
Lecture 2, 8 January 2026

Classes, objects, Java

Madhavan Mukund, S P Suresh

Programming Language Concepts
January–April 2026



Abstract datatypes

Abstract data types

Structured collection with fixed interface

Stack is a sequence, but only allows push and pop

Separate implementation from interface

Priority queue allows insert and delete-max

Can implement a priority queue using sorted or unsorted lists, or using a heap

Define ADTs without reference to implemention?

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 2 / 24



Abstract datatypes

Abstract data types

Structured collection with fixed interface

Stack is a sequence, but only allows push and pop

Separate implementation from interface

Priority queue allows insert and delete-max

Can implement a priority queue using sorted or unsorted lists, or using a heap

Define ADTs without reference to implemention?

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 2 / 24



Abstract datatypes

Abstract data types

Structured collection with fixed interface

Stack is a sequence, but only allows push and pop

Separate implementation from interface

Priority queue allows insert and delete-max

Can implement a priority queue using sorted or unsorted lists, or using a heap

Define ADTs without reference to implemention?

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 2 / 24

pop (push(s ,v)) = v



Programming with objects

Object are like abstract datatypes

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Class

Template for a data type

How data is stored

How public functions manipulate data

Object

Concrete instance of template

Each object maintains a separate copy of local data

Invoke methods on objects — send a message to the object

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 3 / 24



Programming with objects

Object are like abstract datatypes

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Class

Template for a data type

How data is stored

How public functions manipulate data

Object

Concrete instance of template

Each object maintains a separate copy of local data

Invoke methods on objects — send a message to the object

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 3 / 24



Programming with objects

Object are like abstract datatypes

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Class

Template for a data type

How data is stored

How public functions manipulate data

Object

Concrete instance of template

Each object maintains a separate copy of local data

Invoke methods on objects — send a message to the object

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 3 / 24

En push/s , of
s
. push(v)



Example: 2D points, in Python

A point has coordinates (x , y)

Each point object stores its own internal
values x and y — instance variables

For a point p, the local values are p.x and p.y

self is a special name referring to the current
object — self.x, self.y

When we create an object, we need to set it up

Implicitly call a constructor function with a
fixed name

In Python, constructor is called init ()

Parameters are used to set up internal values

In Python, the first parameter is always self

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 4 / 24



Example: 2D points, in Python

A point has coordinates (x , y)

Each point object stores its own internal
values x and y — instance variables

For a point p, the local values are p.x and p.y

self is a special name referring to the current
object — self.x, self.y

When we create an object, we need to set it up

Implicitly call a constructor function with a
fixed name

In Python, constructor is called init ()

Parameters are used to set up internal values

In Python, the first parameter is always self

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 4 / 24

Inte

x=5 ;

intx = 5;



p= newport (4 .
7) : Eu

class Point &
float 2

, y ;

-- Constr



Lists l = [] 1 = new List()

l . append (5)

List
. Append (ts



Adding methods to a class

Translation: shift a point by (!x ,!y)

(x , y) →↑ (x +!x , y +!y)

Update instance variables

Distance from the origin

d =
√
x2 + y2

Does not update instance variables

state of object is unchanged

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

def translate(self,dx,dy):

self.x += dx

self.y += dy

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 5 / 24

11
-



Adding methods to a class

Translation: shift a point by (!x ,!y)

(x , y) →↑ (x +!x , y +!y)

Update instance variables

Distance from the origin

d =
√
x2 + y2

Does not update instance variables

state of object is unchanged

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

def translate(self,dx,dy):

self.x += dx

self.y += dy

def odistance(self):

import math

d = math.sqrt(self.x*self.x +

self.y*self.y)

return(d)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 5 / 24

* me

me
,x

me. Y



Changing the internal implementation

Polar coordinates: (r , ω), not (x , y)

r =
√
x2 + y2

ω = tan→1(y/x)

Distance from origin is just r

Translation

Convert (r , ω) to (x , y)

x = r cos ω, y = r sin ω

Recompute r , ω from (x +!x , y +!y)

Interface has not changed

User need not be aware whether
representation is (x , y) or (r , ω)

import math

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 6 / 24

↓



Changing the internal implementation

Polar coordinates: (r , ω), not (x , y)

r =
√
x2 + y2

ω = tan→1(y/x)

Distance from origin is just r

Translation

Convert (r , ω) to (x , y)

x = r cos ω, y = r sin ω

Recompute r , ω from (x +!x , y +!y)

Interface has not changed

User need not be aware whether
representation is (x , y) or (r , ω)

import math

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

def odistance(self):

return(self.r)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 6 / 24



Changing the internal implementation

Polar coordinates: (r , ω), not (x , y)

r =
√
x2 + y2

ω = tan→1(y/x)

Distance from origin is just r

Translation

Convert (r , ω) to (x , y)

x = r cos ω, y = r sin ω

Recompute r , ω from (x +!x , y +!y)

Interface has not changed

User need not be aware whether
representation is (x , y) or (r , ω)

def translate(self,dx,dy):

x = self.r*math.cos(self.theta)

y = self.r*math.sin(self.theta)

x += dx

y += dy

self.r = math.sqrt(x*x + y*y)

if x == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(y/x)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 6 / 24



Changing the internal implementation

Polar coordinates: (r , ω), not (x , y)

r =
√
x2 + y2

ω = tan→1(y/x)

Distance from origin is just r

Translation

Convert (r , ω) to (x , y)

x = r cos ω, y = r sin ω

Recompute r , ω from (x +!x , y +!y)

Interface has not changed

User need not be aware whether
representation is (x , y) or (r , ω)

def translate(self,dx,dy):

x = self.r*math.cos(self.theta)

y = self.r*math.sin(self.theta)

x += dx

y += dy

self.r = math.sqrt(x*x + y*y)

if x == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(y/x)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 6 / 24



Abstraction

User should not know whether Point uses
(x,y) or (r,theta)

Interface remains identical

Even constructor is the same

Python allows direct access to instance
variables from outside the class

Breaks the abstraction

Changing the internal implementation of
Point can have impact on other code

Rely on programmer discipline

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 7 / 24



Abstraction

User should not know whether Point uses
(x,y) or (r,theta)

Interface remains identical

Even constructor is the same

Python allows direct access to instance
variables from outside the class

p = Point(5,7)

p.x = 4 # Point is now (4,7)

Breaks the abstraction

Changing the internal implementation of
Point can have impact on other code

Rely on programmer discipline

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 7 / 24

p . r

p. that

p.n



Abstraction

User should not know whether Point uses
(x,y) or (r,theta)

Interface remains identical

Even constructor is the same

Python allows direct access to instance
variables from outside the class

p = Point(5,7)

p.x = 4 # Point is now (4,7)

Breaks the abstraction

Changing the internal implementation of
Point can have impact on other code

Rely on programmer discipline

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 7 / 24



Abstraction

User should not know whether Point uses
(x,y) or (r,theta)

Interface remains identical

Even constructor is the same

Python allows direct access to instance
variables from outside the class

p = Point(5,7)

p.x = 4 # Point is now (4,7)

Breaks the abstraction

Changing the internal implementation of
Point can have impact on other code

Rely on programmer discipline

class Point:

def __init__(self,a=0,b=0):

self.x = a

self.y = b

class Point:

def __init__(self,a=0,b=0):

self.r = math.sqrt(a*a + b*b)

if a == 0:

self.theta = math.pi/2

else:

self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 7 / 24



Subtyping and inheritance

Define Square to be a subtype of
Rectangle

Di”erent constructor

Same instance variables

The following is legal

s = Square(5)

a = s.area()

p = s.perimeter()

Square inherits definitions of area()
and perimeter() from Rectangle

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 8 / 24

⑳



Subtyping and inheritance

Define Square to be a subtype of
Rectangle

Di”erent constructor

Same instance variables

The following is legal

s = Square(5)

a = s.area()

p = s.perimeter()

Square inherits definitions of area()
and perimeter() from Rectangle

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 8 / 24

E

Rectangle

square



Subtyping and inheritance . . .

Can change the instance variable in
Square

self.side

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square inherits definitions of area()
and perimeter() from Rectangle

But s.width and s.height have not
been defined!

Subtype is not forced to be an extension
of the parent type

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.side = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 9 / 24



Subtyping and inheritance . . .

Can change the instance variable in
Square

self.side

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square inherits definitions of area()
and perimeter() from Rectangle

But s.width and s.height have not
been defined!

Subtype is not forced to be an extension
of the parent type

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.side = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 9 / 24



Subtyping and inheritance . . .

Subclass and parent class are usually
developed separately

Implementor of Rectangle changes the
instance variables

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square constructor sets s.width and
s.height

But the instance variable names have
changed!

Why should Square be a”ected by this?

class Rectangle:

def __init__(self,w=0,h=0):

self.width = w

self.height = h

def area(self):

return(self.width*self.height)

def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 10 / 24



Subtyping and inheritance . . .

Subclass and parent class are usually
developed separately

Implementor of Rectangle changes the
instance variables

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square constructor sets s.width and
s.height

But the instance variable names have
changed!

Why should Square be a”ected by this?

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 10 / 24



Subtyping and inheritance . . .

Subclass and parent class are usually
developed separately

Implementor of Rectangle changes the
instance variables

The following gives a run-time error

s = Square(5)

a = s.area()

p = s.perimeter()

Square constructor sets s.width and
s.height

But the instance variable names have
changed!

Why should Square be a”ected by this?

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 10 / 24



Subtyping and inheritance . . .

Need a mechanism to hide private
implementation details

Declare component private or public

Working within privacy constraints

Instance variables wd and ht of
Rectangle are private

How can the constructor for Square set
these private variables?

Square doesn’t (and shouldn’t) know the
names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 11 / 24



Subtyping and inheritance . . .

Need a mechanism to hide private
implementation details

Declare component private or public

Working within privacy constraints

Instance variables wd and ht of
Rectangle are private

How can the constructor for Square set
these private variables?

Square doesn’t (and shouldn’t) know the
names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 11 / 24

& xConstructess)



Subtyping and inheritance . . .

Need a mechanism to hide private
implementation details

Declare component private or public

Working within privacy constraints

Instance variables wd and ht of
Rectangle are private

How can the constructor for Square set
these private variables?

Square doesn’t (and shouldn’t) know the
names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 11 / 24



Subtyping and inheritance . . .

Need a mechanism to hide private
implementation details

Declare component private or public

Working within privacy constraints

Instance variables wd and ht of
Rectangle are private

How can the constructor for Square set
these private variables?

Square doesn’t (and shouldn’t) know the
names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

class Rectangle:

def __init__(self,w=0,h=0):

self.wd = w

self.ht = h

def area(self):

return(self.wd*self.ht)

def perimeter(self):

return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):

self.width = s

self.height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 11 / 24



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you have
to create the program text somewhere,
compile it successfully, load it, run it, and
find out where your output went. With these
mechanical details mastered, everything else
is comparatively easy

In Python
. . . C
. . . and Java

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 12 / 24



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you have
to create the program text somewhere,
compile it successfully, load it, run it, and
find out where your output went. With these
mechanical details mastered, everything else
is comparatively easy

In Python

print("hello, world")

. . . C

. . . and Java

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 12 / 24



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you have
to create the program text somewhere,
compile it successfully, load it, run it, and
find out where your output went. With these
mechanical details mastered, everything else
is comparatively easy

In Python

print("hello, world")

. . . C

#include <stdio.h>

main()

{

printf("hello, world\n");

}

. . . and Java

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 12 / 24

↑



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you have
to create the program text somewhere,
compile it successfully, load it, run it, and
find out where your output went. With these
mechanical details mastered, everything else
is comparatively easy

In Python

print("hello, world")

. . . C

#include <stdio.h>

main()

{

printf("hello, world\n");

}

. . . and Java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 12 / 24



Why so complicated?

Let’s unpack the syntax

All code in Java lives within a class

No free floating functions, unlike
Python and other languages

Modifier public specifies visibility

How does the program start?

Fix a function name that will be
called by default

From C, the convention is to call
this function main()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 13 / 24



Why so complicated?

Let’s unpack the syntax

All code in Java lives within a class

No free floating functions, unlike
Python and other languages

Modifier public specifies visibility

How does the program start?

Fix a function name that will be
called by default

From C, the convention is to call
this function main()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 13 / 24



Why so complicated?

Let’s unpack the syntax

All code in Java lives within a class

No free floating functions, unlike
Python and other languages

Modifier public specifies visibility

How does the program start?

Fix a function name that will be
called by default

From C, the convention is to call
this function main()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 13 / 24



Why so complicated . . .

Need to specify input and output
types for main()

The signature of main()

Input parameter is an array of
strings; command line arguments

No output, so return type is void

Visibility

Function has be available to run
from outside the class

Modifier public

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 14 / 24



Why so complicated . . .

Need to specify input and output
types for main()

The signature of main()

Input parameter is an array of
strings; command line arguments

No output, so return type is void

Visibility

Function has be available to run
from outside the class

Modifier public

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 14 / 24



Why so complicated . . .

Availability

Functions defined inside classes are
attached to objects

How can we create an object before
starting?

Modifier static — function that
exists independent of dynamic
creation of objects

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 15 / 24



Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 16 / 24



Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 16 / 24



Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 16 / 24



Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 16 / 24



Compiling and running Java code

A Java program is a collection of
classes

Each class is defined in a separate file
with the same name, with extension
java

Class helloworld in
helloworld.java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Java programs are usually interpreted on Java Virtual Machine (JVM)

JVM provides a uniform execution environment across operating systems

Semantics of Java is defined in terms of JVM, OS-independent

“Write once, run anywhere”

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 17 / 24



Compiling and running Java code

A Java program is a collection of
classes

Each class is defined in a separate file
with the same name, with extension
java

Class helloworld in
helloworld.java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Java programs are usually interpreted on Java Virtual Machine (JVM)

JVM provides a uniform execution environment across operating systems

Semantics of Java is defined in terms of JVM, OS-independent

“Write once, run anywhere”

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 17 / 24



Compiling and running Java code

A Java program is a collection of
classes

Each class is defined in a separate file
with the same name, with extension
java

Class helloworld in
helloworld.java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Java programs are usually interpreted on Java Virtual Machine (JVM)

JVM provides a uniform execution environment across operating systems

Semantics of Java is defined in terms of JVM, OS-independent

“Write once, run anywhere”

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 17 / 24



Compiling and running Java code

javac compiles into JVM bytecode

javac helloworld.java creates
bytecode file helloworld.class

java helloworld interprets and
runs bytecode in helloworld.class

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Note:

javac requires file extension .java

java should not be provided file extension .class

javac automatically follows dependencies and compiles all classes required

Su!cient to trigger compilation for class containing main()

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 18 / 24



Compiling and running Java code

javac compiles into JVM bytecode

javac helloworld.java creates
bytecode file helloworld.class

java helloworld interprets and
runs bytecode in helloworld.class

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Note:

javac requires file extension .java

java should not be provided file extension .class

javac automatically follows dependencies and compiles all classes required

Su!cient to trigger compilation for class containing main()

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 18 / 24



Compiling and running Java code

javac compiles into JVM bytecode

javac helloworld.java creates
bytecode file helloworld.class

java helloworld interprets and
runs bytecode in helloworld.class

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Note:

javac requires file extension .java

java should not be provided file extension .class

javac automatically follows dependencies and compiles all classes required

Su!cient to trigger compilation for class containing main()

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 18 / 24



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

2-byte char for Unicode

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 19 / 24



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

2-byte char for Unicode

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 19 / 24



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

2-byte char for Unicode

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 19 / 24



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

Type Size in bytes
int 4
long 8
short 2
byte 1
float 4
double 8
char 2

boolean 1

2-byte char for Unicode

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 19 / 24



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

Type Size in bytes
int 4
long 8
short 2
byte 1
float 4
double 8
char 2

boolean 1

2-byte char for Unicode

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 19 / 24



Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

Characters are written with
single-quotes (only)

Double quotes denote strings

Boolean constants are true, false

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 20 / 24



Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

int x,y;

x = 5;

y = 7;

Characters are written with
single-quotes (only)

Double quotes denote strings

Boolean constants are true, false

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 20 / 24



Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

int x,y;

x = 5;

y = 7;

Characters are written with
single-quotes (only)

char c,d;

c = ’x’;

d = ’\u03C0’; // Greek pi, unicode

Double quotes denote strings

Boolean constants are true, false

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 20 / 24



Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

int x,y;

x = 5;

y = 7;

Characters are written with
single-quotes (only)

char c,d;

c = ’x’;

d = ’\u03C0’; // Greek pi, unicode

Double quotes denote strings

Boolean constants are true, false

boolean b1, b2;

b1 = false;

b2 = true;

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 20 / 24



Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

Can we declare a value to be a
constant?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 21 / 24



Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

int x = 10;

double y = 5.7;

Can we declare a value to be a
constant?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 21 / 24



Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

int x = 10;

double y = 5.7;

Can we declare a value to be a
constant?

float pi = 3.1415927f;

pi = 22/7; // Disallow?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 21 / 24



Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

int x = 10;

double y = 5.7;

Can we declare a value to be a
constant?

float pi = 3.1415927f;

pi = 22/7; // Disallow?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

final float pi = 3.1415927f;

pi = 22/7; // Flagged as error;

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 21 / 24



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 22 / 24



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 22 / 24



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 22 / 24



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 22 / 24



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

Shortcut for updating a variable

int a = 0, b = 10;

a += 7; // Same as a = a+7

b *= 12; // Same as b = b*12

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 22 / 24



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

+ is overloaded for string concatenation

Strings are not arrays of characters

Cannot write

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 23 / 24



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

Strings are not arrays of characters

Cannot write

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 23 / 24



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 23 / 24



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;

s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 23 / 24



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;

s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 23 / 24



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;

s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 23 / 24



Arrays

Arrays are also objects

Typical declaration

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 24 / 24



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 24 / 24



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 24 / 24



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 24 / 24



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 24 / 24



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 24 / 24



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

int[] a;

int n;

n = 10;

a = new int[n];

n = 20;

a = new int[n];

a = {2, 3, 5, 7, 11};

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan–Apr 2026 24 / 24


