
Lecture 3, 13 January 2026

Java: Scalars, control flow, classes

Madhavan Mukund, S P Suresh

Programming Language Concepts
January–April 2026

=



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you have
to create the program text somewhere,
compile it successfully, load it, run it, and
find out where your output went. With these
mechanical details mastered, everything else
is comparatively easy

In Python

print("hello, world")

. . . C

#include <stdio.h>

main()

{

printf("hello, world\n");

}

. . . and Java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 2 / 26



Scalar types

Java is an object-oriented language

All data encapsulated as objects?

Not quite

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 3 / 26



Scalar types

Java is an object-oriented language

All data encapsulated as objects?

Not quite

Type Size in bytes
int 4
long 8
short 2
byte 1
float 4
double 8
char 2

boolean 1

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 3 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

int x, y;

double z;

char c;

boolean b1, b2;

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 4 / 26

Byron

n =5 width = 6

I

"
S

= "hello" witdh =7



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

int x, y;

double z;

x = 5;

z = 7.0;

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 4 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

char c,d;

c = ’x’;

d = ’\u03C0’; // Greek pi, unicode

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 4 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

boolean b1, b2;

b1 = false;

b2 = true;

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 4 / 26

O



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

int x;

x = 10;

double y;

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 4 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

int x = 10;

double y = 5.7;

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 4 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants float pi = 3.1415927f;

pi = 22/7; // Disallow

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 4 / 26

O



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants final float pi = 3.1415927f;

pi = 22/7; // Flagged as error

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 4 / 26



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 5 / 26

O mod



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

float f = 22/7; // Value is 3.0

// Implicit conversion,

// int to float

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 5 / 26

⑳
Python 713 -> 2

.
33--

7113- 2

7
. 0113 . 0 ? 2

. 0



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 5 / 26

-

Library



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 5 / 26

Inti

array a

x= a(++]
x=a[++i]



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable int a = 0, b = 10;

a += 7; // Same as a = a+7

b *= 12; // Same as b = b*12

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 5 / 26



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s,t;

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 6 / 26



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s = "Hello", t = "world";

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 6 / 26



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 6 / 26



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

Cannot write

String s = "Hello";

s[3] = ’p’;

s[4] = ’!’;

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 6 / 26



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s = "Hello";

s = s.substring(0,3) + "p!";

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 6 / 26



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s = "Hello";

s = s.substring(0,3) + "p!";

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 6 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 7 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

int[] a;

a = new int[100];

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 7 / 26

O



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

int[] a;

a = new int[100];

int a[];

a = new int[100];

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 7 / 26

O
7

int 2
,y;

int x, y
,
a[] ;



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

int[] a;

a = new int[100];

int a[];

a = new int[100];

int a[] = new int[100];

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 7 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 7 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 7 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

int[] a;

int n;

n = 10;

a = new int[n];

n = 20;

a = new int[n];

a = {2, 3, 5, 7, 11};

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 7 / 26

0



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 8 / 26



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 8 / 26

If (co)
x+= 1 ;



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 8 / 26

- Zero or more times

-one or more times



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 8 / 26



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 8 / 26



Conditional execution

if (c) {...} else {...}
Condition must be in parentheses

else is optional

No braces needed if body is single statement

No elif, à la Python

Indentation is not forced - just align else if

Nested if is a single statement, no separate
braces required

No surprises

Aside: no def for function definition

public class MyClass {

...

public static int sign(int v) {

if (v < 0) {

return(-1);

} else if (v > 0) {

return(1);

} else {

return(0);

}

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 9 / 26

MyClass . Sign(7)

-
.



Conditional loops

while (c) {...}
Condition must be in parentheses

No braces needed if body is single statement

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

while (n > 0){

sum += n;

n--;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 10 / 26



Conditional loops

while (c) {...}
Condition must be in parentheses

No braces needed if body is single statement

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 10 / 26



Conditional loops

while (c) {...}
Condition must be in parentheses

No braces needed if body is single statement

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

do {

read input;

} while (input-condition);

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 10 / 26



Iteration

for (init; cond; upd) {...}
init — initialization

cond — terminating condition

upd — update

Inherited from C

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

Not good style to write for instead of
while

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 11 / 26

Iteratethough values in
a fixed sequence

for i = 1 to n

i

AfT--



Iteration

for (init; cond; upd) {...}
init — initialization

cond — terminating condition

upd — update

Inherited from C

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

Not good style to write for instead of
while

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 11 / 26

&



Iteration

for (init; cond; upd) {...}
init — initialization

cond — terminating condition

upd — update

Inherited from C

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

Not good style to write for instead of
while

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 11 / 26



Iteration

for (init; cond; upd) {...}
init — initialization

cond — terminating condition

upd — update

Inherited from C

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

Not good style to write for instead of
while

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 11 / 26



Iteration

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 12 / 26

-

-



Iteration

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 12 / 26

"
int x;

--
local to loop

pint i ? ->
Error⑬Fae

outside



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:

do something with x

Again for, di!erent syntax

for (type x : a)

do something with x;

}

In this version of for, the loop variable
must be declared in local scope

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 13 / 26



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:

do something with x

Again for, di!erent syntax

for (type x : a)

do something with x;

}

In this version of for, the loop variable
must be declared in local scope

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int v : a){

sum += v;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 13 / 26

Python

a is an -

array
-

of "type"



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:

do something with x

Again for, di!erent syntax

for (type x : a)

do something with x;

}

In this version of for, the loop variable
must be declared in local scope

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int v : a){

sum += v;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 13 / 26

O



Multiway branching

switch selects between di!erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 14 / 26

-

-

-



Multiway branching

switch selects between di!erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 14 / 26



Multiway branching

switch selects between di!erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 14 / 26



Multiway branching

switch selects between di!erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Lecture 3, 13 January 2026 Java: Scalars, control flow, classes PLC Jan–Apr 2026 14 / 26


