / 34



Multiple inheritance

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

public int f(); public int f();

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 8 / 34



Multiple inheritance

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

public int f(); public int f();

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 8 / 34



Multiple inheritance

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

public int f(); public int f();

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 8 / 34



Interfaces and Multiple inheritance

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

Can extend only one class, but can implement multiple interfaces

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 9 / 34

-



Interfaces and Multiple inheritance

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{

public double perimeter(){...}

public int cmp(Comparable s){...}

...

}

Can extend only one class, but can implement multiple interfaces

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 9 / 34

--



Interfaces and Multiple inheritance

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{

public double perimeter(){...}

public int cmp(Comparable s){...}

...

}

Can extend only one class, but can implement multiple interfaces

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 9 / 34



Interfaces and Multiple inheritance

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{

public double perimeter(){...}

public int cmp(Comparable s){...}

...

}

Can extend only one class, but can implement multiple interfaces

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities
Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 9 / 34

But--

Java now allows

concrete fus
in interfaces

class A extendsB implements
C
,
D
,E



Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 10 / 34

G
Forest of classes be

23



Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 10 / 34

oper
B



Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 10 / 34

-



Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 10 / 34



Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 10 / 34



Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 11 / 34

-

Object. equals()



Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 11 / 34



Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 11 / 34

objan [1] equals (0)



Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 12 / 34



Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 12 / 34

O



Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 12 / 34



Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

public boolean equals(Object d){

if (d instanceof Date){

Date myd = (Date) d;

return ((this.day == myd.day) &&

(this.month == myd.month) &&

(this.year == myd.year));

}

return(false);

}

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 12 / 34

-
-



Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 13 / 34



Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 13 / 34

Object
Employee

Manager



Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 13 / 34

L
subtype of Employee , then Object



Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 13 / 34



Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 13 / 34



Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 14 / 34



Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 14 / 34



Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 14 / 34



Subtyping vs inheritance

Consider the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 15 / 34



Subtyping vs inheritance

Consider the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 15 / 34



Subtyping vs inheritance

Consider the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 15 / 34



Subtyping vs inheritance

Consider the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 15 / 34



Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 16 / 34



Variables, functions and storage

Variables represent data residing in a memory location

Compiler creates a map from variables to memory addresses

Functions represent blocks of (reusable) code

Complexities introduced by recursion

Many versions of the same local variable active at the same time

Need a way to keep track of all copies of a local x

Figure out which copy of x is referred to at any point of the execution

Scope and lifetime of variables

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 17 / 34



Variables, functions and storage

Variables represent data residing in a memory location

Compiler creates a map from variables to memory addresses

Functions represent blocks of (reusable) code

Complexities introduced by recursion

Many versions of the same local variable active at the same time

Need a way to keep track of all copies of a local x

Figure out which copy of x is referred to at any point of the execution

Scope and lifetime of variables

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 17 / 34



Variables, functions and storage

Variables represent data residing in a memory location

Compiler creates a map from variables to memory addresses

Functions represent blocks of (reusable) code

Complexities introduced by recursion

Many versions of the same local variable active at the same time

Need a way to keep track of all copies of a local x

Figure out which copy of x is referred to at any point of the execution

Scope and lifetime of variables

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 17 / 34



Scope

Consider the following program
block

{

int x = 2;

int y = 4;

{

int y = 3;

x = x+2; y = x+y;

print(x,y);

}

x = x+2; y = x+y;

print(x,y);

}

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 18 / 34

for (inti = 0 ; i< n ; (++))

:



Scope

Consider the following program
block

{

int x = 2;

int y = 4;

{

int y = 3;

x = x+2; y = x+y;

print(x,y);

}

x = x+2; y = x+y;

print(x,y);

}

Outer y is hidden.

Updated y value is not propagated outside

4, 7

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 18 / 34



Scope

Consider the following program
block

{

int x = 2;

int y = 4;

{

int y = 3;

x = x+2; y = x+y;

print(x,y);

}

x = x+2; y = x+y;

print(x,y);

}

Outer y is hidden.

Updated y value is not propagated outside

4, 7

Outer y value and updated x value

6, 10

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 18 / 34

&⑳o·



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 19 / 34



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 19 / 34



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 19 / 34



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 19 / 34

~ x

v

X



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 19 / 34

↑
a



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 19 / 34

It



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 19 / 34



static variables

static variables are associated with a class as a whole

Do not require instantiation of objects

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 20 / 34



static variables

static variables are associated with a class as a whole

Do not require instantiation of objects

public class A {

static int howManyAs = 0;

int id;

public A(int id) {

howManyAs += 1;

this.id = id;

}

}

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 20 / 34

-
-



static variables

static variables are associated with a class as a whole

Do not require instantiation of objects

public class A {

static int howManyAs = 0;

int id;

public A(int id) {

howManyAs += 1;

this.id = id;

}

}

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 20 / 34



static variables

static variables are associated with a class as a whole

Do not require instantiation of objects

public class A {

static int howManyAs = 0;

int id;

public A(int id) {

howManyAs += 1;

this.id = id;

}

}

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 20 / 34



static variables

static variables are associated with a class as a whole

Do not require instantiation of objects

public class A {

static int howManyAs = 0;

int id;

public A(int id) {

howManyAs += 1;

this.id = id;

}

}

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 20 / 34



Activation Record

For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

Activation record — collection of all data related to a function invocation

Includes space for local variables, parameters, intermediate results, and some
pointers

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 21 / 34



Activation Record

For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

Activation record — collection of all data related to a function invocation

Includes space for local variables, parameters, intermediate results, and some
pointers

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 21 / 34



Activation Record

For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

Activation record — collection of all data related to a function invocation

Includes space for local variables, parameters, intermediate results, and some
pointers

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 21 / 34



Call graph

A call graph helps us visualize the
function calls during a program
execution

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Activation record is also called a stack
frame

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 22 / 34



Call graph

A call graph helps us visualize the
function calls during a program
execution

main

f

g

f f

f

h

f g

f g

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Activation record is also called a stack
frame

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 22 / 34

·



Call graph

A call graph helps us visualize the
function calls during a program
execution

main

f

g

f f

f

h

f g

f g

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Activation record is also called a stack
frame

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 22 / 34

Gro



Call graph

A call graph helps us visualize the
function calls during a program
execution

main

f

g

f f

f

h

f g

f g

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Activation record is also called a stack
frame

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 22 / 34



Call graph

A call graph helps us visualize the
function calls during a program
execution

main

f

g

f f

f

h

f g

f g

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Activation record is also called a stack
frame

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 22 / 34



Call graph

A call graph helps us visualize the
function calls during a program
execution

main

f

g

f f

f

h

f g

f g

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Activation record is also called a stack
frame

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 22 / 34



Activation records on stack

main

f

g

f f

f

h

f g

f g

Assume that main has local variables a
and b, f has x and y, and g has z

Place activation records on a stack —
grows and shrinks as a program
executes

The stack evolves as follows:

main a,b a,b a,b a,b a,b

f x,y x,y x,y x,y

g z z z

f x,y

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 23 / 34

a, b

u
,Y

Z



Activation records on stack

main

f

g

f f

f

h

f g

f g

Assume that main has local variables a
and b, f has x and y, and g has z

Place activation records on a stack —
grows and shrinks as a program
executes

The stack evolves as follows:

main a,b a,b a,b a,b a,b

f x,y x,y x,y x,y

g z z z

f x,y

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 23 / 34



Activation records on stack

main

f

g

f f

f

h

f g

f g

Assume that main has local variables a
and b, f has x and y, and g has z

Place activation records on a stack —
grows and shrinks as a program
executes

The stack evolves as follows:

main a,b a,b a,b a,b a,b

f x,y x,y x,y x,y

g z z z

f x,y

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 23 / 34

i

↓



General layout of a program in memory

Code Segment

Data Segment

Stack→

Heap↑

Madhavan Mukund/S P Suresh Lecture 5, 22 January 2026 Java: abstract classes, interfaces Storage allocationPLC Jan–Apr 2026 24 / 34

-
Dynamically
-

created
date


