
Java: Scalars, control flow, classes, inheritance

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 3, 21 January 2025



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you have
to create the program text somewhere,
compile it successfully, load it, run it, and
find out where your output went. With these
mechanical details mastered, everything else
is comparatively easy

In Python

print("hello, world")

. . . C

#include <stdio.h>

main()

{

printf("hello, world\n");

}

. . . and Java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 2 / 26

G



Scalar types

Java is an object-oriented language

All data encapsulated as objects?

Not quite

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 3 / 26

n = Integer (1)

n . add (m)



Scalar types

Java is an object-oriented language

All data encapsulated as objects?

Not quite

Type Size in bytes
int 4
long 8
short 2
byte 1
float 4
double 8
char 2

boolean 1

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 3 / 26

ASC11 -> Unicode-



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

int x, y;

double z;

char c;

boolean b1, b2;

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 4 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

int x, y;

double z;

x = 5;

z = 7.0;

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 4 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

char c,d;

c = ’x’;

d = ’\u03C0’; // Greek pi, unicode

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 4 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

boolean b1, b2;

b1 = false;

b2 = true;

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 4 / 26

O



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

int x;

x = 10;

double y;

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 4 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants

int x = 10;

double y = 5.7;

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 4 / 26



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants float pi = 3.1415927f;

pi = 22/7; // Disallow

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 4 / 26

f = float

O
X-



Variables: declarations, assignment, initialization, constants

Declare variables before use

Assign values to variables as usual

Characters — single quotes

Boolean constants

Declarations can come anywhere

Initialize with declaration

Constants final float pi = 3.1415927f;

pi = 22/7; // Flagged as error

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 4 / 26

-



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 5 / 26

O mod



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

float f = 22/7; // Value is 3.0

// Implicit conversion,

// int to float

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 5 / 26

O
↓

of



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 5 / 26



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 5 / 26

u=a+t

#a

att



Operators, shortcuts

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division //

When both arguments are integer, / is
integer division

Exponentiation:
Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable int a = 0, b = 10;

a += 7; // Same as a = a+7

b *= 12; // Same as b = b*12

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 5 / 26

v=v op w



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s,t;

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 6 / 26



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s = "Hello", t = "world";

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 6 / 26



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 6 / 26

W



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

Cannot write

String s = "Hello";

s[3] = ’p’;

s[4] = ’!’;

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 6 / 26



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s = "Hello";

s = s.substring(0,3) + "p!";

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 6 / 26

012

start Lend
+1

Clike Python Slice)



Strings

String is a built in class

String constants within double quotes

+ overloaded for string concatenation

Strings are not arrays of characters

Instead, use method substring in class
String

If we update a String, we get a new
object

Java does automatic garbage
collection

String s = "Hello";

s = s.substring(0,3) + "p!";

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 6 / 26

tello"
S
* "Garbage"

-"

Manual space allocation

= "Memory leak"



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 7 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

int[] a;

a = new int[100];

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 7 / 26

=



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

int[] a;

a = new int[100];

int a[];

a = new int[100];

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 7 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

int[] a;

a = new int[100];

int a[];

a = new int[100];

int a[] = new int[100];

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 7 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 7 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 7 / 26



Arrays

Arrays are also objects

Typical declarations

Array indices run from 0 to a.length-1

a.length gives size of a

For String, it is a method
s.length()!

Array constants: {v1, v2, v3}

Size of an array can vary dynamically

int[] a;

int n;

n = 10;

a = new int[n];

n = 20;

a = new int[n];

a = {2, 3, 5, 7, 11};

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 7 / 26

- a has 10 elens

-new array, 20 even



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 8 / 26



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 8 / 26



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 8 / 26



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 8 / 26



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 8 / 26



Conditional execution

if (c) {...} else {...}
Condition must be in parentheses

else is optional

No braces needed if body is single statement

No elif, à la Python

Indentation is not forced - just align else if

Nested if is a single statement, no separate
braces required

No surprises

Aside: no def for function definition

public class MyClass {

...

public static int sign(int v) {

if (v < 0) {

return(-1);

} else if (v > 0) {

return(1);

} else {

return(0);

}

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 9 / 26

O

⑭

S



Conditional loops

while (c) {...}
Condition must be in parentheses

No braces needed if body is single statement

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

while (n > 0){

sum += n;

n--;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 10 / 26

n+ -1)
+n-2)
i

↑ I



Conditional loops

while (c) {...}
Condition must be in parentheses

No braces needed if body is single statement

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 10 / 26

0+1+2t

--fn



Conditional loops

while (c) {...}
Condition must be in parentheses

No braces needed if body is single statement

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

do {

read input;

} while (input-condition);

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 10 / 26

&



Iteration

for (init; cond; upd) {...}
init — initialization

cond — terminating condition

upd — update

Inherited from C

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

Not good style to write for instead of
while

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 11 / 26



Iteration

for (init; cond; upd) {...}
init — initialization

cond — terminating condition

upd — update

Inherited from C

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

Not good style to write for instead of
while

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 11 / 26

ep



Iteration

for (init; cond; upd) {...}
init — initialization

cond — terminating condition

upd — update

Inherited from C

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

Not good style to write for instead of
while

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 11 / 26

---



Iteration

for (init; cond; upd) {...}
init — initialization

cond — terminating condition

upd — update

Inherited from C

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

Not good style to write for instead of
while

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 11 / 26

Math- pow((

at



Iteration

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 12 / 26

&

logically ,i
is irrelevant



Iteration

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 12 / 26

Einta

↳" indeexist
-

&



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:

do something with x

Again for, di!erent syntax

for (type x : a)

do something with x;

}

In this version of for, the loop variable
must be declared in local scope

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 13 / 26



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:

do something with x

Again for, di!erent syntax

for (type x : a)

do something with x;

}

In this version of for, the loop variable
must be declared in local scope

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int v : a){

sum += v;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 13 / 26

~ array of type as

u[] a



Iterating over elements directly

Java later introduced a for in the style of
Python

for x in l:

do something with x

Again for, di!erent syntax

for (type x : a)

do something with x;

}

In this version of for, the loop variable
must be declared in local scope

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int v : a){

sum += v;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 13 / 26

intrig



Multiway branching

switch selects between di!erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 14 / 26



Multiway branching

switch selects between di!erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 14 / 26



Multiway branching

switch selects between di!erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 14 / 26

-

-



Multiway branching

switch selects between di!erent
options

Be careful, default is to “fall
through” from one case to the next

Need to explicitly break out of
switch

break available for loops as well

Check the Java documentation

Options have to be constants
Cannot use conditional expressions

Aside: here return type is void
Non-void return type requires an
appropriate return value

public static void printsign(int v) {

switch (v) {

case -1: {

System.out.println("Negative");

break;

}

case 1: {

System.out.println("Positive");

break;

}

case 0: {

System.out.println("Zero");

break;

}

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 14 / 26



Classes and objects

A class is a template for an encapsulated type

An object is an instance of a class

How do we create objects?

How are objects initialized?

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 15 / 26

Point

p.x=

p. y =

def addz(self, :

P .z=v



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 16 / 26

18
A



Defining a class

Definition block using class, with class name

Modifier public to indicate visibility

Java allows public to be omitted

Default visibility is public to package

Packages are administrative units of code

All classes defined in same directory form part
of same package

Instance variables

Each concrete object of type Date will have
local copies of date, month, year

These are marked private

Can also have public instance variables, but
breaks encapsulation

public class Date {

private int day, month, year;

...

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 16 / 26

shoulda
-

- Am



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {

Date d;

d = new Date();

...

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 17 / 26

--

P = Point(-)



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {

Date d;

d = new Date();

...

}

public class Date {

private int day, month, year;

public void setDate(int d, int m,

int y){

this.day = d;

this.month = m;

this.year = y;

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 17 / 26

O ↓a



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public void UseDate() {

Date d;

d = new Date();

...

}

public class Date {

private int day, month, year;

public void setDate(int d, int m,

int y){

day = d;

month = m;

year = y;

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 17 / 26

this.



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {

...

public int getDay(){

return(day);

}

public int getMonth(){

return(month);

}

public int getYear(){

return(year);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 17 / 26

F



Creating objects

Declare type using class name

new creates a new object

How do we set private instance variables?

Can add methods to update values

this is a reference to current object

Can omit this if reference is unambiguous

What if we want to check the values?

Methods to read and report values

Accessor and Mutator methods

public class Date {

...

public int getDay(){

return(day);

}

public int getMonth(){

return(month);

}

public int getYear(){

return(year);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 17 / 26

get set



Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with di!erent signatures

d = new Date(13,8); sets year to 2025

Java allows function overloading — same
name, di!erent signatures

Python: default (optional) arguments, no
overloading

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 18 / 26



Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with di!erent signatures

d = new Date(13,8); sets year to 2025

Java allows function overloading — same
name, di!erent signatures

Python: default (optional) arguments, no
overloading

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 18 / 26

G

no
return valny

-

def--init--(self
,
a=0 ,

3=0

=



Initializing objects

Would be good to set up an object when we
create it

Combine new Date() and setDate()

Constructors — special functions called when
an object is created

Function with the same name as the class

d = new Date(13,8,2015);

Constructors with di!erent signatures

d = new Date(13,8); sets year to 2025

Java allows function overloading — same
name, di!erent signatures

Python: default (optional) arguments, no
overloading

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

day = d;

month = m;

year = 2025;

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 18 / 26

-
only arguments,
At return type



Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

this(d,m,2025);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 19 / 26

%



Constructors . . .

A later constructor can call an earlier one using
this

If no constructor is defined, Java provides a
default constructor with empty arguments

new Date() would implicitly invoke this

Sets instance variables to sensible defaults

For instance, int variables set to 0

Only valid if no constructor is defined

Otherwise need an explicit constructor without
arguments

public class Date {

private int day, month, year;

public Date(int d, int m, int y){

day = d;

month = m;

year = y;

}

public Date(int d, int m){

this(d,m,2025);

}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 19 / 26



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 20 / 26



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 20 / 26



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 20 / 26



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 20 / 26



Subclasses

An Employee class

Two private instance variables

Some constructors to set up the
object

Accessor and mutator methods to set
instance variables

A public method to compute bonus

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 20 / 26



Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 21 / 26

-



Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 21 / 26



Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 21 / 26



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 22 / 26



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 22 / 26



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 22 / 26



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 22 / 26

supery Employee
this
G Manager



Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

Use parent class’s constructor using
super

A constructor for Manager

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

public class Manager extends Employee{
..
public Manager(String n, double s, String sn){

super(n,s); /* super calls
Employee constructor */

secretary = sn;
}

}

Madhavan Mukund/S P Suresh Java: Scalars, control flow, classes, inheritance PLC, Lecture 3, 21 Jan 2025 22 / 26

I =
-


