Lecture 2, 8 January 2026

Classes, objects, Java

Madhavan Mukund, S P Suresh

Programming Language Concepts
January-April 2026



Abstract datatypes

m Abstract data types
m Structured collection with fixed interface

m Stack is a sequence, but only allows push and pop

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Abstract datatypes

m Abstract data types
m Structured collection with fixed interface
m Stack is a sequence, but only allows push and pop
m Separate implementation from interface
m Priority queue allows insert and delete-max

m Can implement a priority queue using sorted or unsorted lists, or using a heap

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Abstract datatypes

m Abstract data types
m Structured collection with fixed interface
m Stack is a sequence, but only allows push and pop
m Separate implementation from interface
m Priority queue allows insert and delete-max
m Can implement a priority queue using sorted or unsorted lists, or using a heap

m Define ADTs without reference to implemention?

pop (pushls ) = v

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Programming with objects

m Object are like abstract datatypes
m Hidden data with set of public operations

m All interaction through operations — messages, methods, member-functions, ...

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Programming with objects

m Object are like abstract datatypes
m Hidden data with set of public operations

m All interaction through operations — messages, methods, member-functions, ...

m Class
m Template for a data type
m How data is stored

m How public functions manipulate data

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Programming with objects

m Object are like abstract datatypes
m Hidden data with set of public operations

m All interaction through operations — messages, methods, member-functions, ...

m Class S
m Template for a data type

m How data is stored GY—W’S ‘F\ASk (SI V’)

m How public functions manipulate data

m Object S. PM,S\/\(V:)
m Concrete instance of template

m Each object maintains a separate copy of local data

m Invoke methods on objects — send a message to the object

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Example: 2D points, in Python

m A point has coordinates (x, y)

m Each point object stores its own internal
values x and y — instance variables

m For a point p, the local values arep.x and p.y

m self is a special name referring to the current
object — self.x, self.y

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Example: 2D points, in Python

m A point has coordinates (x, y) class Point:

def __init__(self,a=0,b=0):
self.x = a
self.y = Db

m Each point object stores its own internal
values x and y — instance variables

m For a point p, the local values arep.x and p.y

m self is a special name referring to the current
object — self.x, self.y

m When we create an object, we need to set it up

m Implicitly call a constructor function with a
fixed name S
L

m In Python, constructor is called _init__() 7
m Parameters are used to set up internal values
m In Python, the first parameter is always self ‘,V\k n= g)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



P= now Porwk <4\:ﬂ ;

Class Yowk {
Pouk %)3;

o= low et




Lists, =117 L= now List()

Ly st append 01 5)
e



Adding methods to a class

m Translation: shift a point by (Ax, Ay) class Point:

B (x,y) > (x + Ax, y + Ay) def __init__(self,a=0,b=0):

. ) self.x = a A=
m Update instance variables self.y = b 3 L

def translate(self,dx,dy):
self.x += dx
self.y += dy

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Adding methods to a class

m Translation: shift a point by (Ax, Ay)

m(x,y) = (x+ Ax,y + Ay)

m Update instance variables

m Distance from the origin

nd= /T

m Does not update instance variables

m state of object is unchanged

class Point:

def __init__(self,a=0,b=0):
self.x = a
self.y = Db

def translate(self,dx,dy):
self.x += dx
self.y += dy

def odistance(seff): Mg
import math “e—
d = math.sqrt(self.x*self.x +
self.y*self.y)

™M,
Mg,3

return(d)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Changing the internal implementation

m Polar coordinates: (r, ), not (x,y) import math

1 Poi :
- r:\/m class Point

def __init__(self,a=0,b=0):

m 0 =tan""(y/x) self.r = math.sqrt(a*a + b*b)
if a ==
v (ﬁlfﬁ self.theta = math.pi/2
else:
€? self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Changing the internal implementation

m Polar coordinates: (r, ), not (x,y)

ar= T

m 0 =tan"(y/x)

m Distance from origin is just r

import math
class Point:
def __init__(self,a=0,b=0):
self.r = math.sqrt(a*a + bxb)
if a ==
self.theta = math.pi/2
else:
self.theta = math.atan(b/a)

def odistance(self):
return(self.r)

Madhavan Mukund/S P Suresh

Lecture 2,

8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Changing the internal implementation

m Polar coordinates: (r, ), not (x,y) def translate(self,dx,dy):
mr=+/x21+2 x = self.r*math.cos(self.theta)
L Y y = self.r*math.sin(self.theta)
m 0= tan1(y/x) e o
m Distance from origin is just r y = dy
self.r = math.sqrt(x*x + y*y)
m Translation e == 0
self.theta = math.pi/2
m Convert (r,0) to (x,y) clse:
m x=rcosf, y=rsinf self.theta = math.atan(y/x)

m Recompute r, 0 from (x + Ax,y + Ay)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Changing the internal implementation

m Polar coordinates: (r, ), not (x,y) def translate(self,dx,dy):
mr=+/x21+2 x = self.r*math.cos(self.theta)
L Y y = self.r*math.sin(self.theta)
m 0= tan1(y/x) e o
m Distance from origin is just r y = dy
self.r = math.sqrt(x*x + y*y)
m Translation e == 0
self.theta = math.pi/2
m Convert (r,0) to (x,y) clse:
m x=rcosf, y=rsinf self.theta = math.atan(y/x)

m Recompute r, 0 from (x + Ax,y + Ay)

m Interface has not changed

m User need not be aware whether
representation is (x, y) or (r,0)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Abstraction

m User should not know whether Point uses class Point:
(x,y) or (r,theta) def __init__(self,a=0,b=0):
m Interface remains identical self.x = a
self.y = Db

m Even constructor is the same

class Point:
def __init__(self,a=0,b=0):
self.r = math.sqrt(a*a + b*b)

if a ==

self.theta = math.pi/2
else:

self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Abstraction

m User should not know whether Point uses class Point:
(x,y) or (r,theta) def __init__(self,a=0,b=0):
m Interface remains identical self.x = a
self.y = Db

m Even constructor is the same

m Python allows direct access to instance

variables from outside the class class Point:
p = Point(5,7) def __init__(self,a=0,b=0):
p.x = 4 # Point is now (4,7) self.r = math.sqrt(a*a + b*b)

if a ==

self.theta = math.pi/2
else:

self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Abstraction

m User should not know whether Point uses class Point:

(x,y) or (r,theta) def __init__(self,a=0,b=0):
m Interface remains identical self.x =a
self.y = Db
m Even constructor is the same
m Python allows direct access to instance
variables from outside the class class Point:
p = Point(5,7) def __init__(self,a=0,b=0):
p.x = 4 # Point is now (4,7) self.r = math.sqrt(a*a + b+b)
if a ==
m Breaks the abstraction self.theta = math.pi/2
m Changing the internal implementation of else:
Point can have impact on other code self.theta = math.atan(b/a)

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Abstraction

m User should not know whether Point uses class Point:

(x,y) or (r,theta) def __init__(self,a=0,b=0):
m Interface remains identical self.x =a
self.y = Db
m Even constructor is the same
m Python allows direct access to instance
variables from outside the class class Point:
p = Point(5,7) def __init__(self,a=0,b=0):
p.x = 4 # Point is now (4,7) self.r = math.sqrt(a*a + b+b)
if a ==
m Breaks the abstraction self.theta = math.pi/2
m Changing the internal implementation of else:
Point can have impact on other code self.theta = math.atan(b/a)

m Rely on programmer discipline

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Subtyping and inheritance

m Define Square to be a subtype of class Rectangle:

Rectangle def __init__(self,w=0,h=0):
self.width = w
self.height = h

m Different constructor

m Same instance variables

def area(self):
return(self.width*self .height)

def perimeter(self):
return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):
self.width = s
self .height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Subtyping and

m Define Square to be a subtype of
Rectangle

m Different constructor

m Same instance variables

m The following is legal

s = Square(5)
s.area()

p = s.perimeter()

m Square inherits definitions of area()
and perimeter () from Rectangle

class Rectangle:

def __init__(self,w=0,h=0):
self.width = w

2 l‘ﬁ\d‘L self .height

=h

I def area(self):
return(self.width*self .height)

% L def perimeter(self):

return(2*(self.width+self.height))

class Square(Rectangle):
def __init__(self,s=0):
self.width =
self .height

S
= 8

Madhavan Mukund/S P Suresh

Lecture 2, 8 January 2026 Classes, objects, Java

PLC Jan-Apr 2026



Subtyping and inheritance ...

m Can change the instance variable in class Rectangle:
Square def __init__(self,w=0,h=0):
self.width = w
self.height = h

m self.side

def area(self):
return(self.width*self .height)

def perimeter(self):
return(2*(self.width+self.height))

class Square(Rectangle):
def __init__(self,s=0):
self.side = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Subtyping and inheritance ...

m Can change the instance variable in class Rectangle:

Square def __init__(self,w=0,h=0):
self.width = w
self.height = h

m self.side

m The following gives a run-time error
def area(self):

= Square(b
quare (5) return(self.width*self.height)

= s.area()
= s.perimeter ()

T w0

def perimeter(self):
m Square inherits definitions of area() return(2*(self.width+self.height))
and perimeter () from Rectangle

m But s.width and s.height have not class Square(Rectangle):
been defined! def __init__(self,s=0):

m Subtype is not forced to be an extension self.side = s

of the parent type

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Subtyping and inheritance ...

m Subclass and parent class are usually
developed separately

class Rectangle:
def __init__(self,w=0,h=0):
self.width = w
self.height = h

def area(self):
return(self.width*self .height)

def perimeter(self):
return(2*(self.width+self.height))

class Square(Rectangle):

def __init__(self,s=0):
self.width = s
self .height = s

Madhavan Mukund/S P Suresh

Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Subtyping and inheritance ...

m Subclass and parent class are usually
developed separately

m Implementor of Rectangle changes the

instance variables

class Rectangle:
def __init__(self,w=0,h=0):

self.wd = w

self .ht = h

def area(self):
return(self.wd*self.ht)

def perimeter(self):
return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):
self.width = s
self .height = s

Madhavan Mukund/S P Suresh

Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Subtyping and inheritance ...

m Subclass and parent class are usually class Rectangle:
developed separately def __init__(self,w=0,h=0):
self.wd = w

m Implementor of Rectangle changes the self.ht = h

instance variables

def area(self):

m The following gives a run-time error return(self.wd*self.ht)

s = Square(5)
a = s.area() def perimeter(self):
p = s.perimeter() return(2*(self.wd+self.ht))

m Square constructor sets s.width and
s.height class Square(Rectangle):
def __init__(self,s=0):
self.width = s
self .height = s

m But the instance variable names have
changed!

m Why should Square be affected by this?

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Subtyping and inheritance ...

m Need a mechanism to hide private
implementation details

m Declare component private or public

class Rectangle:
def __init__(self,w=0,h=0):

self.wd = w

self .ht = h

def area(self):
return(self.wd*self.ht)

def perimeter(self):
return(2*(self.wd+self.ht))

class Square(Rectangle):

def __init__(self,s=0):
self.width = s
self .height = s

Madhavan Mukund/S P Suresh

Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Subtyping and inheritance ...

m Need a mechanism to hide private class Rectangle:
implementation details def __init__(self,w=0,h=0):

m Declare component private or public self.wd =w

self .ht = h

m Working within privacy constraints
| b q ‘ def area(self):
m Instance variables wd and ht o return(self.wd*self.ht)

Rectangle are private

m How can the constructor for Square set def perimeter(self):
these private variables? return(2*(self.wd+self.ht))
m Square doesn't (and shouldn't) know the
names of the priVate instance variables class Square(Rectangle) :
def ind self,s=0):

self .width =
self .height

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java



Subtyping and inheritance ...

m Need a mechanism to hide private class Rectangle:
implementation details def __init__(self,w=0,h=0):

m Declare component private or public self.wd =w

self .ht = h

m Working within privacy constraints
| b q ‘ def area(self):
m Instance variables wd and ht o return(self.wd*self.ht)

Rectangle are private

m How can the constructor for Square set def perimeter(self):
these private variables? return(2*(self.wd+self.ht))
m Square doesn't (and shouldn't) know the
names of the private instance variables class Square(Rectangle) :
. def __init__(self,s=0):
m Need to have elaborate declarations self.width = s
m Type and visibility of variables self .height = s

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Subtyping and inheritance ...

m Need a mechanism to hide private class Rectangle:
implementation details def __init__(self,w=0,h=0):

m Declare component private or public self.wd =w

self .ht = h

m Working within privacy constraints
| b q ‘ def area(self):
m Instance variables wd and ht o return(self .wd*self.ht)

Rectangle are private

m How can the constructor for Square set def perimeter(self):
these private variables? return(2*(self.wd+self.ht))
m Square doesn't (and shouldn't) know the
names of the private instance variables class Square(Rectangle) :
. def __init__(self,s=0):
m Need to have elaborate declarations self.width = s
m Type and visibility of variables self .height = s

m Static type checking catches errors early

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Getting started with Java

The C Programming Language,
Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you have
to create the program text somewhere,
compile it successfully, load it, run it, and
find out where your output went. With these
mechanical details mastered, everything else
is comparatively easy

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Getting started with Java

. In Pyth
The C Programming Language, = Fymen

Brian W Kernighan, Dennis M Ritchie print("hello, world")

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you have
to create the program text somewhere,
compile it successfully, load it, run it, and
find out where your output went. With these
mechanical details mastered, everything else
is comparatively easy

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Getting started with Java

The C Programming Language,
Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you have
to create the program text somewhere,
compile it successfully, load it, run it, and
find out where your output went. With these
mechanical details mastered, everything else
is comparatively easy

m In Python

print("hello, world")

m.. . C
#include <stdio.h>
main()
{
printf("hello, world\n");
}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Getting started with Java

: In Pyth
The C Programming Language, = In Fythen
Brian W Kernighan, Dennis M Ritchie print("hello, world")
The only way to learn a new programming m...C

language is by writing programs in it. The
first program is the same for all languages.

#include <stdio.h>

main()
Print the words {
hello. world printf("hello, world\n");
’ }

This is a big hurdle; to leap over it you have

to create the program text somewhere, = ...and Java

compile it successfully, load it, run it, and public class helloworld{
find out where your output went. With these public static void main(String[] args)
mechanical details mastered, everything else {

System.out.println("hello, world");

is comparatively easy

‘ }
¥

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Why so complicated?

m Let's unpack the syntax public class helloworld{

public static void main(String[] args)
{
System.out.println("hello, world");
}
}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Why so complicated?

m Let's unpack the syntax

m All code in Java lives within a class public static void main(String[] args)
{

m No free floating functions, unlike System.out.println("hello, world");

Python and other languages }
m Modifier public specifies visibility

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Why so complicated?

m Let's unpack the syntax public class helloworld{
m All code in Java lives within a class fan
m No free floating functions, unlike { ‘
Python and other languages System.out.println("hello, world");
}

m Modifier public specifies visibility }

m How does the program start?

m Fix a function name that will be
called by default

m From C, the convention is to call
this function main()

PLC Jan—Apr 2026

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java



Why so complicated ...

m Need to specify input and output

] public class helloworld{
types for main ()

void String[] args
m The signature of main() f
= Input parameter is an array of System.out.println("hello, world");
strings; command line arguments ¥

m No output, so return type is void ¥

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java

PLC Jan—Apr 2026



Why so complicated ...

m Need to specify input and output

] public class helloworld{
types for main ()

public
m The signature of main() f
= Input parameter is an array of System.out.println("hello, world");
strings; command line arguments ¥
m No output, so return type is void ¥
m Visibility

m Function has be available to run
from outside the class

m Modifier public

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java

PLC Jan—Apr 2026



Why so complicated ...

m Availability public class helloworld{

m Functions defined inside classes are static
attached to objects

m How can we create an object before System.out.println("hello, world");
starting? }
m Modifier static — function that }

exists independent of dynamic
creation of objects

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Why so complicated ...

m The actual operation

m System is a public class public class helloworld{
public static void main(String[] args)

{
System

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



so complicated . ..

m The actual operation

m System is a public class public class helloworld{
m out is a stream object defined in public static void main(Stringl] args)
System {
out

m Like a file handle

m Note that out must also be
static b

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Why so complicated ...

m The actual operation

m System is a public class public class helloworld{
m out is a stream object defined in public static void main(Stringl] args)
System {
rintln
m Like a file handle P
}

m Note that out must also be
static

m println() is a method associated
with streams

m Prints argument with a newline,
like Python print ()

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Why so complicated ...

m The actual operation

m System is a public class public class helloworld{
m out is a stream object defined in public static void main(Stringl] args)
System {
rintln
m Like a file handle P
}

m Note that out must also be
static

m println() is a method associated
with streams

m Prints argument with a newline,
like Python print ()

m Punctuation {, }, ; to delimit blocks, statements

m Unlike layout and indentation in Python

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Compiling and running Java code

m A Java program is a collection of public class helloworld{

classes public static void main(String[] args)
{

System.out.println("hello, world");
}

}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Compiling and running Java code

m A Java program is a collection of

public class helloworld{
classes

public static void main(String[] args)

m Each class is defined in a separate file t
with the same name, with extension }
java }

System.out.println("hello, world");

m Class helloworld in
helloworld. java

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Compiling and running Java code

m A Java program is a collection of

public class helloworld{
classes

public static void main(String[] args)

m Each class is defined in a separate file t
with the same name, with extension }
java }

System.out.println("hello, world");

m Class helloworld in
helloworld. java

m Java programs are usually interpreted on Java Virtual Machine (JVM)
m JVM provides a uniform execution environment across operating systems
m Semantics of Java is defined in terms of JVM, OS-independent

m "“Write once, run anywhere”

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Compiling and running Java code

m javac compiles into JVM bytecode

m javac helloworld.java creates public class helloworld{
bytecode file helloworld.class public static void main(String[] args)
{
System.out.println("hello, world");
}
}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Compiling and running Java code

m javac compiles into JVM bytecode

m javac helloworld.java creates public class helloworld{
bytecode file helloworld.class public static void main(String[] args)
{
m java helloworld interprets and System.out.println("hello, world");
runs bytecode in helloworld.class }
}

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Compiling and running Java code

m javac compiles into JVM bytecode

m javac helloworld.java creates public class helloworld{
bytecode file helloworld.class public static void main(String[] args)
m java helloworld interprets and ‘ System.out.println("hello, world");
runs bytecode in helloworld.class }
}
m Note:

® javac requires file extension . java
m java should not be provided file extension .class
m javac automatically follows dependencies and compiles all classes required

m Sufficient to trigger compilation for class containing main ()

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Scalar types

m In an object-oriented language, all data should be
encapsulated as objects

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Scalar types

m In an object-oriented language, all data should be
encapsulated as objects
m However, this is cumbersome

m Useful to manipulate numeric values like
conventional languages

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Scalar types

m In an object-oriented language, all data should be
encapsulated as objects

m However, this is cumbersome
m Useful to manipulate numeric values like
conventional languages
m Java has eight primitive scalar types
m int, long, short, byte
m float, double
m char

m boolean

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Scalar types

m In an object-oriented language, all data should be
encapsulated as objects

Type Size in bytes

m However, this is cumbersome int 4
m Useful to manipulate numeric values like long 8
conventional languages short 2

m Java has eight primitive scalar types byte 1
‘ float 4

m int, long, short, byte double 8

m float, double char 2

m char boolean 1

m boolean

m Size of each type is fixed by JVM
m Does not depend on native architecture

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Scalar types

m In an object-oriented language, all data should be
encapsulated as objects

Type Size in bytes
m However, this is cumbersome int 4
m Useful to manipulate numeric values like long 8
conventional languages short 2
m Java has eight primitive scalar types byte 1
float 4
m int, long, short, byte double 8
m float, double char 2
m char boolean 1
m boolean
m Size of each type is fixed by JVM m 2-byte char for Unicode

m Does not depend on native architecture

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Declarations, assigning values

m We declare variables before we use them
int x, y;
double y;
char c;
boolean bl, b2;

m Note the semicolons after each
statement

Madhavan Mukund/S P Suresh

Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Declarations, assigning values

m We declare variables before we use them

int x, y;
double y;

char c;

boolean bl, b2;

m Note the semicolons after each
statement

m The assignment statement works as
usual

int x,y;
x = b;

y =7

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Declarations, assigning values

m We declare variables before we use them m Characters are written with
int x, y; single-quotes (only)
double y; char c,d;
char c;
boolean bl, b2; c = ’x’:
m Note the semicolons after each d = ’\u03C0’; // Greek pi, unicode

statement

Double quotes denote strings

m The assignment statement works as
usual

int x,y;
x = b;
y =7

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Declarations, assigning values

m We declare variables before we use them m Characters are written with
int x, y; single-quotes (only)
double y; char c,d;
char c;
boolean bl, b2; c = ’x’:
m Note the semicolons after each d = ’\u03C0’; // Greek pi, unicode

statement m Double quotes denote strings

m The assignment statement works as m Boolean constants are true, false

usual

boolean bl, b2;
int x,y;
x = 5; bl = false;
y=7; b2 = true;

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, PLC Jan-Apr 2026



Initialization, constants

m Declarations can come anywhere
int x;
x = 10;
double y;

m Use this judiciously to retain
readability

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Initialization, constants

m Declarations can come anywhere

int x;
x = 10;
double y;

m Use this judiciously to retain
readability

m Initialize at time of declaration

int x = 10;
double y = 5.7;

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Initialization, constants

m Declarations can come anywhere m Can we declare a value to be a
?
int x: constant’
x = 10; float pi = 3.1415927f;
double y;

m Use this judiciously to retain pi = 22/7; // Disallow?

readability m Note: Append f after number for
m Initialize at time of declaration float, else interpreted as double
int x = 10;
double y = 5.7;

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Initialization, constants

m Declarations can come anywhere m Can we declare a value to be a
?
int x: constant’
x = 10; float pi = 3.1415927f;
double y;

m Use this judiciously to retain pi = 22/7; // Disallow?

readability m Note: Append f after number for

m Initialize at time of declaration float, else interpreted as double

int x = 10; m Modifier final indicates a constant

double y = 5.7; final float pi = 3.1415927f;

pi = 22/7; // Flagged as error;

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Operators, shortcuts, type casting

m Arithmetic operators are the usual ones

m+ -, %/ %

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Operators, shortcuts, type casting

m Arithmetic operators are the usual ones
m+ -k
m No separate integer division operator //

m When both arguments are integer, / is
integer division
float f = 22/7; // Value is 3.0

m Note implicit conversion from int to
float

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Operators, shortcuts, type casting

m Arithmetic operators are the usual ones
m+ -k
m No separate integer division operator //

m When both arguments are integer, / is
integer division
float f = 22/7; // Value is 3.0

m Note implicit conversion from int to
float

m No exponentiation operater, use
Math.pow()

m Math.pow(a,n) returns 3"

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Operators, shortcuts, type casting

m Arithmetic operators are the usual ones m Special operators for incrementing and
m - % /Y decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

m No separate integer division operator //

m When both arguments are integer, / is
integer division
float f = 22/7; // Value is 3.0

m Note implicit conversion from int to
float

m No exponentiation operater, use
Math.pow()

m Math.pow(a,n) returns 3"

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Operators, shortcuts, type casting

m Arithmetic operators are the usual ones m Special operators for incrementing and
m - % /Y decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

m No separate integer division operator //

m When both arguments are integer, / is

integer division m Shortcut for updating a variable

float f = 22/7; // Value is 3.0 )
int a = 0, b = 10;

m Note implicit conversion from int to a +=7; // Same as a = a+7
float b *= 12; // Same as b = b*12

m No exponentiation operater, use
Math.pow()

m Math.pow(a,n) returns 3"

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, PLC Jan-Apr 2026



Strings

m String is a built in class

String s,t;

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan—Apr 20:



Strings

m String is a built in class
String s,t;

m String constants enclosed in double
quotes

String s = "Hello", t = "world";

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



m String is a built in class
String s,t;

m String constants enclosed in double
quotes

String s = "Hello", t = "world";

m + is overloaded for string concatenation

String s = "Hello";
String t = "world";
String u =s + " " + t;

// "Hello world"

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



m String is a built in class m Strings are not arrays of characters
String s,t; m Cannot write
_ _ s3] = ’p’;
m String constants enclosed in double s[a] = 1
quotes

String s = "Hello", t = "world";

m + is overloaded for string concatenation

String s = "Hello";
String t = "world";
String u = s + " " + t;

// "Hello world"

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



m String is a built in class m Strings are not arrays of characters
String s,t; m Cannot write
: : s[3] = ’p’;
m String constants enclosed in double s[a] = 1

quotes
m Instead, invoke method substring in

String s = "Hello", t = "world"; .
class String

m + is overloaded for string concatenation m s = s.substring(0,3) + "p!";
String s = "Hello";
String t = "world";
String u = s + " " + t;

// "Hello world"

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



m String is a built in class m Strings are not arrays of characters
String s,t; m Cannot write
: : s[3] = ’p’;
m String constants enclosed in double s[a] = 1

quotes
m Instead, invoke method substring in

String s = "Hello", t = "world"; .
class String

m + is overloaded for string concatenation m s = s.substring(0,3) + "p!";
Str%ng N - "Hello®; m If we change a String, we get a new
String t = "world"; .

String u = s + " " + t; object
// "Hello world" m After the update, s points to a new
String

m Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



Arrays

m Arrays are also objects

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan—Apr 20:



Arrays

m Arrays are also objects

m Typical declaration
int[] a;
a = new int[100];
m Or int al] instead of int[] a

m Combine as int[] a = new
int[100];

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java

PLC Jan—Apr 2026



m Arrays are also objects

m Typical declaration
int[] a;
a = new int[100];

Or int al] instead of int[] a
m Combine as int[] a = new
int [100];
m a.length gives size of a

m Note, for String, it is a method
s.length()!

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



m Arrays are also objects

m Typical declaration
int[] a;
a = new int[100];
m Or int al] instead of int[] a
m Combine as int[] a = new
int [100];
m a.length gives size of a
m Note, for String, it is a method

s.length()!

m Array indices run from 0 to a.length-1

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



m Arrays are also objects m Size of the array can vary

m Typical declaration
int[] a;
a = new int[100];
m Or int al] instead of int[] a
m Combine as int[] a = new
int [100];
m a.length gives size of a
m Note, for String, it is a method

s.length()!

m Array indices run from 0 to a.length-1

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



m Arrays are also objects m Size of the array can vary
m Typical declaration m Array constants: {vl, v2, v3}
int[] a;

a = new int[100];

m Or int al] instead of int[] a
m Combine as int[] a = new
int [100];
m a.length gives size of a
m Note, for String, it is a method

s.length()!

m Array indices run from 0 to a.length-1

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



m Arrays are also objects m Size of the array can vary
m Typical declaration m Array constants: {vl, v2, v3}
int[] a;
a = new int[100]; m For example
m Or int al] instead of int[] a %nt (] a;
int n;
m Combine as int[] a = new
int[lOO]; n = 10;

. . a = new int[n]:
m a.length gives size of a new int[n]

m Note, for String, it is a method n = 20;
s.length()! a = new int[n];
m Array indices run from 0 to a.length-1 a={2, 3,5, 7, 11};

Madhavan Mukund/S P Suresh Lecture 2, 8 January 2026 Classes, objects, Java PLC Jan-Apr 2026



