
Lecture 4, 20 January 2026

Java: classes, inheritance, polymorphism, abstract classes

Madhavan Mukund, S P Suresh

Programming Language Concepts
January–April 2026

m



Classes and objects

A class is a template for an encapsulated type

An object is an instance of a class

How do we create objects?

How are objects initialized?

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 2 / 30



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 3 / 30

O
O

"global" declarations

T



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 3 / 30



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {

Date d;

d = new Date();

...

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 4 / 30

->

0

p= Point (3,5)



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {

Date d;

d = new Date();

...

}

public class Date {

private int day, month, year;

public void setDate(int d, int m,

int y){

this.day = d;

this.month = m;

this.year = y;

}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 4 / 30

US

setDay
setMonte
satYear



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {

Date d;

d = new Date();

...

}

public class Date {

private int day, month, year;

public void setDate(int d, int m,

int y){

day = d;

month = m;

year = y;

}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 4 / 30

Unlike Python ?



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {

...

public int getDay(){

return(day);

}

public int getMonth(){

return(month);

}

public int getYear(){

return(year);

}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 4 / 30



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {

...

public int getDay(){

return(day);

}

public int getMonth(){

return(month);

}

public int getYear(){

return(year);

}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 4 / 30



Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(12,2,2019);

Constructors with di!erent signatures

d = new Date(12,2); sets year to 2026

Java allows function overloading — same
name, di!erent signatures

Python: default (optional) arguments, no
overloading

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 5 / 30



Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(12,2,2019);

Constructors with di!erent signatures

d = new Date(12,2); sets year to 2026

Java allows function overloading — same
name, di!erent signatures

Python: default (optional) arguments, no
overloading

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 5 / 30

&
no return type

-- init--in

Python.



Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(12,2,2019);

Constructors with di!erent signatures

d = new Date(12,2); sets year to 2026

Java allows function overloading — same
name, di!erent signatures

Python: default (optional) arguments, no
overloading

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

day = d;

month = m;

year = 2026;

}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 5 / 30

--

>
call wit

2026



float f(inta
, inty) ?Odoublef (inta , ints)

not part double florga, intb)
of "Signature"



Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

this(d,m,2026);

}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 6 / 30

8
-



Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

this(d,m,2026);

}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 6 / 30

-
d 2 new Date(); Y



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 7 / 30

-



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 7 / 30



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 7 / 30



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 7 / 30



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 7 / 30

nam
a

G
- -

flial dis



Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 8 / 30

-
- additional

Il new



Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 8 / 30

class Squar (Retangle)
-

Inheritance
O



Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 8 / 30

Manage Emp



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 9 / 30



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 9 / 30



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 9 / 30



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 9 / 30



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

public class Manager extends Employee{
..
public Manager(String n, double s, String sn){

super(n,s); /* super calls
Employee constructor */

secretary = sn;
}

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 9 / 30

O

-



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 10 / 30



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work
Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 10 / 30

⑳Manager Employee



public Date(out , int m
, inty)d

S

public Date (int d
,
entm) &

thus (d ,m ,2026) ;
3 ↑
publicDatea



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work
Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 10 / 30

?

-



Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work
Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write
Employee[] e = new Manager[100];

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 10 / 30



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 11 / 30

Overloading
-

-Employee Overriding
-



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 11 / 30

At comple time



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 11 / 30



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 11 / 30



Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . . ) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 11 / 30



Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Object oriented programming
originated in Simula — event
simulation loop

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di!erent from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager m = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 12 / 30



Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Object oriented programming
originated in Simula — event
simulation loop

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di!erent from structural
polymorphism of Haskell etc — called
generics in Java

Q := make-queue(start event)

repeat

remove first event e from Q

e.simulate()

add all events generated

by e to Q

until Q is empty

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 12 / 30



Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Object oriented programming
originated in Simula — event
simulation loop

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di!erent from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager m = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 12 / 30



Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Object oriented programming
originated in Simula — event
simulation loop

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di!erent from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager m = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 12 / 30



Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di!erent functions with the
same name and di!erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 13 / 30

But not return type



Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di!erent functions with the
same name and di!erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 13 / 30



Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di!erent functions with the
same name and di!erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 13 / 30



Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di!erent functions with the
same name and di!erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 13 / 30

12



Functions, signatures and overloading

Overloading: multiple methods,
di!erent signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 14 / 30



Functions, signatures and overloading

Overloading: multiple methods,
di!erent signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 14 / 30



Functions, signatures and overloading

Overloading: multiple methods,
di!erent signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 14 / 30



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 15 / 30



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 15 / 30



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 15 / 30

promise" to compiler



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 15 / 30



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

long nd = (long) d;

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 15 / 30

-
-



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

long nd = (long) d;

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 15 / 30



Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

long nd = (long) d;

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 15 / 30

From



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 16 / 30



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 16 / 30



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 16 / 30



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Lecture 4, 20 January 2026 Java: classes, inheritance, polymorphism, abstract classesPLC Jan–Apr 2026 16 / 30


