Java: class hierarchy, polymorphism, abstract classes

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 4, 23 January 2025

A Java class

public class Employee{

m An Employee class private String name;
private double salary;

// Some Constructors
———————
// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(O{ ... }

// other methods
public double bonus(float percent){
return (percent/100.0)*salary;

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses

m Managers are special types of employees with extra features

public class Manager|extends Employee{ k éw
\/ private String secretary; (‘ s<

public boolean setSecretary(name s){ ... }

public String getSecretary(O{ ... }

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses

m Managers are special types of employees with extra features

public class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(O{ ... }

}

m Manager objectslinherit bther fields and methods from Employee

m Every Manager has a name, salary and methods to access and manipulate these.

PLC, Lecture 4, 23 Jan 2025

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes

Subclasses

m Managers are special types of employees with extra features i

public class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... } l

public String getSecretary(O{ ... }
¥ Mﬂy»\,

m Manager objects inherit other fields and methods from Employee

m Every Manager has a name, salary and methods to access and manipulate these.

m Manager is a subclass of Employee

m Think of subset
{WPLr-’cu

PLC, Lecture 4, 23 Jan 2025

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes

Subclasses

m Manager objects do not
automatically have access to private
data of parent class.

m Common to extend a parent class
written by someone else

m How can a constructor for Manager
set instance variables that are private
to Employee?

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses

m Manager objects do not public class Employee{
automatically have access to private

data of parent class public Employee(String n, double s){

name = n; salary = s;

m Common to extend a parent class ¥
written by someone else public Employee(String n){
this(n,500.00);
m How can a constructor for Manager by
}

set instance variables that are private
to Employee?

m Some constructors for Employee

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses

m Manager objects do not
automatically have access to private
data of parent class.

m Common to extend a parent class
written by someone else

m How can a constructor for Manager
set instance variables that are private
to Employee?

m Some constructors for Employee
m A constructor for Manager

m Use parent class’s constructor using
super

publ

ic class Employee{

public Employee(String n, double s){

}

name = n; salary = s;

public Employee(String n){

publ

pu,

this(n,500.00);

ic class Manager extends Employee{

i (String n, double s, String sn){
super (n,s) /* super calls

Employee constructor */
secretary = sn;

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Inheritance

m In general, subclass has more features
than parent class

m Subclass inherits instance variables,
methods from parent class

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Inheritance

m In general, subclass has more features
than parent class

m Subclass inherits instance variables,
methods from parent class i

m Every Manager is an Employee, but not
vice versal

m Can use a subclass in place of a
superclass
Employee e = new Manager(...) \/

m But the following will not work
Manager m = new Employee(...) x

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Inheritance

m In general, subclass has more features m Recall

than parent class m int[] a = new int[100];

m Subclass inherits instance variables,

m Why the seemingly redundant
methods from parent class

reference to int in new?

m Every Manager is an Employee, but not
vice versal

m Can use a subclass in place of a
superclass

Employee e = new Manager(...)

m But the following will not work

Manager m = new Employee(...)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Inheritance

m In general, subclass has more features m Recall

than parent class m int[] a = new int[100];

m Subclass inherits instance variables, m Why the seemingly redundant

methods from parent class reference to int in new?

m Every Manager is an Employee, but not m One can now presumably write

vice versal Employee[] e = new Manager[100];

m Can use a subclass in place of a
superclass

Employee e = new Manager(...)

m But the following will not work

Manager m = new Employee(...)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Dynamic dispatch

m Manager can redefine bonus ()

K
double bonus(float percent){ é b"’
P Wwe C)

return 1.5%super.bonus(percent);
+

m Uses parent class bonus () via super M Lﬁ'h.ug C)

m Overrides definition in parent class

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Dynamic dispatch
m Manager can redefine bonus ()
double bonus(float percent){ NW m= ~-
return 1.5%super.bonus(percent);
' . bowr()

m Uses parent class bonus () via super N
m Overrides definition in parent class W
m Consider the following assignment I c

Employee e = new Manager(...)

m Can we invokeF.setSecretary(N

Legak 7

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Dynamic dispatch

m Manager can redefine bonus ()

double bonus(float percent){
return 1.5%super.bonus(percent);

}

m Uses parent class bonus () via super
m Overrides definition in parent class
m Consider the following assignment
Employee e = new Manager(...)
m Can we invoke e.setSecretary()?
m e is declared to be an Employee

m Static typechecking — e can only
refer to methods in Employee

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Dynamic dispatch

m Manager can redefine bonus () m What about e.bonus (p)? Which

?
double bonus(float percent){ bonus () do we use

return 1.5%super.bonus(percent); m Static: Use Employee.bonus ()

¥ m Dynamic: Use Manager.bonus ()
m Uses parent class bonus () via super

m Overrides definition in parent class
m Consider the following assignment
Employee e = new Manager(...)
m Can we invoke e.setSecretary()?
m e is declared to be an Employee

m Static typechecking — e can only
refer to methods in Employee

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Dynamic dispatch

m Manager can redefine bonus () m What about e.bonus (p)? Which

?
double bonus(float percent){ bonus () do we use

return 1.5%super.bonus(percent); m Static: Use Employee.bonus ()

¥ m Dynamic: Use Manager.bonus ()
u tcl b i-
= Uses parent class bonus() via super m Dynamic dispatch (dynamic binding,
late method binding, ...) turns out to
m Consider the following assignment be more useful

m Overrides definition in parent class

Default in Java, optional in languages
Employee e = new Manager(...) " ')
Py N & like C++ (virtual function)
m Can we invoke e.setSecretary()?

m e is declared to be an Employee

m Static typechecking — e can only
refer to methods in Employee

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Polymorphism

m Every Employee in emparray

. . . Employee[] emparray = new Employee[2];
knows"” how to calculate its bonus

Employee e = new Employee(...);
correctly! Manager m = new Manager(...);

emparray[0] = e;
emparray [1] m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i] .bonus(5.0))
}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Polymorphism

m Every Employee in emparray

) ; . Q := make-queue(first event)

knows” how to calculate its bonus repeat

correctly! emove next event e from Q &=

: , - ﬁ Aynaniic a(.u?rd'd\

] Ol.aj.ect orle-nteczl programming Place all eventggenerated

originated in Simula — event by e on Q

simulation loop l until Q is empty

Cinadahen,
iuwk waiy

- &<
S

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Polymorphism

m Every Employee in emparray
“knows” how to calculate its bonus
correctly!

m Object oriented programming
originated in Simula — event
simulation loop

m Also referred to as runtime
polymorphism or inheritance
polymorphism

Employee[] emparray = new Employee[2];
Employee e = new Employee(...);
Manager m = new Manager(...);

emparray[0] = e;

emparray [1] m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i] .bonus(5.0))
}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Polymorphism

m Every Employee in emparray
“knows” how to calculate its bonus
correctly!

m Object oriented programming
originated in Simula — event
simulation loop

m Also referred to as runtime
polymorphism or inheritance
polymorphism

m Different from structural
polymorphism of Haskell etc — called
fgenerics in Java

Employee[] emparray = new Employee[2];
Employee e = new Employee(...);
Manager m = new Manager(...);

emparray[0] = e;

emparray [1] m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i] .bonus(5.0))
}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Functions, signatures and overloading

[Slgnz.ature of a function is its name and @ W\b a ‘ﬂle‘ L)
the list of argument types — (—
@ (wb x ‘P‘Ad‘

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Functions, signatures and overloading

m Signature of a function is its name and
the list of argument types

m Can have different functions with the
same name and different signatures

m For example, multiple constructors

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Functions, signatures and overloading

double[] darr = new double[100];

m Signature of a function is its name and
int[] iarr = new int[500];

the list of argument types

m Can have different functions with the Arrays.sort(darr);

same name and different signatures // sorts contents of darr
Arrays.sort(iarr);

m For example, multiple constructors // sorts contents of iarr

m Java class Arrays has a method sort
to sort arbitrary scalar arrays

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Functions, signatures and/6verload

m Signature of a function is its name and
the list of argument types

m Can have different functions with the
same name and different signatures
m For example, multiple constructors

m Java class Arrays has a method sort
to sort arbitrary scalar arrays

m Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];
int[] iarr = new int[500];

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism, abstract classes

PLC, Lecture 4, 23 Jan 2025

Functions, signatures and overloading

double[] darr = new double[100];

m Overloading: multiple methods,
int[] iarr = new int[500];

different signatures, choice is static

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Functions, signatures and overloading

m Overloading: multiple methods,
different signatures, choice is static

m Overriding: multiple methods, same
signature, choice is static
m Employee.bonus ()

m Manager.bonus ()

double[] darr = new double[100];
int[] iarr = new int[500];

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]

PLC, Lecture 4, 23 Jan 2025

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism, abstract classes

Functions, signatures and overloading

m Overloading: multiple methods,
different signatures, choice is static

m Overriding: multiple methods, same
signature, choice is static

m Employee.bonus ()
m Manager.bonus ()
m Dynamic dispatch: multiple methods,

same signature, choice made at
run-time

double[] darr = new double[100];
int[] iarr = new int[500];

Arrays.sort(darr);

// sorts contents of darr
Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism, abstract classes

PLC, Lecture 4, 23 Jan 2025

Type casting

m Consider the following assignment

Employee e = new Manager(...)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Type casting

m Consider the following assignment

Employee e = new Manager(...)

m Can we get e.setSecretary() to
work?

m Static type-checking disallows this

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Type casting

m Consider the following assignment

Employee e = new Manager(...)

m Can we get e.setSecretary() to (t) V

work?

m Static type-checking disallows this

m Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Type casting

m Consider the following assignment

Employee e = new Manager(...)

m Can we get e.setSecretary() to
work?

m Static type-checking disallows this

m Type casting — convert e to Manager
-
((Manager) el].setSecretary(s)
m Cast fails (error at run time) if e is not
a Manager

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Type casting

m Consider the following assignment m Can test if e is a Manager
Employee e = new Manager(...) if (e instanceof Manager){
((Manager; e) .setSecretary(s);
m Can we get e.setSecretary() to }
work?

m Static type-checking disallows this

m Type casting — convert e to Manager
((Manager) e).setSecretary(s)

m Cast fails (error at run time) if e is not
a Manager

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Type casting

m Consider the following assignment m Can test if e is a Manager
Employee e = new Manager(...) if (e instanceof Manager){
((Manager) e).setSecretary(s);
m Can we get e.setSecretary() to }
work?

. . . . m A simple example of reflection in Java
m Static type-checking disallows this P P

m “Think about oneself”
m Type casting — convert e to Manager

((Manager) e).setSecretary(s)

m Cast fails (error at run time) if e is not
a Manager

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Type casting

m Consider the following assignment

Employee e = new Manager(...)

m Can we get e.setSecretary() to
work?

m Static type-checking disallows this

m Type casting — convert e to Manager
((Manager) e).setSecretary(s)

m Cast fails (error at run time) if e is not
a Manager

Flock F- ZZ/?-;

m Can test if e is a Manager

if (e instanceof Manager){
((Manager) e).setSecretary(s);

}
m A simple example of reflection in Java
m “Think about oneself”

m Can also use type casting for basic
types

me\, C

double d = 29.98;
long nd = (long) d;

D

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism, abstract classes

PLC, Lecture 4, 23 Jan 2025

Grouping together classes

m Sometimes we collect together classes under a common heading

m Classes Circle, Square and Rectangle are all shapes

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Grouping together classes

m Sometimes we collect together classes under a common heading
m Classes Circle, Square and Rectangle are all shapes
m Create a class Shape so that Circle, Square and Rectangle extend Shape

m We want to force every Shape to define a function gq M;,
E—ll
public double perimeter()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes

Grouping together classes

m Sometimes we collect together classes under a common heading
m Classes Circle, Square and Rectangle are all shapes
m Create a class Shape so that Circle, Square and Rectangle extend Shape

m We want to force every Shape to define a function

public double perimeter()

m Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

m Rely on the subclass to redefine this function

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Grouping together classes

m Sometimes we collect together classes under a common heading
m Classes Circle, Square and Rectangle are all shapes
m Create a class Shape so that Circle, Square and Rectangle extend Shape

m We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

m What if this doesn’t happen?

m Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Abstract classes

m A better solution
m Provide an abstract definition in Shape

publiclabstract|double perimeter();

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Abstract classes

m A better solution
m Provide an abstract definition in Shape

public abstract double perimeter();

m Forces subclasses to provide a concrete implementation

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Abstract classes
m A better solution SL“?&

m Provide an abstract definition in Shape / v\ '\
public abstract double perimeter();
ledb &l)ﬁbk N

m Forces subclasses to provide a concrete implementation

m Cannot create objects from a class that has abstract functions

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Abstract classes

m A better solution
m Provide an abstract definition in Shape

public abstract double perimeter();
m Forces subclasses to provide a concrete implementation
m Cannot create objects from a class that has abstract functions
m Shape must itself be declared to be abstract

public abstr*t class Shape{

public abstract double perimeter();

PLC, Lecture 4, 23 Jan 2025

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes

Abstract classes . ..

m Can still declare variables whose type is an abstract class

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Abstract classes . ..

m Can still declare variables whose type is an abstract class

Shape shapearr[] = new Shape[3];
int sizearr[] = new int[3];

shapearr[0] = new Circle(...);

shapearr[1] = new Square(...);
shapearr[2] = new Rectangle(...);

for (i = 0; i < 3; i++){ l , .
sizearr[i] = shapearr[i].perimeter();k' -5 © A“r‘d\

// each shapearr[i] calls the appropriate method

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Generic functions

m Use abstract classes to specify generic properties

public abstract class Comparable{
public abstract int cmp(Comparable s); 01 L""P 02
// return -1 if this < s,
// 0 if this == 0, <2 =)
// +1 if this > s
} = B
> D

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 14 /25

Generic functions

m Use abstract classes to specify generic properties

public abstract class Comparable{
public abstract int cmp(Comparable s); W [/ 8 '::) ~ .
// return -1 if this < s,
// 0 if this == 0,
// +1 if this > s
}
m Now we can sort any array of objects that extend Comparable
public class SortFunctions{ ."’
public static void quicksort(Comparable[] a){
g—

// Usual code for quicksort, except_that
// to compare ali] and alj] we use ja[i].cmp(aljl)
}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 14 /25

Generic functions . ..

public class SortFunctions{
public static void quicksort(Comparable[] a){

}
}

Madhavan Mukund/S P Suresh Java: class hierarc| polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Generic functions . ..

public class SortFunctions{
public static void quicksort(Comparable[] a){

b
o |), Compuntly
m To use this definition of quicksort, we write ¢
public class Myclass extends Comparable{ /

private doublé SIze; // quantity used for comparison ‘/qu“‘
public int cmp(Comparable s){

if (s instanceof Myclass){
// compare this.size and ((Myclass) s).size md“! L] a=--—
// Note the cast to access s.size

) qurdurt(=)

PLC, Lecture 4, 23 Jan 2025 15/25

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes

Multiple inheritance

m Can we sort Circle objects using the generic functions in SortFunctions?

m Circle already extends Shape

m Need Circle to also extend Comparable LW& &WP’QM

\) G n.l(,

‘)m‘wh'()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Multiple inheritance

m Can we sort Circle objects using the generic functions in SortFunctions?

m Circle already extends Shape
m Need Circle to also extend Comparable

m Can a subclass extend multiple parent classes?

C1 Cc2

C3 extends C1,C2

PLC, Lecture 4, 23 Jan 2025

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes

Multiple inheritance

m Can a subclass extend multiple parent classes?
C1 C2

C3 extends C1,C2

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Multiple inheritance

m Can a subclass extend multiple parent classes?
C1 C2

public int £(); public int £Q);

C3 extends C1,C2

m If £() is not overridden, which £ () do we use in C37?

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Multiple inheritance

m Can a subclass extend multiple parent classes?
C1 C2

public int £(); public int £Q);

C3 extends C1,C2 C‘M ‘k

Comprle hone
m If £() is not overridden, which £ () do we use in C37?
m Java does not allow multiple inheritance ® Lz Mm‘la £()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Multiple inheritance

m Can a subclass extend multiple parent classes?
C1 C2

public int £(); public int £Q);

C3 extends C1,C2

m If £() is not overridden, which £ () do we use in C37?
m Java does not allow multiple inheritance

m C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Interfaces and Multiple inheritance

m An interface is an abstract class with no concrete components

public interface Comparable{
public abstract int cmp(Comparable s);

\\F\;Mﬂ Y oheadk sy

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Interfaces and Multiple inheritance

m An interface is an abstract class with no concrete components

public interface Comparable{
public abstract int cmp(Comparable s);
b

m A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{
public double perimeter(){...}
public int cmp(Comparable s){...}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Interfaces and Multiple inheritance

m An interface is an abstract class with no concrete components

public interface Comparable{
public abstract int cmp(Comparable s);
b

m A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{
public double perimeter(){...}
public int cmp(Comparable s){...}

}

m Can extend only one class, but can implement multiple interfaces

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Interfaces and Multiple inheritance

m An interface is an abstract class with no concrete components

public interface Comparable{
public abstract int cmp(Comparable s);
b

m A class that extends an interface is said to implement it:
public class Circle extends Shape implements Comparable{
public double perimeter(){...}
public int cmp(Comparable s){...}
}
m Can extend only one class, but can implement multiple interfaces
m Interfaces describe relevant aspects of a class

m Abstract functions describe a specific “slice” of capabilities
m Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Java class hierarchy

m No multiple inheritance — tree-like C\

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Java class hierarchy

m No multiple inheritance — tree-like

m In fact, there is a universal superclass Object

Clrss L‘T"U“‘

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Java class hierarchy

m No multiple inheritance — tree-like
m In fact, there is a universal superclass Object
m Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the
// instance variables to String

PLC, Lecture 4, 23 Jan 2025

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes

Java class hierarchy

m No multiple inheritance — tree-like
m In fact, there is a universal superclass Object
m Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the
// instance variables to String

m For Java objects x and y, x == y invokes x.equals(y)

PLC, Lecture 4, 23 Jan 2025

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes

Java class hierarchy

No multiple inheritance — tree-like

m In fact, there is a universal superclass Object
m Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the
// instance variables to String

m For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

-‘Zta lrnverSing L <4 n‘.I

m Implicitly invokes o.toString ()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Java class hierarchy

m Can exploit the tree structure to write generic functions

m Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){
if (objarr[i] == o) {return i};

}

return (-1);

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Java class hierarchy

m Can exploit the tree structure to write generic functions

m Example: search for an element in an array

public int find (Object[] objarr, Object o){
int i;

for (i = 0; i < objarr.length(); i++){
if (objarr[i] == o) {return i};
}
return (-1);
}
m Recall that ==

is pointer equality, by default

Madhavan Mukund/S P Suresh

Java: class hierarchy, polymorphism, abstract classes

PLC, Lecture 4, 23 Jan 2025

Java class hierarchy

m Can exploit the tree structure to write generic functions
m Example: search for an element in an array
public int find (Object[] objarr, Object o){
int i;
for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i}; 0?“4’
}
t (-1); \. .
. return OL\)kr'l"t\]) eﬂLV\AL((0)

m Recall that == is pointer equality, by default

m If a class overrides equals (), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Overriding functions

m For instance, a class Date with instance
variables day, month and year

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Overriding functions

m For instance, a class Date with instance
variables day, month and year

m May wish to override equals () to
compare the object state, as follows

public boolean equals(Date d){
return ((this.day == d.day) &&
(this.month == d.month) &&
(this.year == d.year));

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Overriding functions

m For instance, a class Date with instance
variables day, month and year

m May wish to override equals () to
compare the object state, as follows

public boolean equals(Date d){
return ((this.day == d.day) &&
(this.month == d.month) &&
(this.year == d.year));
}

m Unfortunately,
boolean equals(Date d)
does not override
boolean equals(Object o)!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Overriding functions

m For instance, a class Date with instance m Should write, instead

variables day, month and year public boolean equals(Object d){

m May wish to override equals() to if (d instanceof Date){ .

the obiect stat foll Date myd = (Date) d; ;’:;
compare € object state, as Tollows AT ((this.day ==y .day) A

(this.month == myd.month)
(this.year == myd.year));

public boolean equals(Date d){
return ((this.day == d.day) &&
(this.month == d.month) && b
(this.year == d.year)); return(false);
} }
m Note the run-time type check and the

m Unfortunately, t
cas

boolean equals(Date d)
does not override
boolean equals(Object o)!

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Overriding functions

m Overriding looks for “closest” match

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Overriding functions

m Overriding looks for “closest” match

m Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Overriding functions

m Overriding looks for “closest” match

m Suppose we have public boolean equals(Employee e) but no equals() in
Manager

m Consider

Manager ml new Manager(...);

Manager m2 = new Manager(...); ML“J“- %V“L CG“T‘IJQ C)

1f (ml.equals(m2)){ ... }

ml. equals (Mansgin -)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Overriding functions

m Overriding looks for “closest” match

m Suppose we have public boolean equals(Employee e) but no equals() in
Manager

m Consider

Manager ml = new Manager(...);
Manager m2 = new Manager(...);

iél(ml.equals(mQ)){ ... }

m public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Overriding functions

m Overriding looks for “closest” match

m Suppose we have public boolean equals(Employee e) but no equals() in
Manager

m Consider

Manager ml = new Manager(...);
Manager m2 = new Manager(...);

iél(ml.equals(mQ)){ oo 1

m public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

m Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses, subtyping and inheritance

m Class hierarchy provides both subtyping and inheritance

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses, subtyping and inheritance

m Class hierarchy provides both subtyping and inheritance

m Subtyping
m Capabilities of the subtype are a superset of the main type

m If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

m Employee e = new Manager(...); is legal

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses, subtyping and inheritance

m Class hierarchy provides both subtyping and inheritance

m Subtyping
m Capabilities of the subtype are a superset of the main type

m If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

m Employee e = new Manager(...); is legal

m Inheritance
m Subtype can reuse code of the main type
m B inherits from A if some functions for B are written in terms of functions of A

m Manager.bonus () uses Employee.bonus ()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subtyping vs inheritance

m Consider the following example
m queue, with methods insert-rear, delete-front
m stack, with methods insert-front, delete-front

m deque, with methods insert-front, delete-front, insert-rear, delete-rear

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 24 /25

Subtyping vs inheritance

m Consider the following example
m queue, with methods insert-rear, delete-front
m stack, with methods insert-front, delete-front

m deque, with methods insert-front, delete-front, insert-rear, delete-rear

m What are the subtype and inheritance relationships between these classes?

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 24 /25

Subtyping vs inheritance

m Consider the following example
m queue, with methods insert-rear, delete-front
m stack, with methods insert-front, delete-front

m deque, with methods insert-front, delete-front, insert-rear, delete-rear
m What are the subtype and inheritance relationships between these classes?

m Subtyping
m deque has more functionality than queue or stack

m deque is a subtype of both these types

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subtyping vs inheritance

m Consider the following example
m queue, with methods insert-rear, delete-front
m stack, with methods insert-front, delete-front

m deque, with methods insert-front, delete-front, insert-rear, delete-rear
m What are the subtype and inheritance relationships between these classes?

m Subtyping
m deque has more functionality than queue or stack

m deque is a subtype of both these types

m Inheritance
m Can suppress two functions in a deque and use it as a queue or stack

m Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses, subtyping and inheritance

m Class hierarchy represents both subtyping and inheritance

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses, subtyping and inheritance

m Class hierarchy represents both subtyping and inheritance

m Subtyping
m Compatibility of interfaces.

m B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

Subclasses, subtyping and inheritance

m Class hierarchy represents both subtyping and inheritance

m Subtyping
m Compatibility of interfaces.
m B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.
m Inheritance
m Reuse of implementations.

m B inherits from A if some functions for B are written in terms of functions of A.

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 25/25

Subclasses, subtyping and inheritance

m Class hierarchy represents both subtyping and inheritance

m Subtyping
m Compatibility of interfaces.
m B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.
m Inheritance
m Reuse of implementations.
m B inherits from A if some functions for B are written in terms of functions of A.

m Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025

