PLC 2025, Lecture 14, 27 February 2025

Concurrent programming in Rust

Passing functions

o In Haskell, we can pass functions -—-e.g. twice f x = f (f x)
« In Java, we typically pass functions indirectly via an interface - e.g. an object that
implements Comparable will support a (customized) comparison function cmp

Closures

o Unlike Haskell, functions in Rust have internal variables that could capture the state
of the context where they are defined
e Aclosure is a function definition with a context

Closures vs functions

o The examples below illustrate the syntacit difference between a function definition
and a closure

« Aclosure is an anonymous function that can be assigned to a variable (last 3
examples below)

» Explicit type declarations are not required if the type can be inferred from context

{
fn add one vl (x: u32) ->u32 { x+ 1}
let add one v2 = |[x: u32| ->u32 { x + 1 };
println!("add one v2(7) is {}",add one v2(7));
let add one v3 = [x| { x + 1 };
println!("add one v3(17) is {}",add one v3(17));
let add one v4 = |x| x + 1;
println!("add one v4(27) is {}",add one v4(27));
}

add one v2(7) is 8
add one v3(17) is 18
add one v4(27) is 28

()

o Theinferred type should be consistent
« Inthe code below, the invocation of example closure fixes the type of X as
String

let example closure = |x]| X;
let s = example closure(String::from("hello"));
println!("{}",s);
}
hello

()

o Here the type of X is (some variety) of integer

{
let example closure = |x]| X;
let n = example closure(5);
println! ("{}",n);
}
5

» If we invoke the same closure with two different types, we get an error

{
let example closure = |x]| X;
let s = example closure(String::from("hello"));
println!("{}",s);
let n = example closure(5);
println! ("{}",n);
}

[EO308] Error: mismatched types
—[command 5:1:1]

2 | X
| T
| — note: closure parameter defined here
7 | example closure(5
| | Tl
| L arguments to this function are incorr
ect
| L— expected 'String", found integer
| '~ help: try using a conversion method:
“.to string()
_
{
let example closure = |x]| X;

let s = example closure(String::from("hello"));
println!("{}",s);

let example closure = |x]| X;

let n = example closure(5);
println! ("{}",n);

hello

()

Closures and context

o« When cl isdefined, x is 8
e Before cl isinvoked, x isredefineds 88

o The closure uses the old value that was in its scope when it was defined

{
let x = 8;
let cl = |y| {x+y};
let x = 88;
let s = cl(7);
println! ("{}",s);

}

15

» Another example

o The function createclosure returns a closure. We have to specify the return
type. The return typeis FnMut () which we have not seen --- look up the Rust
documentation, this is not the main point of this example!

 Inside the function, we have a local mutable counter whichisincremented by
each call to the closure

o Note that we have to move the counter to the closure explicitly, just as we would
in a function, for ownership to work correctly

fn createclosure() -> impl FnMut() {
let mut counter = 0;

let f = || {counter = counter+l; println!("counter is {}",counter);};
-f:

[EO373] Error: closure may outlive the current function, but it borrows "¢
ounter’, which is owned by the current function
—[command 8:1:1]

3 | || {counter

| ™ — T
| L help: to force the closure to take ownershi
p of “counter® (and any other referenced variables), use the "move keywor
d: “move °

. . N
may outlive borrowed value " counter

L—— “counter’ is borrowed here

4 f
| T
| L— note: closure is returned here
—J

fn createclosure() -> impl FnMut() {
let mut counter = 0;
let f = move || {counter = counter+l; println!("counter is {}",counte
-f:

fn main() {
let mut x = createclosure();
for i in 0..10 {
x();
}

main()

counter 1is
counter 1is
counter is
counter is
counter is
counter is
counter 1is
counter is
counter 1is
counter 1is

()

R OooNOUD WNERE

Exercise: Implement an iterator using closures

o Closures behave like functions in terms of borrowing heap values

Example 1:

o Closure only reads the vector list , so borrowing suffices

fn main() {
let list = vec![1, 2, 3];
println!("Before defining closure: {:?}", list);

let only borrows = || println!("From closure: {:?}", list);

println!("Before calling closure: {:?}", list);
only borrows();
println! ("After calling closure: {:?}", list);

main()

Before defining closure: [1, 2, 3]
Before calling closure: [1, 2, 3]
From closure: [1, 2, 3]

After calling closure: [1, 2, 3]

()
Example 2:

 If the closure changes the mutable variable, borrowing is not enough

fn main() {
let mut list = vec![1, 2, 31;
println!("Before defining closure: {:?}", list);

let borrows mutably = || list.push(7);

borrows mutably();
println! ("After calling closure: {:?}", list);

}

[EO596] Error: cannot borrow “borrows mutably as mutable, as it is not de
clared as mutable
—[command 14:1:1]

list
| —
L help: consider changing this to b
e mutable: “mut °
|

— calling ‘borrows mutably’ require

|
5 |
|
|
u
|
|
s mutable binding due to mutable borrow of “list®
|
|
|
|
|

7 borrows mutably
|
L———— cannot borrow as mutable
: You can change an existing variable to mutable like: "let mut x
= X h
—J
Example 3:

» If we only update, we can declare the closure to be mutable

fn main() {
let mut list = vec![1, 2, 31;
println!("Before defining closure: {:?}", list);

let mut borrows mutably = || list.push(7);

borrows mutably();
println! ("After calling closure: {:?}", list);

main()

Before defining closure: [1, 2, 3]
After calling closure: [1, 2, 3, 7]

()
Example 4:

o Inthe example above, the final println! comes after the closure is used, so the
mutable reference is no longer needed by the closure and list can be borrowed
by println!

e Addinga println! between the definition of the closure and its invocation
violates Rust's ownership rules

fn main() {
let mut list = vec![1, 2, 31;
println!("Before defining closure: {:?}", list);

let mut borrows mutably = || list.push(7);
println! ("After defining closure: {:?}", list);

borrows mutably();
println! ("After calling closure: {:?}", list);
}

[EO502] Error: cannot borrow “list® as immutable because it is also borrow
ed as mutable

—[command 17:1:1]

5 || list

—T —
L———— mutable borrow occurs here

L— first borrow occurs due to us

6 list
—

| L— immutable borrow
occurs here

8 | borrows mutably

|
|
|
|
|
|
e of "list® in closure
|
|

| |
| L———— mutable borrow later used here
_J

Defining threads

e InJava, threads are created using the Thread class and calling start () , which
implicitly invokes run() (which must be defined because of the structure of
Thread)

» In Rust, we spawn a thread by passing a closure

» There are functions to sleep etc, as usual

use std::thread;
use std::time::Duration;

fn main() {
thread: :spawn (|| {
for i in 1..10 {
println! ("hi number {} from the spawned thread!", 1i);
thread: :sleep(Duration::from millis(1));
}
1)

for i in 1..5 {
println! ("hi number {} from the main thread!", i);
thread: :sleep(Duration::from millis(1));

}

}

main()
hi number 1 from the main thread!
hi number 1 from the spawned thread!
hi number 2 from the main thread!
hi number 2 from the spawned thread!
hi number 3 from the main thread!
hi number 3 from the spawned thread!
hi number 4 from the main thread!
hi number 4 from the spawned thread!

()

o Note that the spawned thread prematurely exited when the main function
terminated
o We can wait for the thread to end using join()
= The return value of spawn isstored in avariable, which is used to invoke
join()
= Note: You may have to restart the kernel to see the output show below

use std::thread;
use std::time::Duration;

fn main() {
let handle = thread::spawn(|| {
for i in 1..10 {
println! ("hi number {} from the spawned thread!", i);
thread: :sleep(Duration::from millis(1));
}
3

for i in 1..5 {
println! ("hi number {} from the main thread!", i);
thread: :sleep(Duration::from millis(1));

handle.join().unwrap();

}
hi number 5 from the spawned thread!
hi number 6 from the spawned thread!
hi number 7 from the spawned thread!
hi number 8 from the spawned thread!
hi number 9 from the spawned thread!
main()

hi number 1 from the main thread!

hi number 1 from the spawned thread!
hi number 2 from the main thread!

hi number 2 from the spawned thread!
hi number 3 from the main thread!

hi number 3 from the spawned thread!
hi number 4 from the main thread!

hi number 4 from the spawned thread!
hi number 5 from the spawned thread!
hi number 6 from the spawned thread!
hi number 7 from the spawned thread!
hi number 8 from the spawned thread!
hi number 9 from the spawned thread!

()

o Wherever the join() occurs, the concurrent execution blocks
o The example below waits for the spawned thread to complete before executing
the main thread

use std::thread;
use std::time::Duration;

fn main() {
let handle = thread::spawn(|| {
for i in 1..10 {
println! ("hi number {} from the spawned thread!", i);
thread: :sleep(Duration::from millis(1));
}
});

handle.join().unwrap();
for i in 1..5 {

println! ("hi number {} from the main thread!", i);
thread: :sleep(Duration::from millis(1));

main()

hi number 1 from the spawned thread!
hi number 2 from the spawned thread!
hi number 3 from the spawned thread!
hi number 4 from the spawned thread!
hi number 5 from the spawned thread!
hi number 6 from the spawned thread!
hi number 7 from the spawned thread!
hi number 8 from the spawned thread!
hi number 9 from the spawned thread!
hi number 1 from the main thread!
hi number 2 from the main thread!
hi number 3 from the main thread!
hi number 4 from the main thread!

()

e We have to be careful about lifetimes, as with normal functions

use std::thread;

fn main() {
let v = vec![1, 2, 3];

let handle = thread::spawn(|]| {
println! ("Here's a vector: {:?}", v);

1}

handle.join().unwrap();

¥

[EO373] Error: closure may outlive the current function, but it borrows “v
*, which is owned by the current function
—[command 24:1:1]

6 | — thread: :spawn(|| {
| | T
| | — help: to force the closure to
take ownership of “v' (and any other referenced variables), use the "move’
keyword: “move °

| | — may outlive borrowed value ‘v
7 | | println! ("Here's a vector: {:?}", v);

| | L— v is borrowed her

8 | > })
|
tic’
R

note: function requires argument type to outlive " 'sta

o Forinstance, the main thread could have "unset" the value of v using drop(v)

use std::thread;

fn main() {

let v = vec![1, 2, 3];

let handle = thread::spawn(|| {
println!("Here's a vector: {:?}", v);

1)

drop(v); // oh no!

handle.join().unwrap();

e One solutionisto move the vector to the closure

use std::thread;

fn main() {
let v = vec![1, 2, 31;

let handle = thread::spawn(move || {
println! ("Here's a vector: {:?}", v);
}):
handle.join().unwrap();
}
main()

Here's a vector: [1, 2, 3]

()
Coordinating threads

Message passing

o "Do not communicate by sharing variables, instead share variables by
communicating”
o Send values via a channel
» By convention, producer sends messages on the channel and consumer receives
them
« mpsc stands for multiple producer, single consumer
= Many threads can write to the same channel, only one thread can read it

» Creating a channel returns a pair, handles to transmit (tx , below) and receive
(rx , below)
o In this example, the spawned thread sends on tx , the main thread receives on
rx

use std::sync::mpsc;
use std::thread;

fn main() {
let (tx, rx) = mpsc::channel();

thread: :spawn(move || {
let val = String::from("hi");
tx.send(val) .unwrap();

1}

let received = rx.recv().unwrap();
println!("Got: {}", received);

}
main()
Got: hi

()

o Sending avalue move sit to the receiver
o Inthe example below, the spawned thread cannot referto val after sendingitto
the main thread

use std::sync::mpsc;
use std::thread;

fn main() {
let (tx, rx) = mpsc::channel();

thread: :spawn(move || {
let val = String::from("hi");
tx.send(val) .unwrap();
println! ("Sent: {}", val);
})s

let received = rx.recv().unwrap();
println! ("Got: {}", received);

}

[EO382] Error: borrow of moved value: “val®
—[command 29:1:1]

|

| val
| T
| L—— move occurs because ‘val' has type ‘String’, which
does not implement the “Copy ™ trait

8

9 | val
| T
| L— value moved here
10 | val
| T
| — value borrowed here after move
-

o |tis permissible to print val before sending it

use std::sync::mpsc;
use std::thread;

fn main() {
let (tx, rx) = mpsc::channel();

thread: :spawn(move || {
let val = String::from("hi");
println! ("Going to send: {}", val);
tx.send(val) .unwrap();

1)

let received = rx.recv().unwrap();
println! ("Got: {}", received);

main()

Going to send: hi
Got: hi

()

o Achannel can have multiple senders (producers)

o Here we clone tx andpass tx to first spawned thread and tx1 to second
spawned thread

o The contents are received as some arbitrary interleaving

use std::sync::mpsc;
use std::thread;
use std::time: :Duration;
fn main() {
let (tx, rx) = mpsc::channel();

let tx1 = tx.clone();

thread: :spawn(move || {
let vals = vec!]|

String::from("hi"),
String::from("from"),
String::from("the"),
String::from("thread"),

for val in vals {
tx.send(val) .unwrap();
thread: :sleep(Duration::from secs(1));
}
3

thread: :spawn(move || {
let vals = vec!|

String::from("more"),
String::from("messages"),
String::from('for“)
String::from("you"),

for val in vals {

txl.send(val) .unwrap();
thread: :sleep(Duration::from secs(1l));
}
});

for received in rx {
println! ("Got: {}", received);

}

}

main()
Got: hi
Got: more
Got: from
Got: messages
Got: the
Got: for
Got: you
Got: thread

()

e We cannot clone the receive handle

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {

let (tx, rx) = mpsc::channel();
tx.clone();

let tx1)
rx.clone();

let rx1

}

[EO599] Error: no method named “clone” found for struct “std::sync::mpsc::
Receiver® in the current scope
—lcommand 34:1:1]

10 | clone
| -7
| L—— method not found in ‘Receiver< >’
R

Shared variables

o Thisis the "normal" way to communicate in Java etc
o Recall that we have to have a mechanism to avoid race conditions
o Rust provides Mutex for this
= Toshare avariable "safely", wrap ita Mutex
= Each Mutex isequipped with a lock
= To access the variable, need to acquire the lock -- wait if it is not available
= Thereisno unlock() ! The lock is automatically released when the lock goes
out of scope

= Avoid typical pitfalls with forgetting to unlock, unlocking something that is not
locked etc

use std::sync::Mutex;

fn main() {
let m = Mutex::new(5);
{
let mut num = m.lock().unwrap();
*num = 6;
}
println!("m = {:?}", m);
}
main()
m = Mutex { data: 6, poisoned: false, .. }
()

o Note that printinga Mutex gives extrainformation
e poisoned isa flagthatis setif thread holding mutex crashes

e Mutex<T>, can hold any type

use std::sync::Mutex;

fn main() {
let m = Mutex::new(String::from("Hello"));

{
let mut msg = m.lock().unwrap();
*msg = String::from("World");
}
println!("m = {:?}", m);
}
main()
m = Mutex { data: "World", poisoned: false, .. }

()

o Inthe example above, the lock() wasinaninner block
In the example below, the lock is released when main() exits
When we print m , itis still reported as locked

fn main() {
let m = Mutex::new(5);

let mut num = m.lock().unwrap();
*num = 6;

println!("m = {:?}", m);

main()

m = Mutex { data: <locked>, poisoned: false, .. }
()

e How can we sharea Mutex across threads?
o Ownership problem: can have only one owner fora Mutex

use std::sync::Mutex;
use std::thread;

fn main() {
let counter = Mutex::new(0);
let mut handles = vec![];

for in 0..10 {

let handle = thread::spawn(move || {
let num = counter.lock().unwrap();

*num += 1;
ol
handles.push(handle);
}

for handle in handles {
handle.join().unwrap();

}

println! ("Result: {}", *counter.lock().unwrap());

}

[EO596] Error: cannot borrow "num as mutable, as it is not declared as mu
table
—[command 41:1:1]

|
10 |
| |
| L~ help: consider changing this to be mutable: “mut
|
12 | num
| T
| L— cannot borrow as mutable
|
| : You can change an existing variable to mutable like: "“let mut
X = X;

[EO382] Error: borrow of moved value: counter’
[command 41:1:1]

5 counter

|
|
| I

| L——— move occurs because ‘counter’ has type ‘Mutex<i32>
, which does not implement the “Copy trait

|

|

|

|

N

8 for in 0..10
T
L inside of this loop
9 move | |
—_—

| L——— value moved into closur
e here, in previous iteration of loop

21 | counter
|
|

—_—
L— value borrowed here after move
1

Reference counting

» Main motivation for single ownership is to avoid problems when heap storage is
released
e If 11 and 12 both refer to the same list and we "drop" 12 , the value 11
becomes undefined
» One way to deal with this is reference counting
= When we assign a variable to point to a chunk of heap storage, set reference
count to one
= When we add a new reference to same storage, increment reference count
= When we "drop" a reference, decrement reference count
= Release storage only when reference count becomes 0

o Rust allows us to explicitly use reference counting
» Simplest version in concurrent programming context is to wrap the value in Arc
= Arc stands for Atomic reference counter
= Combines reference counting with atomic updates, making the contents safe
to share across threads
o Below, we wrap clone Mutex withinan Arc and create cloned Arc references
within each thread

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
let counter = Arc::new(Mutex::new(0));
let mut handles = vec![];

for in 0..10 {
let counter = Arc::clone(&counter);
let handle = thread::spawn(move || {
let mut num = counter.lock().unwrap();

*num += 1;

3
handles.push(handle);

}

for handle in handles {
handle.join().unwrap();

}

println! ("Result: {}", *counter.lock().unwrap());

main()

Result: 10
()

Race conditions

o Rustis designed to prohibit race conditions in normal code
o Ownership, lifetimes etc ensure this

