Lecture 4, 20 January 2026

Java: classes, inheritance, polymorphism,

Madhavan Mukund, S P Suresh

Programming Language Concepts
January-April 2026

Classes and objects

m A class is a template for an encapsulated type
m An object is an instance of a class
m How do we create objects?

m How are objects initialized?

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Defining a class

m Definition block using class, with class name

m Modifier public to indicate visibility publig) class Date {

m Java allows public to be omitted privateYint day, month, year;

m Default visibility is public to package "5L°L.J, K Aedarvahin
.« e e S

Packages are administrative units of code

m All classes defined in same directory form part
of same package

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Defining a class

m Definition block using class, with class name

m Modifier public to indicate visibility public class Date {

m Java allows public to be omitted private int day, month, year;
m Default visibility is public to package

Packages are administrative units of code

m All classes defined in same directory form part
of same package
m Instance variables

m Each concrete object of type Date will have
local copies of date, month, year

m These are marked private

m Can also have public instance variables, but
breaks encapsulation

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Creating objects

public void UseDate() {

m Declare type using class name Date d;
d =(new) Date();

m new creates a new object

m How do we set private instance variables?

P= Porx LS,S‘)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Creating objects

public void UseDate() {
m Declare type using class name Date d;

d = new Date();
m new creates a new object

m How do we set private instance variables? ¥

m Can add methods to update values public class Date {

m this is a reference to current object private int day, month, year;

public void setDate(int d, int m,

AVES int y){

: A Daﬂ this.day = d;

this.month = m;
this.year = y;
S Mohh, .
AJ)\’\leﬁ/\, ¥

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Creating o

public void UseDate() {
Date d;

m Declare type using class name
d = new Date();

m new creates a new object

m How do we set private instance variables? ¥
m Can add methods to update values public class Date {
m this is a reference to current object private int day, month, year;

m Can omit this if reference is unambiguous
g public void setDate(int d, int m,

Unlilee V\.ﬂ'm \ N int y){

month = m;
year = y;

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Creating o

public class Date {
m Declare type using class name

m new creates a new object public int getDay(){
return(day) ;

}

m How do we set private instance variables?

m Can add methods to update values

o . public int getMonth(){
m this is a reference to current object

return(month) ;
m Can omit this if reference is unambiguous }
m What if we want to check the values? public int getYear(){
m Methods to read and report values return(year) ;
}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Creating o

public class Date {
m Declare type using class name

m new creates a new object public int getDay(){
return(day) ;

}

m How do we set private instance variables?

m Can add methods to update values

o . public int getMonth(){
m this is a reference to current object

return(month) ;
m Can omit this if reference is unambiguous }
m What if we want to check the values? public int getYear(){
m Methods to read and report values return(year) ;
}

m Accessor and Mutator methods

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Initializing objects

m Would be good to set up an object when we
create it

m Combine new Date() and setDate()

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Initializing objects

m Would be good to set up an object when we public class Date {
create it private int day, month, year;
m Combine new Date() and setDate() public Date(int d, int m, int y){
. . day = d;
m Constructors — special functions called when o
. . month = m;
an object is created year = y;

m Function with the same name as the class }

m d = new Date(12,2,2019);

—-——_mt_. n

Ribaon

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Initializing objects

m Would be good to set up an object when we public class Date {
private int day, month, year;

create it
m Combine new Date() and setDate() public Date(int d, int m, int y){
. . day = d; =
m Constructors — special functions called when ¥ o
. . month = m;
an object is created year = y;

m Function with the same name as the class }

m d = new Date(12,2,2019); public Date(int d, int m){

m Constructors with different signatures day = d;
month = m;
m d = new Date(12,2); sets year to 2026 year = 2026; \
m Java allows function overloading — same } w“L W‘\\.
name, different signatures } 2025

m Python: default (optional) arguments, no
overloading

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

HMo
ok
O(A £
: 1a(m}cﬂ
C\v\k&{m:>
5) 7

WY gk Ao
A\) \-ﬁ =
g(jvudrm
n
W
C/(lo
1«3 £
,mk;)

Constructors . ..

m A later constructor can call an earlier one using Public class Date {
this private int day, month, year;

public Date(int d, int m, int y){
day = d;
month = m;
year = y;

}

public Date(int d, int m){
this(d,m,2026) ;
}
}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Constructors . ..

m A later constructor can call an earlier one using ~Public class Date {
private int day, month, year;

this
m If no constructor is defined, Java provides a public Date(int d, int m, int y){
default constructor with empty arguments day = d;
month = m;
m new Date() would implicitly invoke this year = y; >

m Sets instance variables to sensible defaults }

m For instance, int variables set to 0
public Date(int d, int m){

m Only valid if no constructor is defined this(d,m,2026) ;

Otherwise need an explicit constructor without + K<
arguments i

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Subclasses

public class Employee{

. —
m An Employee class private String name;
private double salary;

// Some Constructors

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(O{ ... }

// other methods
public double bonus(float percent){
return (percent/100.0)*salary;
}
}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Subclasses

m An Employee class

m Two private instance variables

public class Employee{
private String name;
private double salary;

// Some Constructors

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(O{ ... }

// other methods
public double bonus(float percent){
return (percent/100.0)*salary;

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Subclasses

m An Employee class
m Two private instance variables

m Some constructors to set up the
object

public class Employee{
private String name;
private double salary;

// Some Constructors

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(O{ ... }

// other methods
public double bonus(float percent){
return (percent/100.0)*salary;

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc

PLC Jan-Apr 2026

Subclasses

m An Employee class
m Two private instance variables

m Some constructors to set up the
object

m Accessor and mutator methods to set
instance variables

public class Employee{
private String name;
private double salary;

// Some Constructors

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(O{ ... }

// other methods
public double bonus(float percent){
return (percent/100.0)*salary;

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc

PLC Jan-Apr 2026

Subclasses

m An Employee class
m Two private instance variables

m Some constructors to set up the
object

m Accessor and mutator methods to set
instance variables

m A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors Nawe 2z §
// "mutator" methods 'L
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(O{ ... }

// other methods
public (oublé)bonus(float percent){
retdrn (percent/100.0)*salary;

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc

PLC Jan-Apr 2026

m Managers are special types of employees with extra features
public class Manager extends Emplovee{

private String secretary; '—M&w

public boolean setSecretary(name s){ ... } “ W)
public String getSecretary(O{ ... }

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Subclasses

m Managers are special types of employees with extra features (‘).hSS ngw (ﬂd’w‘é

public class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }

public String getSecretary(O){ ... } lV\L\Q'Y))'RMC{

}

m Manager object dther fields and methods from Employee

m Every Manager has a name, salary and methods to access and manipulate these.

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Subclasses

m Managers are special types of employees with extra features

public class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(O{ ... }

}

m Manager objects inherit other fields and methods from Employee

m Every Manager has a name, salary and methods to access and manipulate these.

m Manager is a subclass of Employee
m Think of subset :

PLC Jan—Apr 2026

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc

Subclasses

m Manager objects do not
automatically have access to private
data of parent class.

m Common to extend a parent class
written by someone else

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Subclasses

m Manager objects do not
automatically have access to private
data of parent class.

m Common to extend a parent class
written by someone else

m How can a constructor for Manager
set instance variables that are private
to Employee?

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Subclasses

m Manager objects do not public class Employee{
automatically have access to private

data of parent class public Employee(String n, double s){

name = n; salary = s;

m Common to extend a parent class ¥
written by someone else public Employee(String n){
this(n,500.00);
m How can a constructor for Manager by
}

set instance variables that are private
to Employee?

m Some constructors for Employee

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Subclasses

m Manager objects do not public class Employee{
automatically have access to private

data of parent class public Employee(String n, double s){

name = n; salary = s;

m Common to extend a parent class ¥
written by someone else public Employee(String n){
this(n,500.00);
m How can a constructor for Manager by
}

set instance variables that are private
to Employee?

m Some constructors for Employee

m Use parent class’s constructor using
super

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Subclasses

m Manager objects do not
automatically have access to private
data of parent class.

m Common to extend a parent class
written by someone else

m How can a constructor for Manager
set instance variables that are private
to Employee?

m Some constructors for Employee

m Use parent class’s constructor using
super

m A constructor for Manager

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc

public class Employee{

public Employee(String n, double s){
name = n; salary = s;

}

public Employee(String n){
this(n,500.00);

public class Manager extends Employee{

publicManager (String n, double s, String sn){
w /* super calls

Employee constructor */
secretary = sn;

PLC Jan—Apr 2026

Inheritance

m In general, subclass has more features
than parent class

m Subclass inherits instance variables,
methods from parent class

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Inheritance

m In general, subclass has more features
than parent class

m Subclass inherits instance variables, S
methods from parent class l' v X
m Every Manager is an Employee, but not
vice versal

m Can use a subclass in place of a
superclass

Employee e = new Manager(...)

m But the following will not work

Manager m = new Employee(...)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

public chmk & vk om w :Dz

5 .

ple boke ary M“"“){
Thrs (4 2028) ;

Inheritance

m In general, subclass has more features m Recall

than parent class m int[] a = new int[100];

m Subclass inherits instance variables,

m Why the seemingly redundant
methods from parent class

reference to int in new?

m Every Manager is an Employee, but not
vice versal

m Can use a subclass in place of a
superclass

Employee e = new Manager(...)

m But the following will not work

Manager m = new Employee(...)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Inheritance

m In general, subclass has more features m Recall

than parent class m int[] a = new int[100];

m Subclass inherits instance variables, m Why the seemingly redundant

methods from parent class reference to int in new?

m Every Manager is an Employee, but not m One can now presumably write

vice versal Employee[] e = new Manager[100];

m Can use a subclass in place of a
superclass

Employee e = new Manager(...)

m But the following will not work

Manager m = new Employee(...)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Dynamic dispatch

m Manager can redefine bonus ()

double bonus(float percent){
return 1.5%super.bonus(percent);

}

m Uses parent class bonus () via'super

m Overrides definition in parent class

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Dynamic dispatch

m Manager can redefine bonus ()

double bonus(float percent){
return 1.5%super.bonus(percent);

}

m Uses parent class bonus () via super

m Overrides definition in parent class

m Consider the following assignment

Employee e = new Manager(...)

m Can we invoke e.setSecretary()?

M- Lowvn\e. ﬁwzlu

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Dynamic dispatch

m Manager can redefine bonus ()

double bonus(float percent){
return 1.5%super.bonus(percent);

}

m Uses parent class bonus () via super
m Overrides definition in parent class
m Consider the following assignment
Employee e = new Manager(...)
m Can we invoke e.setSecretary()?
m e is declared to be an Employee

m Static typechecking — e can only
refer to methods in Employee

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Dynamic dispatch

m Manager can redefine bonus () m What about e.bonus (p)? Which

?
double bonus(float percent){ bonus () do we use

return 1.5%super.bonus(percent); m Static: Use Employee.bonus ()

¥ m Dynamic: Use Manager.bonus ()
m Uses parent class bonus () via super

m Overrides definition in parent class
m Consider the following assignment
Employee e = new Manager(...)
m Can we invoke e.setSecretary()?
m e is declared to be an Employee

m Static typechecking — e can only
refer to methods in Employee

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Dynamic dispatch

m Manager can redefine bonus () m What about e.bonus (p)? Which

?
double bonus(float percent){ bonus () do we use

return 1.5%super.bonus(percent); m Static: Use Employee.bonus ()

¥ m Dynamic: Use Manager.bonus ()
u tcl b i-
= Uses parent class bonus() via super m Dynamic dispatch (dynamic binding,
late method binding, ...) turns out to
m Consider the following assignment be more useful

m Overrides definition in parent class

Default in Java, optional in languages
Employee e = new Manager(...) " ')
Py N & like C++ (virtual function)
m Can we invoke e.setSecretary()?

m e is declared to be an Employee

m Static typechecking — e can only
refer to methods in Employee

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Polymorphism

m Every Employee in emparray

. . . Employee[] emparray = new Employee[2];
knows"” how to calculate its bonus

Employee e = new Employee(...);
correctly! Manager m = new Manager(...);

emparray[0] = e;
emparray [1] m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i] .bonus(5.0))
}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Polymorphism

m Every Employee in emparray

- ; : Q := make-queue(start event)
knows"” how to calculate its bonus repeat
conecﬂy! remove first event e from Q

. . . e.simulate()
m Object oriented programming add all events generated

originated in Simula — event by e to Q
simulation loop until Q is empty

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Polymorphism

m Every Employee in emparray
“knows” how to calculate its bonus
correctly!

m Object oriented programming
originated in Simula — event
simulation loop

m Also referred to as runtime
polymorphism or inheritance
polymorphism

Employee[] emparray = new Employee[2];
Employee e = new Employee(...);
Manager m = new Manager(...);

emparray[0] = e;

emparray [1] m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i] .bonus(5.0))
}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Polymorphism

m Every Employee in emparray

. . . Employee[] emparray = new Employee[2];
knows"” how to calculate its bonus

Employee e = new Employee(...);
correctly! Manager m = new Manager(...);

m Object oriented programming emparray[0] = e;
originated in Simula — event emparray[1]
simulation loop

’

for (i = 0; i < emparray.length; i++){

m Also referred to as runtime System.out.println(emparray[i] .bonus(5.0))

polymorphism or inheritance }
polymorphism

m Different from structural
polymorphism of Haskell etc — called
generics in Java

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Functions, signatures and overloading

m Signature of a function is its name and

the list of argument types Bu)r Mn’ MUW" ﬁ‘)(

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Functions, signatures and overloading

m Signature of a function is its name and
the list of argument types

m Can have different functions with the
same name and different signatures

m For example, multiple constructors

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Functions, signatures and overloading

m Signature of a function is its name and
the list of argument types

m Can have different functions with the
same name and different signatures
m For example, multiple constructors

m Java class Arrays has a method sort
to sort arbitrary scalar arrays

double[] darr = new double[100];
int[] iarr = new int[500];

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc

PLC Jan—Apr 2026

Functions, signatures and overloading

m Signature of a function is its name and
the list of argument types

m Can have different functions with the
same name and different signatures
m For example, multiple constructors

m Java class Arrays has a method sort
to sort arbitrary scalar arrays

m Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];
int[] iarr = new int[500];

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents o} iarr

class Arrays{

public static vojd sort(double[] a){..}
// sorts arrays of doublel]

public static vord sort(int[] a){..}
// sorts arrays of int[]

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc

PLC Jan—Apr 2026

Functions, signatures and overloading

double[] darr = new double[100];

m Overloading: multiple methods,
int[] iarr = new int[500];

different signatures, choice is static

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Functions, signatures and overloading

m Overloading: multiple methods,
different signatures, choice is static

m Overriding: multiple methods, same
signature, choice is static
m Employee.bonus ()

m Manager.bonus ()

double[] darr = new double[100];
int[] iarr = new int[500];

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]

PLC Jan-Apr 2026

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc

Functions, signatures and overloading

m Overloading: multiple methods,
different signatures, choice is static

m Overriding: multiple methods, same
signature, choice is static

m Employee.bonus ()
m Manager.bonus ()
m Dynamic dispatch: multiple methods,

same signature, choice made at
run-time

double[] darr = new double[100];
int[] iarr = new int[500];

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]

Madhavan Mukund/S P Suresh

Lecture 4, 20 January 2026 Java: classes, inheritance, pc

PLC Jan-Apr 2026

Type casting

m Consider the following assignment

Employee e = new Manager(...)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Type casting

m Consider the following assignment

Employee e = new Manager(...)

m Can we get e.setSecretary() to
work?

m Static type-checking disallows this

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Type casting

m Consider the following assignment

Employee e = new Manager(...)
m Can we get e.setSecretary() to
work?

m Static type-checking disallows this

m Type casting — convert e to Manager

((Manager) e).setSecretary(s)
——

Mrrmise” d um.f] Yea,

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Type casting

m Consider the following assignment

Employee e = new Manager(...)

m Can we get e.setSecretary() to
work?

m Static type-checking disallows this

m Type casting — convert e to Manager
((Manager) e).setSecretary(s)

m Cast fails (error at run time) if e is not
a Manager

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Type casting

m Consider the following assignment m Can test if e is a Manager
Employee e = new Manager(...) if (e instanceof Manager){
((Manager) e).setSecretary(s);
m Can we get e.setSecretary() to }
work?

m Static type-checking disallows this

m Type casting — convert e to Manager
((Manager) e).setSecretary(s)

m Cast fails (error at run time) if e is not
a Manager

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Type casting

m Consider the following assignment m Can test if e is a Manager
Employee e = new Manager(...) if (e instanceof Manager){
((Manager) e).setSecretary(s);
m Can we get e.setSecretary() to }
work?

. . . . m A simple example of reflection in Java
m Static type-checking disallows this P P

m “Think about oneself”
m Type casting — convert e to Manager

((Manager) e).setSecretary(s)

m Cast fails (error at run time) if e is not
a Manager

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Type casting

m Consider the following assignment m Can test if e is a Manager
Employee e = new Manager(...) if (e instanceof Manager){
((Manager) e).setSecretary(s);
m Can we get e.setSecretary() to }
work?

. . . . m A simple example of reflection in Java
m Static type-checking disallows this P P

m “Think about oneself”
m Type casting — convert e to Manager
m Can also use type casting for basic

types

((Manager) e).setSecretary(s)

m Cast fails (error at run time) if e is not
a Manager

double d = 29.98;
long nd = (long) d;

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Grouping together classes

m Sometimes we collect together classes under a common heading

m Classes Circle, Square and Rectangle are all shapes

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Grouping together classes

m Sometimes we collect together classes under a common heading
m Classes Circle, Square and Rectangle are all shapes
m Create a class Shape so that Circle, Square and Rectangle extend Shape

m We want to force every Shape to define a function

public double perimeter()

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Grouping together classes

m Sometimes we collect together classes under a common heading
m Classes Circle, Square and Rectangle are all shapes
m Create a class Shape so that Circle, Square and Rectangle extend Shape

m We want to force every Shape to define a function

public double perimeter()

m Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

m Rely on the subclass to redefine this function

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

Grouping together classes

m Sometimes we collect together classes under a common heading
m Classes Circle, Square and Rectangle are all shapes
m Create a class Shape so that Circle, Square and Rectangle extend Shape

m We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

m What if this doesn’t happen?

m Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, pc PLC Jan-Apr 2026

