Lambda calculus

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 17, 14 March 2023

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

1/12

A-calculus

® A notation for computable functions

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 2/12

A-calculus

® A notation for computable functions

® Alonzo Church

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 2/12

A-calculus

® A notation for computable functions
® Alonzo Church

® How do we describe a function?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph — a binary relation between domain and codomain

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph — a binary relation between domain and codomain
® Single-valued

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function

® An extensional definition is not suitable for computation

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
e How do we describe a function?
® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function
® An extensional definition is not suitable for computation

® All sorting functions are the same!

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 2/12

A notation for computable functions
® Alonzo Church
How do we describe a function?

® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function

An extensional definition is not suitable for computation
® All sorting functions are the same!

Need an intensional definition

Madhavan Mukund/S P Suresh Lambda calculus

A-calculus

PLC, Lecture 17, 14 Mar 2023

2/12

A notation for computable functions
® Alonzo Church
How do we describe a function?

® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function

An extensional definition is not suitable for computation
® All sorting functions are the same!
Need an intensional definition

® How are outputs computed from inputs?

Madhavan Mukund/S P Suresh Lambda calculus

A-calculus

PLC, Lecture 17, 14 Mar 2023

2/12

A-calculus: syntax

® Assume a countably infinite set Var of variables

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 3/12

A-calculus: syntax

® Assume a countably infinite set Var of variables

® The set A of lambda expressions is given by
A=x|x-M|MN

where x € Var and M, N € A.

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 3/12

A-calculus: syntax

® Assume a countably infinite set Var of variables

® The set A of lambda expressions is given by
A=x|x-M|MN

where x € Var and M, N € A.
®)\x-M: Abstraction

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 3/12

A-calculus: syntax

® Assume a countably infinite set Var of variables

® The set A of lambda expressions is given by
A=x|x-M|MN

where x € Var and M, N € A.
®)\x-M: Abstraction

® A function of x with computation rule M.

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 3/12

A-calculus: syntax

® Assume a countably infinite set Var of variables

® The set A of lambda expressions is given by
A=x| M| MN

where x € Var and M, N € A.
®)\x-M: Abstraction

® A function of x with computation rule M.
® “Abstracts” the computation rule M over arbitrary input values x

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 3/12

A-calculus: syntax

® Assume a countably infinite set Var of variables

® The set A of lambda expressions is given by
A=x|x-M|MN

where x € Var and M, N € A.
®)\x-M: Abstraction

® A function of x with computation rule M.
® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = ¢, but not assigning a name f

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 3/12

A-calculus: syntax

Assume a countably infinite set Var of variables

The set A of lambda expressions is given by
A=x| M| MN

where x € Var and M, N € A.
Ax - M: Abstraction

® A function of x with computation rule M.
® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = ¢, but not assigning a name f

MN: Application

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

3/12

A-calculus: syntax

Assume a countably infinite set Var of variables

The set A of lambda expressions is given by
A=x| M| MN

where x € Var and M,N € A.
Ax - M: Abstraction
® A function of x with computation rule M.
® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = ¢, but not assigning a name f
MN: Application
® Apply the function M to the argument N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

3/12

A-calculus: syntax...

® Can write expressions such as xx — no types!

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 4/12

A-calculus: syntax...

® Can write expressions such as xx — no types!

® What can we do without types?

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 412

A-calculus: syntax...

® Can write expressions such as xx — no types!
® What can we do without types?

® Set theory as a basis for mathematics

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 412

A-calculus: syntax...

® Can write expressions such as xx — no types!
® What can we do without types?

® Set theory as a basis for mathematics
® Bit strings in memory

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 412

A-calculus: syntax...

® Can write expressions such as xx — no types!
® What can we do without types?

® Set theory as a basis for mathematics
® Bit strings in memory

® |nan untyped world, some data is meaningful

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 412

A-calculus: syntax...

Can write expressions such as xx — no types!
What can we do without types?

® Set theory as a basis for mathematics
® Bit strings in memory

In an untyped world, some data is meaningful

Functions manipulate meaningful data to yield meaningful data

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

4/12

A-calculus: syntax...

Can write expressions such as xx — no types!
What can we do without types?

® Set theory as a basis for mathematics
® Bit strings in memory

In an untyped world, some data is meaningful
Functions manipulate meaningful data to yield meaningful data

Can also apply functions to non-meaningful data, but the result has no significance

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

4/12

A-calculus: syntax...

e Application associates to the left

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP

® Abstraction associates to the right

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP

® Abstraction associates to the right
®)x-(Ay-M)isabbreviated Ax- Ay - M

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right
®)x-(Ay-M)isabbreviated Ax- Ay - M
® More drastically, Ax, - (Ax, -+ (Ax, - M)---) is abbreviated Ax x, - - x, - M

n

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right
®)x-(Ay-M)isabbreviated Ax- Ay - M
® More drastically, Ax, - (Ax, -+ (Ax, - M)---) is abbreviated Ax x, - - x, - M
®)x- MN means (Ax - (MN)). Everything after the - is the body.

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP

® Abstraction associates to the right
®)x-(Ay-M)isabbreviated Ax- Ay - M
® More drastically, Ax, - (Ax, -+ (Ax, - M)---) is abbreviated Ax x, - - x, - M
®)x-MN means (Ax - (MN)). Everything after the - is the body.
® Use (Ax- M)N for applying Ax- M to N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right
®)x-(Ay-M)isabbreviated Ax- Ay - M
® More drastically, Ax, - (Ax, -+ (Ax, - M)---) is abbreviated Ax x, - - x, - M
®)x-MN means (Ax - (MN)). Everything after the - is the body.
® Use (Ax- M)N for applying Ax- M to N

® Examples

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right
®)x-(Ay-M)isabbreviated Ax- Ay - M
® More drastically, Ax, - (Ax, -+ (Ax, - M)---) is abbreviated Ax x, - - x, - M
®)x-MN means (Ax - (MN)). Everything after the - is the body.
® Use (Ax- M)N for applying Ax- M to N
® Examples
® (Ax-x)(Ay-y)(Az- z) is short for (Ax - X)(Ay -))(Az - 2)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP

® Abstraction associates to the right
Ax - (\y - M) is abbreviated Ax - Ay - M
® More drastically, Ax, - (Ax, -+ (Ax, - M)---) is abbreviated Ax x,---x, - M
®)x-MN means (Ax - (MN)). Everything after the - is the body.
® Use (Ax- M)N for applying Ax- M to N
® Examples
® (Ax-X)(Ay - y)(Az-2z) is short for (Ax - x)(\y - y))(Az - 2)
® - (Au-fluu))(Au - fluu)) is short for (Af - (Au - fluu))(Au - fluu))))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 5/12

The computation rule 3

® Basic rule for computation (rewriting) is called 3-reduction (or contraction)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
® (- MN—>; Mlx:=N]

e)
b)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
® (- MN—>; Mlx:=N]

e A term of the form (Ax - M)N is a redex

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
® (b MN — Mx:=NJ
® A term of the form (Ax- M)N is a redex
® M[x = NJis the contractum

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
® (- MN—>; Mlx:=N]
e A term of the form (Ax - M)N is a redex
® M[x = NJis the contractum

e M[x = NJ: substitute free occurrences of x in M by N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
® (- MN— M[x:=N]
e A term of the form (Ax - M)N is a redex
® MI[x = NJis the contractum

e M[x = NJ: substitute free occurrences of x in M by N

® This is the normal rule we use for functions:

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
® (- MIN—>; Mlx:=N]
e A term of the form (Ax - M)N is a redex
® MI[x = NJis the contractum

e M[x = NJ: substitute free occurrences of x in M by N

® Thisis the normal rule we use for functions:

® f(x)=2x>+5x+3

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
® (- MN—>; Mlx:=N]
e A term of the form (Ax - M)N is a redex
® M[x = NJis the contractum
e M[x = NJ: substitute free occurrences of x in M by N
® Thisis the normal rule we use for functions:
® f(x)=2+5x+3
® f(7)=(23 +sx+3)[x=7]=2-73+5-7+3=724

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 6/12

The computation rule 3

Basic rule for computation (rewriting) is called [>-reduction (or contraction)
® (- MIN—>; Mlx:=N]
e A term of the form (Ax - M)N is a redex
® MI[x = NJis the contractum
M{[x = NJ: substitute free occurrences of x in M by N
This is the normal rule we use for functions:
® f(x)=2+5x+3
® f(7)=(23 +sx+3)[x=7]=2-73+5-7+3=724

[is the only rule we need

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

6/12

The computation rule 3

Basic rule for computation (rewriting) is called [>-reduction (or contraction)
® (- MIN—>; Mlx:=N]
e A term of the form (Ax - M)N is a redex
® MI[x = NJis the contractum

M{[x = NJ: substitute free occurrences of x in M by N
This is the normal rule we use for functions:

® f(x)=2x>+5x+3

® f(7)=(¢+sx+3)[x=7]=2-73+5-7+3=724
[is the only rule we need
MN is meaningful only if M is of the form Ax - P

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

6/12

The computation rule 3

Basic rule for computation (rewriting) is called [>-reduction (or contraction)
® (- MIN—>; Mlx:=N]
e A term of the form (Ax - M)N is a redex
® MI[x = NJis the contractum
M{[x = NJ: substitute free occurrences of x in M by N
This is the normal rule we use for functions:
® f(x)=2x3+5x+3
® f(7)=(23 +sx+3)[x=7]=2-73+5-7+3=724
[is the only rule we need
MN is meaningful only if M is of the form Ax - P
® Cannot do anything with terms like xx or (y(Ax - x))(Ay - y)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

6/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M

e fv(M): set of all variables occurring free in M

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
e fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x e Var

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
e fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x e Var
® fv(MN) = fv(M) U fv(N)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
e fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x e Var
® fv(MN) = fv(M) U fv(N)
o fyv(hx-M) =fv(M)\ {x}

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
e fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x e Var

® fv(MN) = fv(M) U fv(N)

® fv(lx-M) = fv(M)\ {x}

® bv(M): set of all variables occurring bound in M

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
e fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x e Var

® fv(MN) = fv(M) U fv(N)

® fv(lx-M) = fv(M)\ {x}
® bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x e Var

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
e fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x € Var

® fv(MN) = fv(M) U fv(N)

® fv(dx-M)=fv(M)\{x}
® bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var

® bv(MN) = bv(M)Ubv(N)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
e fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x € Var

® fv(MN) = fv(M) U fv(N)

o fyv(hx-M) =fv(M)\ {x}
® bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var

® bv(MN) = bv(M)Ubv(N)

® bv(ix-M) =bv(M)U ({x} Nfv(M))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12

Free and bound variables

An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x € Var

® fv(MN) = fv(M) U fv(N)

® fv(hx-M) = fv(M)\ {x}
bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var
® bv(MN) = bv(M)Ubv(N)
® bv(ix-M) =bv(M)U ({x} Nfv(M))

Example: M = xy(Ax-2)(\y -)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

7/

Free and bound variables

An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
fv(M): set of all variables occurring free in M
® fv(x) = {x}, forany x € Var
e fy(MN) = fv(M) U fv(N)
® fv(hx-M) = fv(M)\ {x}
bv(M): set of all variables occurring bound in M
® bv(x) =g, forany x € Var
® bv(MN) = bv(M)Ubv(N)
® bv(ix-M) =bv(M)U ({x} Nfv(M))
Example: M = xy(Ax-2)(Ay -)
® fv(M) = {xy,2} bv(M) = {y}

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

7/

Free and bound variables

An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
fv(M): set of all variables occurring free in M
® fv(x) = {x}, forany x € Var
® fv(MN) = fv(M) U fv(N)
® fv(hx-M) = fv(M)\ {x}
bv(M): set of all variables occurring bound in M
® bv(x) =g, forany x € Var
® bv(MN) = bv(M)Ubv(N)
® bv(ix-M) =bv(M)U ({x} Nfv(M))
Example: M = xy(Ax-2)(Ay -)
® fv(M) = {xy,2} bv(M) = {y}
® Warning: Possible for a variable to be both in fv(M) and bv(M)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

7/

Variable capture

e Consider N = Ax- (Ay-xy) and M = Ny

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 8/12

Variable capture

e Consider N = Ax- (Ay-xy)and M = Ny

® N takes two arguments and applies the first argument to the second

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 8/12

Variable capture

e Consider N = Ax- (Ay-xy)and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 8/12

Variable capture

e Consider N = Ax- (Ay-xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 8/12

Variable capture

e Consider N = Ax- (Ay-xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

® [3-reduction on M yields Ay - yy

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 8/12

Variable capture

e Consider N = Ax- (Ay-xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

® [3-reduction on M yields Ay - yy
® Meaning: Take an argument and apply it to itselfl

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 8/12

Variable capture

e Consider N = Ax- (Ay-xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

® [3-reduction on M yields Ay - yy
® Meaning: Take an argument and apply it to itselfl

® The y substituted for inner x has been “confused” with the y bound by Ay

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 8/12

Variable capture

Consider N = Ax - (Ay - xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

[>-reduction on M yields Ay - yy

® Meaning: Take an argument and apply it to itselfl
The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

8/12

Variable capture

Consider N = Ax - (Ay - xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

[>-reduction on M yields Ay - yy

® Meaning: Take an argument and apply it to itselfl
The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture

* (M- (Wy-x)ly=(x-(Az-x2)ly —p Az yz

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

8/12

Variable capture

Consider N = Ax - (Ay - xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

[>-reduction on M yields Ay - yy
® Meaning: Take an argument and apply it to itselfl
The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture
® (Ax-(A\y-xy))y=(x-(Az-x2))y — \z-yz
Renaming bound variables does not change the funciton

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

8/12

Variable capture

Consider N = Ax - (Ay - xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

[>-reduction on M yields Ay - yy
® Meaning: Take an argument and apply it to itselfl
The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture
® (Ax-(A\y-xy))y=(x-(Az-x2))y — \z-yz
Renaming bound variables does not change the funciton
® f(x)=2x+7vsf(z)=22+7

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023

8/12

® x[x=N]=N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 9/12

N]
® y[x=N] =y whereyeVarandy # x

N

® x[x

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 9/12

® x[x=N]=N
® y[x=N] =y whereyeVarandy # x
® (PQ)x:=N] = (P[x:=N])(Q[x=N])

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 9/12

® x[x=N]=N

® y[x=N]=y whereyeVarandy # x
* (PQ)x=NJ = (Plx= N))(Q[x:=N])
® (Ax-P)[x=N]=Xx-P

Madhavan Mukund/S P Suresh Lambda calculus

PLC, Lecture 17, 14 Mar 2023

9/12

® x[x=N]=N

® y[x=N] =y whereyeVarandy # x

® (PQ)lx:=NJ]=(Plx=N])(Q[x:=N])

® (Ax-P)[x=N]=Xx-P

® (A\y-P)[x=N]=Ay-(P[x=N]),wherey #xandy ¢ fv(N)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 9/12

M[x = N]

® x[x=N]=N

® y[x=N] =y whereyeVarandy # x

® (PQ)lx:=NJ]=(Plx=N])(Q[x:=N])

® (Ax-P)[x=N]=Xx-P

® (A\y-P)[x=N]=Ay-(P[x=N]),wherey #xandy ¢ fv(N)

® (\y-P)x=N]=xz-((Ply=2z])[x=N]), where y # x, y fv(N), and z does not occur in P or N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 9/12

[
ylx=NJ] =y, whereye Varandy # x

® (PQ)lx:=NJ]=(Plx=N])(Q[x:=N])

® (\x-P)[x=N]=Xx-P

® (A\y-P)[x=N]=Ay-(P[x=N]),wherey #xandy ¢ fv(N)

® (\y-P)x=N]=xz-((Ply=2z])[x=N]), where y # x, y fv(N), and z does not occur in P or N

® We fix a global ordering on Var and choose 7 to be the first variable not occurring in either P or N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 9/12

M[x = N]

x[x=N]=N
® y[x=N] =y whereyeVarandy # x

® (PQ)lx:=NJ]=(Plx=N])(Q[x:=N])

® (Ax-P)[x=N]=Ax-P

® (A\y-P)[x=N]=Ay-(P[x=N]),wherey #xandy ¢ fv(N)

® (\y-P)x=N]=xz-((Ply=2z])[x=N]), where y # x, y fv(N), and z does not occur in P or N

® We fix a global ordering on Var and choose 7 to be the first variable not occurring in either P or N
® Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 9/12

Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 10/12

Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

e Captured by the following rules

/ / /

b)

Ox-MN —5 Mx=N] MN —s5 M'N /\/IN—>P)/\/IN/ M- M —g A M

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 10/12

Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

e Captured by the following rules

/ / /

b)

(- MN — M[x:=N] MN—sg5 M'N /\/IN—>B/\/IN/ MM —g - M’

® M ——, N: repeatedly apply >-reduction to get N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 10/12

Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

e Captured by the following rules

/ / /

b)

Ox-MN—g Mx:=N] MN—s M'N MN —p MN" MM —g - M
° M —*—>@ N: repeatedly apply (3-reduction to get N
® Thereisa sequence M _,M,,...,M, such that

M:MO—>(J;MW—)(5—>?AM/<:N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 10/12

Encoding arithmetic

® |n set theory, use nesting to encode numbers

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 1/12

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 1/12

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
® n= {o,1,...,n-1}

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 1/12

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
L4 n:{o,1,...,n-1}~
® Thus

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 1/12

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
L4 n:{o,1,...,n-1}~
® Thus

® o=@

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 1/12

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
® n= {o,1,...,n-1}

® Thus
®o0=0
* 1={g}

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 1/12

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
L4 n:{o,1,...,n-1}~
® Thus

® o=@

*1={g}

* 2={z {o}}

PLC, Lecture 17, 14 Mar 2023 /12

Madhavan Mukund/S P Suresh Lambda calculus

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
L4 n:{o,1,...,n-1}~
® Thus

® o=@

° 1={g}

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 1/12

Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n

® n= {o,1,...,n-1}

® Thus
® 0=Q
° 1={g}
* 2={g{o}}
* 3={g{olizialh

® |n A-calculus, we encode n by the number of times we apply a function (successor) to an element

(zero)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 1/12

Church numerals

® n=\fx-f"x

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x

® fox=x

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x
® fox=x

® frix=£(f"x)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x
® fox=x
® fx=f(f"x)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x
® fox=x
® fx=f(f"x)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® [orinstance

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x
® fox=x
® fx=f(f"x)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® [orinstance

® 0=)\fx-x

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x

® fox=x

® f"ix=f(f"%)

® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times
® Forinstance

® 0=)\fx-x

® 1=Afx-fx

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x

® fox=x

® f"ix=f(f"%)

® Thusf"x=f(f(---(fx)---)), wherefis applied repeatedly n times
® Forinstance

® 0=)\fx-x

® 1=\fx-fx

® 2= Xfx-f(fx)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x
® fox=x
® fﬂJﬂX:f(an)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® [orinstance

® 0=)\fx-x
® 1=\fx-fx
® 2= Afx-f(fX)

3= Mx-f(f(fx)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x
® fox=x
® fﬂJﬂX:f(an)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® [orinstance

® 0=)\fx-x

® 1=\fx-fx

® 2= Afx-f(fX)

* 3= Ax-f(f(fx)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

Church numerals

® n=\fx-f"x

® fox=x

® f"ix=f(f"x)

® Thusf"x=f(f(---(fx)---)), wherefis applied repeatedly n times
® Forinstance

® 0=)\fx-x

® 1=\fx-fx

® 2= Xfx-f(fx)

® 3= Ax-f(f(fx)

n

® ngy= Xfo (2))gy —p 8- (gy)--)=g"y

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12

