PLC2025 Lecture 7, 4 Feb 2025

Strings

o Stored on the heap

let mut s = String::from("hello"); // allocates heap space for new String and initial
s.push _str(", world!"); // push str() appends a literal to a String

println!("{}", s); // This will print “hello, world!"

println!("Again {}",s);

hello, world!
Again hello, world!

Copying values, stack

o Value is copied

let mut x = 7;
let mut y = x;
y = 77;

println!("x = {}, y = {}",x,y);
x=7,y=77

Copying values, heap

o Everyvalue on the heap has a unique owner
o Assignment moves ownership
o Memory is freed as soon as scope of owner ends

let mut sl = String::from("hello");
let mut s2 = sl;

s2.push str(", world");

println!("sl = {}, s2 = {}", sl1, s2);

[EO382] Error: borrow of moved value: “sl°
—[command 4:1:1]

| mut sl

| —T

| L—— move occurs because ‘s1' has type 'String’, which does not implement

the “Copy trait
2

1

sl

—
L— value moved here
|
L

eptable: " .clone()"

4 | sl

help: consider cloning the value if the performance cost is acc

| — value borrowed here after move
_J

The Copy trait

 Traits are Rust's equivalent of Java interfaces and Python type classes
o Fortype that have Copy trait, values are copied without moving ownership
o Allscalar types have this trait: ule, i32, f64, bool, char etc

Mutable parameters

o Needto declare mut to update in function

fn main(){
let mut y = 77;
update(y);
println!("y is {}",y);
}

fn update(x:132){
X = X+5;
println!("x is {}",x);

}

[EO384] Error: cannot assign to immutable argument “x°
—[command 5:1:1]

|
7 |

| |
| — help: consider making this binding mutable: “mut °
8 | X = X+5
| — T
| L—— cannot assign to immutable argument
|
| : You can change an existing variable to mutable like: "let mut x = Xx;°
—
fn main(){
let mut y = 77;
update(y);
println!("y is {}",y);
}

fn update(mut x:132){
X = X+5;
println!("x is {}",x);

main()

x is 82
y is 77

()
Cloning
» Makes a copy of a heap value

let sl
let s2

String::from("hello");
sl.clone();

println!("sl = {}, s2 = {}", sl1, s2);
sl = hello, s2 = hello

Transferring ownership via function calls

e Move heap values back and forth

« Here, ownership of s moves to function takes ownership

fn main() {
let s = String::from("hello"); // s comes into scope
takes ownership(s); // s's value moves into function...

// ... no longer valid here
} // s goes out of scope. Since s's value was moved, nothing special happens.

fn takes ownership(some string: String) { // some string comes into scope
println!("{}", some string);
} // some string goes out of scope, ‘drop’ is called, memory is freed

main()

hello
()

IF we try to use s afterits value has moved, we get an error

fn main() {
let s = String::from("hello"); // s comes into scope
takes ownership(s); // s's value moves into function...

// ... no longer valid here
println!("{}",s);
} // s goes out of scope. Since s's value was moved, nothing special happens.

fn takes ownership(some string: String) { // some string comes into scope
println! ("{}", some string);
} // some string goes out of scope, ‘drop’ is called, memory is freed

[EO382] Error: borrow of moved value: “s°
—[command 11:1:1]

| s
| T
| — move occurs because ‘s’ has type 'String’, which does not implement t
he “Copy" trait

2

4 | s
| Tl
| L— value moved here
| "~ help: consider cloning the value if the performance cost
is acceptable: ".clone()"
6 | s
| T
| — value borrowed here after move
—

« Fortypes with Copy trait, the value is copied to the function without moving ownership

fn main() {
let s = String::from("hello"); // s comes into scope

takes ownership(s); // s's value moves into function...
// ... no longer valid here

let x = 5; // x comes into scope

makes copy(Xx); // x would move into the function, but
println!("x is {}",x); // 132 is Copy, so okay to still use x
} // x goes out scope, then s.
// Since s's value was moved, nothing special happens.

fn takes ownership(some string: String) { // some string comes into scope
println!("{}", some string);
} // some string goes out of scope, ‘drop’ is called, memory is freed

fn makes copy(some integer: i32) { // some integer comes into scope
println!("{}", some _integer);
} // some _integer goes out of scope, nothing special happens.

main()

hello
5
X is 5

()

o Examples of moving heap values in and out of functions
« In gives ownership ,the scopeof some string ends but the value created is moved to the
calling scope by the return and hence persists after the function exits

fn main() {
let sl = gives ownership(); // gives ownership moves its return
// value into sl

let s2

String::from("hello"); // s2 comes into scope

let s3

takes and gives back(s2); // s2 is moved into
// takes and gives back, which also
// moves its return value into s3
} // Here, s3 goes out of scope and is dropped. s2 was moved, so nothing
// happens. sl goes out of scope and is dropped.

fn gives ownership() -> String { // gives ownership will move 1its
// return value into the function
// that calls it

let some string = String::from("yours"); // some string comes into scope

some_string // some string is returned and
// moves out to the calling
// function

}

// This function takes a String and returns one
fn takes and gives back(a string: String) -> String { // a string comes into
// scope

a string // a string is returned and moves out to the calling function

o Transferring ownership requires clumsy mechanisms to "get back” parameters passed to functions

fn main() {
let sl = String::from("hello");
let (s2, len) = calculate length(sl);
println! ("The length of '{}' is {}.", s2, len);

}

fn calculate length(s: String) -> (String, usize) {
let length = s.len(); // len() returns the length of a String
(s, length)

main()

The length of 'hello' is 5.
()

References

o Point to a variable that contains a value on the heap
» Avoids moving ownership
» Creating a reference results in borrowing the value

fn main() {

let sl = String::from("hello");

let len = calculate length(&sl);

println!("The length of '{}' is {}.", sl1l, len);
}

fn calculate length(s: &String) -> usize {
s.len()

}

main()

The length of 'hello' is 5.
()

« Arguments passed as references are not automatically mutable
« Use &mut to denote a mutable reference

fn main() {
let s = String::from("hello");
change(&s);

}

fn change(some string: &String) {
some_string.push str(", world");

}

[EO596] Error: cannot borrow “*some string' as mutable, as it is behind a "& referenc
e

6

—[command 19:1:1]
|

|

| — help: consider changing this to be a mutable referenc
e: ‘mut °

7 some string

_—
L——— ‘some string’ is a ‘& reference, so the data it refers to cann

|
|
|
ot be borrowed as mutable
|
|

: You can change an existing variable to mutable like: “let mut x = x;°
_J

fn main() {
let mut s = String::from("hello");
change(&mut s);
println!("s is {}",s);

}

fn change(some string: &mut String) {
some string.push str(", world");

}

main()

s is hello, world

()

Constraints on mutable references

o One mutable reference is permitted

{
let mut s = String::from("hello");
let rl = &mut s;
println! ("{}", rl);
}
hello

()

» Cannot have two or more mutable references
» Avoids race conditions in concurrent programs

{
let mut s = String::from("hello");
let r1 = &mut s;
let r2 = &mut s;
println!("{}, {}", rl, r2);
}

[EO499] Error: cannot borrow “s° as mutable more than once at a time
—[command 23:1:1]

|
4 | &mut s

| —T

| L—— first mutable borrow occurs here
5 | &mut s

| —T

| L—— second mutable borrow occurs here
7 | ri

| -

| — first borrow later used here

]

« Here the second mutable reference is created after the first one goes out of scope, so this is fine

let mut s = String::from("hello");

{
let r1 = &mut s;

} // rl goes out of scope here, so we can make a new reference with no problems.

let r2 = &mut s;
}

()

e Cannot mix immutable and mutable references
» Again to avoid race conditions

{
let mut s = String::from("hello");
let rl = &s; // no problem
let r2 = &s; // no problem
let r3 = &mut s; // BIG PROBLEM
println!("{}, {}, and {}", rl, r2, r3);
}

[EO502] Error: cannot borrow “s° as mutable because it is also borrowed as immutable
—[command 25:1:1]

4 | &s
| -
| — immutable borrow occurs here
|
6 | &mut s
| —T
| L—— mutable borrow occurs here
|
8 | ri
| -
| — immutable borrow later used here
-

o Herethelastuse of rl and r2 occursbefore r3 isdeclared
o Rust does sophisticated static analysis to determine this at compile time

{
let mut s = String::from("hello");
let rl = &s; // no problem
let r2 = &s; // no problem
println! ("{} and {}", rl, r2);
// variables rl and r2 will not be used after this point
let r3 = &mut s; // no problem
println! ("{}", r3);
}
hello and hello
hello

()

« Unlike gives ownership earlier, here dangle returnsareference
 Potential problem —-when dangle exits, s goesoutofscopeand reference to nothing
becomes a dangling pointer, pointing to nothing

o Rust catches this as a compile-time error

fn main() {
let reference to nothing = dangle();

}

fn dangle() -> &String {
let s = String::from("hello");
&s

}

[EQL06] Error: missing lifetime specifier
—[command 27:1:1]

5 | &

| Tl

| L— expected named lifetime parameter

| |

| L— help: instead, you are more likely to want to return an owned
value:

| L~ help: consider using the ''static’ lifetime, but this is uncom
mon unless you're returning a borrowed value from a “const® or a “static : " 'static °

—J
[unused variables] Error: unused variable: "reference to nothing®
—[command 27:1:1]

2 | reference to nothing
| |
| L warning: unused variable: ‘reference to nothing"
| L help: if this is intentional, prefix it with an un
derscore: ° reference to nothing’
]

[EO515] Error: cannot return reference to local variable s’
—[command 27:1:1]

7 | &s
| -
| L— returns a reference to data owned by the current function
—J
Slices

» A function to compute the length of the first word in a string

o bytes.iter() iteratesthrough bytes, enumerate() returnsa pair (index,reference to
value), which is deomposed through pattern matchinginto (i, &item)

e b' ' specifies a byte constant for the space character

fn first word(s: &String) -> usize {
let bytes = s.as bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {
return i;

}

s.len()

« In this function, Rust cannot recognize that the return value is an index into the string
» If we clear the string, the index is no longer valid, but cannot be flagged by compiler

fn main() {
let mut s = String::from("hello world");

let word = first word(&s); // word will get the value 5
s.clear(); // this empties the String, making it equal to ""

// word still has the value 5 here, but there's no more string that
// we could meaningfully use the value 5 with. word is now totally invalid!

» Digression on references and scalar variables, to be resolved later

{

let mut x = 5;

let y = &mut x;

*y =7;

println!("x is {}, y is {}",x,*y);
}

[unused variables] Error: unused variable: “word"

[EO502] Error: cannot borrow “x° as immutable because it is also borrowed as mutable
—[command 30:1:1]

|
3 | &mut x
| — T
| L—— mutable borrow occurs here
|
5 | X, *y
| T
| L—— immutable borrow occurs here
| |
| — mutable borrow later used here
—J

o Astring slice is written similar to a slice in Python
« Gives areference to a substring

{
let s = String::from("hello world");
let hello = &s[0..5];
let world = &s[6..11];

}

()

e Rewrite first word to return slice corresponding to first word
o Will examine distinction between &String and &str later

fn first word(s: &String) -> &str {
let bytes = s.as bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {
return &s[0..i];

&s[..]

» Now, if we try to clear the "parent" string while holding a reference to a substring, it is a compile
error

o Another example of combining immutable and mutable references - the call s.clear()
implicitly passes a mutable referenceto s to clear() ,while word currently holds an
immutable reference

fn main() {
let mut s = String::from("hello world");

let word = first word(&s);
s.clear(); // error!

println!("the first word is: {}", word);

}

[EO502] Error: cannot borrow “s° as mutable because it is also borrowed as immutable
—[command 33:1:1]

4 | &s
| -
| — immutable borrow occurs here
|
6 | s.clear()
| — T
| L——— mutable borrow occurs here
|
8 | word
|

L— immutable borrow later used here

i

