
PLC 2025, Lecture 14, 27 February 2025

Concurrent programming in Rust

Passing functions

In Haskell, we can pass functions --- e.g. twice f x = f (f x)

In Java, we typically pass functions indirectly via an interface --- e.g. an object that

implements Comparable will support a (customized) comparison function cmp

Closures

Unlike Haskell, functions in Rust have internal variables that could capture the state

of the context where they are defined

A closure is a function definition with a context

Closures vs functions

The examples below illustrate the syntacit difference between a function definition

and a closure

A closure is an anonymous function that can be assigned to a variable (last 3

examples below)

Explicit type declarations are not required if the type can be inferred from context

{

 fn add_one_v1 (x: u32) -> u32 { x + 1 }

 let add_one_v2 = |x: u32| -> u32 { x + 1 };

 println!("add_one_v2(7) is {}",add_one_v2(7));

 let add_one_v3 = |x| { x + 1 };

 println!("add_one_v3(17) is {}",add_one_v3(17));

 let add_one_v4 = |x| x + 1;

 println!("add_one_v4(27) is {}",add_one_v4(27));

}

add_one_v2(7) is 8

add_one_v3(17) is 18

add_one_v4(27) is 28

()

The inferred type should be consistent

In the code below, the invocation of example_closure fixes the type of x as

String

In [2]:

Out[2]:

{

 let example_closure = |x| x;

 let s = example_closure(String::from("hello"));

 println!("{}",s);

}

hello

()

Here the type of x is (some variety) of integer

{

 let example_closure = |x| x;

 let n = example_closure(5);

 println!("{}",n);

}

5

()

If we invoke the same closure with two different types, we get an error

{

 let example_closure = |x| x;

 let s = example_closure(String::from("hello"));

 println!("{}",s);

 let n = example_closure(5);

 println!("{}",n);

}

[E0308] Error: mismatched types

 ╭─[command_5:1:1]

 │

2 │ let example_closure = |x| x;

 │ ┬

 │ ╰── note: closure parameter defined here

 │

7 │ let n = example_closure(5);

 │ ───────┬─────── ┬│

 │ ╰─────────── arguments to this function are incorr

ect

 │ ││

 │ ╰── expected `String`, found integer

 │ │

 │ ╰─ help: try using a conversion method:

`.to_string()`

───╯

{

 let example_closure = |x| x;

 let s = example_closure(String::from("hello"));

 println!("{}",s);

In [3]:

Out[3]:

In [4]:

Out[4]:

In [5]:

In [6]:

 let example_closure = |x| x;

 let n = example_closure(5);

 println!("{}",n);

}

hello

5

()

Closures and context

When cl is defined, x is 8

Before cl is invoked, x is redefined s 88

The closure uses the old value that was in its scope when it was defined

{

 let x = 8;

 let cl = |y| {x+y};

 let x = 88;

 let s = cl(7);

 println!("{}",s);

}

15

()

Another example

The function createclosure returns a closure. We have to specify the return

type. The return type is FnMut() which we have not seen --- look up the Rust

documentation, this is not the main point of this example!

Inside the function, we have a local mutable counter which is incremented by

each call to the closure

Note that we have to move the counter to the closure explicitly, just as we would

in a function, for ownership to work correctly

fn createclosure() -> impl FnMut() {

 let mut counter = 0;

 let f = || {counter = counter+1; println!("counter is {}",counter);};

 f

}

Out[6]:

In [7]:

Out[7]:

In [8]:

[E0373] Error: closure may outlive the current function, but it borrows `c

ounter`, which is owned by the current function

 ╭─[command_8:1:1]

 │

3 │ let f = || {counter = counter+1; println!("counter is {}",counte

r);};

 │ ┬┬ ───┬───

 │ ╰──────────── help: to force the closure to take ownershi

p of `counter` (and any other referenced variables), use the `move` keywor

d: `move `

 │ │ │

 │ ╰─────────── may outlive borrowed value `counter`

 │ │

 │ ╰───── `counter` is borrowed here

4 │ f

 │ ┬

 │ ╰── note: closure is returned here

───╯

fn createclosure() -> impl FnMut() {

 let mut counter = 0;

 let f = move || {counter = counter+1; println!("counter is {}",counte

 f

}

fn main() {

 let mut x = createclosure();

 for _i in 0..10 {

 x();

 }

}

main()

counter is 1

counter is 2

counter is 3

counter is 4

counter is 5

counter is 6

counter is 7

counter is 8

counter is 9

counter is 10

()

Exercise: Implement an iterator using closures

Closures behave like functions in terms of borrowing heap values

Example 1:

Closure only reads the vector list , so borrowing suffices

fn main() {

 let list = vec![1, 2, 3];

 println!("Before defining closure: {:?}", list);

In [9]:

In [10]:

In [11]:

Out[11]:

In [12]:

 let only_borrows = || println!("From closure: {:?}", list);

 println!("Before calling closure: {:?}", list);

 only_borrows();

 println!("After calling closure: {:?}", list);

}

main()

Before defining closure: [1, 2, 3]

Before calling closure: [1, 2, 3]

From closure: [1, 2, 3]

After calling closure: [1, 2, 3]

()

Example 2:

If the closure changes the mutable variable, borrowing is not enough

fn main() {

 let mut list = vec![1, 2, 3];

 println!("Before defining closure: {:?}", list);

 let borrows_mutably = || list.push(7);

 borrows_mutably();

 println!("After calling closure: {:?}", list);

}

[E0596] Error: cannot borrow `borrows_mutably` as mutable, as it is not de

clared as mutable

 ╭─[command_14:1:1]

 │

5 │ let borrows_mutably = || list.push(7);

 │ │ ──┬─

 │ ╰────────────────────────── help: consider changing this to b

e mutable: `mut `

 │ │

 │ ╰─── calling `borrows_mutably` require

s mutable binding due to mutable borrow of `list`

 │

7 │ borrows_mutably();

 │ ───────┬───────

 │ ╰───────── cannot borrow as mutable

 │

 │ Note: You can change an existing variable to mutable like: `let mut x

= x;`

───╯

Example 3:

If we only update, we can declare the closure to be mutable

fn main() {

 let mut list = vec![1, 2, 3];

 println!("Before defining closure: {:?}", list);

 let mut borrows_mutably = || list.push(7);

In [13]:

Out[13]:

In [14]:

In [15]:

 borrows_mutably();

 println!("After calling closure: {:?}", list);

}

main()

Before defining closure: [1, 2, 3]

After calling closure: [1, 2, 3, 7]

()

Example 4:

In the example above, the final println! comes after the closure is used, so the

mutable reference is no longer needed by the closure and list can be borrowed

by println!

Adding a println! between the definition of the closure and its invocation

violates Rust's ownership rules

fn main() {

 let mut list = vec![1, 2, 3];

 println!("Before defining closure: {:?}", list);

 let mut borrows_mutably = || list.push(7);

 println!("After defining closure: {:?}", list);

 borrows_mutably();

 println!("After calling closure: {:?}", list);

}

[E0502] Error: cannot borrow `list` as immutable because it is also borrow

ed as mutable

 ╭─[command_17:1:1]

 │

5 │ let mut borrows_mutably = || list.push(7);

 │ ─┬ ──┬─

 │ ╰─────── mutable borrow occurs here

 │ │

 │ ╰─── first borrow occurs due to us

e of `list` in closure

6 │ println!("After defining closure: {:?}", list);

 │ ──┬─

 │ ╰─── immutable borrow

occurs here

 │

8 │ borrows_mutably();

 │ ───────┬───────

 │ ╰───────── mutable borrow later used here

───╯

Defining threads

In Java, threads are created using the Thread class and calling start() , which

implicitly invokes run() (which must be defined because of the structure of

Thread)

In Rust, we spawn a thread by passing a closure

In [16]:

Out[16]:

In [17]:

There are functions to sleep etc, as usual

use std::thread;

use std::time::Duration;

fn main() {

 thread::spawn(|| {

 for i in 1..10 {

 println!("hi number {} from the spawned thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

 });

 for i in 1..5 {

 println!("hi number {} from the main thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

}

main()

hi number 1 from the main thread!

hi number 1 from the spawned thread!

hi number 2 from the main thread!

hi number 2 from the spawned thread!

hi number 3 from the main thread!

hi number 3 from the spawned thread!

hi number 4 from the main thread!

hi number 4 from the spawned thread!

()

Note that the spawned thread prematurely exited when the main function

terminated

We can wait for the thread to end using join()

The return value of spawn is stored in a variable, which is used to invoke

join()

Note: You may have to restart the kernel to see the output show below

use std::thread;

use std::time::Duration;

fn main() {

 let handle = thread::spawn(|| {

 for i in 1..10 {

 println!("hi number {} from the spawned thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

 });

 for i in 1..5 {

 println!("hi number {} from the main thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

In [18]:

In [19]:

Out[19]:

In [20]:

 handle.join().unwrap();

}

hi number 5 from the spawned thread!

hi number 6 from the spawned thread!

hi number 7 from the spawned thread!

hi number 8 from the spawned thread!

hi number 9 from the spawned thread!

main()

hi number 1 from the main thread!

hi number 1 from the spawned thread!

hi number 2 from the main thread!

hi number 2 from the spawned thread!

hi number 3 from the main thread!

hi number 3 from the spawned thread!

hi number 4 from the main thread!

hi number 4 from the spawned thread!

hi number 5 from the spawned thread!

hi number 6 from the spawned thread!

hi number 7 from the spawned thread!

hi number 8 from the spawned thread!

hi number 9 from the spawned thread!

()

Wherever the join() occurs, the concurrent execution blocks

The example below waits for the spawned thread to complete before executing

the main thread

use std::thread;

use std::time::Duration;

fn main() {

 let handle = thread::spawn(|| {

 for i in 1..10 {

 println!("hi number {} from the spawned thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

 });

 handle.join().unwrap();

 for i in 1..5 {

 println!("hi number {} from the main thread!", i);

 thread::sleep(Duration::from_millis(1));

 }

}

main()

In [21]:

Out[21]:

In [22]:

In [23]:

hi number 1 from the spawned thread!

hi number 2 from the spawned thread!

hi number 3 from the spawned thread!

hi number 4 from the spawned thread!

hi number 5 from the spawned thread!

hi number 6 from the spawned thread!

hi number 7 from the spawned thread!

hi number 8 from the spawned thread!

hi number 9 from the spawned thread!

hi number 1 from the main thread!

hi number 2 from the main thread!

hi number 3 from the main thread!

hi number 4 from the main thread!

()

We have to be careful about lifetimes, as with normal functions

use std::thread;

fn main() {

 let v = vec![1, 2, 3];

 let handle = thread::spawn(|| {

 println!("Here's a vector: {:?}", v);

 });

 handle.join().unwrap();

}

[E0373] Error: closure may outlive the current function, but it borrows `v

`, which is owned by the current function

 ╭─[command_24:1:1]

 │

6 │ ╭─▶ let handle = thread::spawn(|| {

 │ │ ┬┬

 │ │ ╰─── help: to force the closure to

take ownership of `v` (and any other referenced variables), use the `move`

keyword: `move `

 │ │ │

 │ │ ╰── may outlive borrowed value `v

`

7 │ │ println!("Here's a vector: {:?}", v);

 │ │ ┬

 │ │ ╰── `v` is borrowed her

e

8 │ ├─▶ });

 │ │

 │ ╰───────────── note: function requires argument type to outlive `'sta

tic`

───╯

For instance, the main thread could have "unset" the value of v using drop(v)

use std::thread;

fn main() {

Out[23]:

In [24]:

 let v = vec![1, 2, 3];

 let handle = thread::spawn(|| {

 println!("Here's a vector: {:?}", v);

 });

 drop(v); // oh no!

 handle.join().unwrap();

}

One solution is to move the vector to the closure

use std::thread;

fn main() {

 let v = vec![1, 2, 3];

 let handle = thread::spawn(move || {

 println!("Here's a vector: {:?}", v);

 });

 handle.join().unwrap();

}

main()

Here's a vector: [1, 2, 3]

()

Coordinating threads

Message passing

"Do not communicate by sharing variables, instead share variables by

communicating"

Send values via a channel

By convention, producer sends messages on the channel and consumer receives

them

mpsc stands for multiple producer, single consumer

Many threads can write to the same channel, only one thread can read it

Creating a channel returns a pair, handles to transmit (tx , below) and receive

(rx , below)

In this example, the spawned thread sends on tx , the main thread receives on

rx

use std::sync::mpsc;

use std::thread;

In [25]:

In [26]:

Out[26]:

In [27]:

fn main() {

 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {

 let val = String::from("hi");

 tx.send(val).unwrap();

 });

 let received = rx.recv().unwrap();

 println!("Got: {}", received);

}

main()

Got: hi

()

Sending a value move s it to the receiver

In the example below, the spawned thread cannot refer to val after sending it to

the main thread

use std::sync::mpsc;

use std::thread;

fn main() {

 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {

 let val = String::from("hi");

 tx.send(val).unwrap();

 println!("Sent: {}", val);

 });

 let received = rx.recv().unwrap();

 println!("Got: {}", received);

}

[E0382] Error: borrow of moved value: `val`

 ╭─[command_29:1:1]

 │

 8 │ let val = String::from("hi");

 │ ─┬─

 │ ╰─── move occurs because `val` has type `String`, which

does not implement the `Copy` trait

 9 │ tx.send(val).unwrap();

 │ ─┬─

 │ ╰─── value moved here

10 │ println!("Sent: {}", val);

 │ ─┬─

 │ ╰─── value borrowed here after move

────╯

It is permissible to print val before sending it

use std::sync::mpsc;

use std::thread;

In [28]:

Out[28]:

In [29]:

In [30]:

fn main() {

 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {

 let val = String::from("hi");

 println!("Going to send: {}", val);

 tx.send(val).unwrap();

 });

 let received = rx.recv().unwrap();

 println!("Got: {}", received);

}

main()

Going to send: hi

Got: hi

()

A channel can have multiple senders (producers)

Here we clone tx and pass tx to first spawned thread and tx1 to second

spawned thread

The contents are received as some arbitrary interleaving

use std::sync::mpsc;

use std::thread;

use std::time::Duration;

fn main() {

 let (tx, rx) = mpsc::channel();

 let tx1 = tx.clone();

 thread::spawn(move || {

 let vals = vec![

 String::from("hi"),

 String::from("from"),

 String::from("the"),

 String::from("thread"),

];

 for val in vals {

 tx.send(val).unwrap();

 thread::sleep(Duration::from_secs(1));

 }

 });

 thread::spawn(move || {

 let vals = vec![

 String::from("more"),

 String::from("messages"),

 String::from("for"),

 String::from("you"),

];

 for val in vals {

In [31]:

Out[31]:

In [32]:

 tx1.send(val).unwrap();

 thread::sleep(Duration::from_secs(1));

 }

 });

 for received in rx {

 println!("Got: {}", received);

 }

}

main()

Got: hi

Got: more

Got: from

Got: messages

Got: the

Got: for

Got: you

Got: thread

()

We cannot clone the receive handle

use std::sync::mpsc;

use std::thread;

use std::time::Duration;

fn main() {

 let (tx, rx) = mpsc::channel();

 let tx1 = tx.clone();

 let rx1 = rx.clone();

}

[E0599] Error: no method named `clone` found for struct `std::sync::mpsc::

Receiver` in the current scope

 ╭─[command_34:1:1]

 │

10 │ let rx1 = rx.clone();

 │ ──┬──

 │ ╰──── method not found in `Receiver<_>`

────╯

Shared variables

This is the "normal" way to communicate in Java etc

Recall that we have to have a mechanism to avoid race conditions

Rust provides Mutex for this

To share a variable "safely", wrap it a Mutex

Each Mutex is equipped with a lock

To access the variable, need to acquire the lock -- wait if it is not available

There is no unlock() ! The lock is automatically released when the lock goes

out of scope

In [33]:

Out[33]:

In [34]:

Avoid typical pitfalls with forgetting to unlock, unlocking something that is not

locked etc

use std::sync::Mutex;

fn main() {

 let m = Mutex::new(5);

 {

 let mut num = m.lock().unwrap();

 *num = 6;

 }

 println!("m = {:?}", m);

}

main()

m = Mutex { data: 6, poisoned: false, .. }

()

Note that printing a Mutex gives extra information

poisoned is a flag that is set if thread holding mutex crashes

Mutex<T> , can hold any type

use std::sync::Mutex;

fn main() {

 let m = Mutex::new(String::from("Hello"));

 {

 let mut msg = m.lock().unwrap();

 *msg = String::from("World");

 }

 println!("m = {:?}", m);

}

main()

m = Mutex { data: "World", poisoned: false, .. }

()

In the example above, the lock() was in an inner block

In the example below, the lock is released when main() exits

When we print m , it is still reported as locked

fn main() {

 let m = Mutex::new(5);

 let mut num = m.lock().unwrap();

 *num = 6;

In [35]:

In [36]:

Out[36]:

In [37]:

In [38]:

Out[38]:

In [39]:

 println!("m = {:?}", m);

}

main()

m = Mutex { data: <locked>, poisoned: false, .. }

()

How can we share a Mutex across threads?

Ownership problem: can have only one owner for a Mutex

use std::sync::Mutex;

use std::thread;

fn main() {

 let counter = Mutex::new(0);

 let mut handles = vec![];

 for _ in 0..10 {

 let handle = thread::spawn(move || {

 let num = counter.lock().unwrap();

 *num += 1;

 });

 handles.push(handle);

 }

 for handle in handles {

 handle.join().unwrap();

 }

 println!("Result: {}", *counter.lock().unwrap());

}

[E0596] Error: cannot borrow `num` as mutable, as it is not declared as mu

table

 ╭─[command_41:1:1]

 │

10 │ let num = counter.lock().unwrap();

 │ │

 │ ╰─ help: consider changing this to be mutable: `mut

`

 │

12 │ *num += 1;

 │ ─┬─

 │ ╰─── cannot borrow as mutable

 │

 │ Note: You can change an existing variable to mutable like: `let mut

x = x;`

────╯

In [40]:

Out[40]:

In [41]:

[E0382] Error: borrow of moved value: `counter`

 ╭─[command_41:1:1]

 │

 5 │ let counter = Mutex::new(0);

 │ ───┬───

 │ ╰───── move occurs because `counter` has type `Mutex<i32>

`, which does not implement the `Copy` trait

 │

 8 │ for _ in 0..10 {

 │ ───────┬──────

 │ ╰──────── inside of this loop

 9 │ let handle = thread::spawn(move || {

 │ ───┬───

 │ ╰───── value moved into closur

e here, in previous iteration of loop

 │

21 │ println!("Result: {}", *counter.lock().unwrap());

 │ ───┬───

 │ ╰───── value borrowed here after move

────╯

Reference counting

Main motivation for single ownership is to avoid problems when heap storage is

released

If l1 and l2 both refer to the same list and we "drop" l2 , the value l1

becomes undefined

One way to deal with this is reference counting

When we assign a variable to point to a chunk of heap storage, set reference

count to one

When we add a new reference to same storage, increment reference count

When we "drop" a reference, decrement reference count

Release storage only when reference count becomes 0

Rust allows us to explicitly use reference counting

Simplest version in concurrent programming context is to wrap the value in Arc

Arc stands for Atomic reference counter

Combines reference counting with atomic updates, making the contents safe

to share across threads

Below, we wrap clone Mutex within an Arc and create cloned Arc references

within each thread

use std::sync::{Arc, Mutex};

use std::thread;

fn main() {

 let counter = Arc::new(Mutex::new(0));

 let mut handles = vec![];

 for _ in 0..10 {

 let counter = Arc::clone(&counter);

 let handle = thread::spawn(move || {

 let mut num = counter.lock().unwrap();

In [42]:

 *num += 1;

 });

 handles.push(handle);

 }

 for handle in handles {

 handle.join().unwrap();

 }

 println!("Result: {}", *counter.lock().unwrap());

}

main()

Result: 10

()

Race conditions

Rust is designed to prohibit race conditions in normal code

Ownership, lifetimes etc ensure this

In [43]:

Out[43]:

