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® Single-valued
® Extensional — graph completely defines the function

An extensional definition is not suitable for computation
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A notation for computable functions
® Alonzo Church
How do we describe a function?

® By its graph — a binary relation between domain and codomain
® Single-valued
® Extensional — graph completely defines the function

An extensional definition is not suitable for computation
® All sorting functions are the same!
Need an intensional definition

® How are outputs computed from inputs?
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® Assume a countably infinite set Var of variables
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A-calculus: syntax

Assume a countably infinite set Var of variables

The set A of lambda expressions is given by
A=x| M| MN

where x € Var and M, N € A.
Ax - M: Abstraction

® A function of x with computation rule M.
® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = ¢, but not assigning a name f

MN: Application
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A-calculus: syntax

Assume a countably infinite set Var of variables

The set A of lambda expressions is given by
A=x| M| MN

where x € Var and M,N € A.
Ax - M: Abstraction
® A function of x with computation rule M.
® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = ¢, but not assigning a name f
MN: Application
® Apply the function M to the argument N
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A-calculus: syntax...

Can write expressions such as xx — no types!
What can we do without types?

® Set theory as a basis for mathematics
® Bit strings in memory

In an untyped world, some data is meaningful
Functions manipulate meaningful data to yield meaningful data

Can also apply functions to non-meaningful data, but the result has no significance
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e Application associates to the left
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® More drastically, Ax, - (Ax, -+ (Ax, - M)---) is abbreviated Ax x, - - x, - M
® )x-MN means (Ax - (MN)). Everything after the - is the body.
® Use (Ax- M)N for applying Ax- M to N
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A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP

® Abstraction associates to the right
Ax - (\y - M) is abbreviated Ax - Ay - M
® More drastically, Ax, - (Ax, -+ (Ax, - M)---) is abbreviated Ax x,---x, - M
® )x-MN means (Ax - (MN)). Everything after the - is the body.
® Use (Ax- M)N for applying Ax- M to N
® Examples
® (Ax-X)(Ay - y)(Az-2z) is short for (Ax - x)(\y - y))(Az - 2)
® - (Au-fluu))(Au - fluu)) is short for (Af - (Au - fluu))(Au - fluu))))
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® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
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® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
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The computation rule 3

® Basic rule for computation (rewriting) is called 3-reduction (or contraction)
® (- MN—>; Mlx:=N]
e A term of the form (Ax - M)N is a redex
® M[x = NJis the contractum
e M[x = NJ: substitute free occurrences of x in M by N
® Thisis the normal rule we use for functions:
® f(x)=2+5x+3
® f(7)=(23 +sx+3)[x=7]=2-73+5-7+3=724
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The computation rule 3
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The computation rule 3

Basic rule for computation (rewriting) is called [>-reduction (or contraction)
® (- MIN—>; Mlx:=N]
e A term of the form (Ax - M)N is a redex
® MI[x = NJis the contractum
M{[x = NJ: substitute free occurrences of x in M by N
This is the normal rule we use for functions:
® f(x)=2x3+5x+3
® f(7)=(23 +sx+3)[x=7]=2-73+5-7+3=724
[ is the only rule we need
MN is meaningful only if M is of the form Ax - P
® Cannot do anything with terms like xx or (y(Ax - x))(Ay - y)
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® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
e fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x € Var

® fv(MN) = fv(M) U fv(N)

® fv(dx-M)=fv(M)\{x}
® bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var

® bv(MN) = bv(M)Ubv(N)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12



Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
e fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x € Var

® fv(MN) = fv(M) U fv(N)

o fyv(hx-M) =fv(M)\ {x}
® bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var

® bv(MN) = bv(M)Ubv(N)

® bv(ix-M) =bv(M)U ({x} Nfv(M))

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 7/12



Free and bound variables

An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
fv(M): set of all variables occurring free in M

® fv(x) = {x}, forany x € Var

® fv(MN) = fv(M) U fv(N)

® fv(hx-M) = fv(M)\ {x}
bv(M): set of all variables occurring bound in M

® bv(x) =g, forany x € Var
® bv(MN) = bv(M)Ubv(N)
® bv(ix-M) =bv(M)U ({x} Nfv(M))

Example: M = xy(Ax-2)(\y - )
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Free and bound variables

An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
fv(M): set of all variables occurring free in M
® fv(x) = {x}, forany x € Var
e fy(MN) = fv(M) U fv(N)
® fv(hx-M) = fv(M)\ {x}
bv(M): set of all variables occurring bound in M
® bv(x) =g, forany x € Var
® bv(MN) = bv(M)Ubv(N)
® bv(ix-M) =bv(M)U ({x} Nfv(M))
Example: M = xy(Ax-2)(Ay - )
® fv(M) = {xy,2} bv(M) = {y}
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Free and bound variables

An occurrence of a variable x in M is free if it does not occur in the scope of a Ax inside M
fv(M): set of all variables occurring free in M
® fv(x) = {x}, forany x € Var
® fv(MN) = fv(M) U fv(N)
® fv(hx-M) = fv(M)\ {x}
bv(M): set of all variables occurring bound in M
® bv(x) =g, forany x € Var
® bv(MN) = bv(M)Ubv(N)
® bv(ix-M) =bv(M)U ({x} Nfv(M))
Example: M = xy(Ax-2)(Ay - )
® fv(M) = {xy,2} bv(M) = {y}
® Warning: Possible for a variable to be both in fv(M) and bv(M)
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Variable capture

e Consider N = Ax- (Ay-xy) and M = Ny
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Variable capture

e Consider N = Ax- (Ay-xy)and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 8/12



Variable capture

e Consider N = Ax- (Ay-xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!
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Variable capture
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® [3-reduction on M yields Ay - yy
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Variable capture

e Consider N = Ax- (Ay-xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

® [3-reduction on M yields Ay - yy
® Meaning: Take an argument and apply it to itselfl

® The y substituted for inner x has been “confused” with the y bound by Ay
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Variable capture

Consider N = Ax - (Ay - xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

[>-reduction on M yields Ay - yy

® Meaning: Take an argument and apply it to itselfl
The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture
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Variable capture

Consider N = Ax - (Ay - xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

[>-reduction on M yields Ay - yy

® Meaning: Take an argument and apply it to itselfl
The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture

* (M- (Wy-x)ly=(x-(Az-x2)ly —p Az yz
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Variable capture

Consider N = Ax - (Ay - xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

[>-reduction on M yields Ay - yy
® Meaning: Take an argument and apply it to itselfl
The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture
® (Ax-(A\y-xy))y=(x-(Az-x2))y — \z-yz
Renaming bound variables does not change the funciton
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Variable capture

Consider N = Ax - (Ay - xy) and M = Ny
® N takes two arguments and applies the first argument to the second
® M fixes the first argument of N
® Meaning of M: Take an argument and apply y to it!

[>-reduction on M yields Ay - yy
® Meaning: Take an argument and apply it to itselfl
The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture
® (Ax-(A\y-xy))y=(x-(Az-x2))y — \z-yz
Renaming bound variables does not change the funciton
® f(x)=2x+7vsf(z)=22+7
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® x[x=N]=N
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N]
® y[x=N] =y whereyeVarandy # x

N

® x[x
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® x[x=N]=N
® y[x=N] =y whereyeVarandy # x
® (PQ)x:=N] = (P[x:=N])(Q[x=N])
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® x[x=N]=N

® y[x=N]=y whereyeVarandy # x
* (PQ)x=NJ = (Plx= N))(Q[x:=N])
® (Ax-P)[x=N]=Xx-P
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® x[x=N]=N

® y[x=N] =y whereyeVarandy # x

® (PQ)lx:=NJ]=(Plx=N])(Q[x:=N])

® (Ax-P)[x=N]=Xx-P

® (A\y-P)[x=N]=Ay-(P[x=N]),wherey #xandy ¢ fv(N)
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M[x = N]

® x[x=N]=N

® y[x=N] =y whereyeVarandy # x

® (PQ)lx:=NJ]=(Plx=N])(Q[x:=N])

® (Ax-P)[x=N]=Xx-P

® (A\y-P)[x=N]=Ay-(P[x=N]),wherey #xandy ¢ fv(N)

® (\y-P)x=N]=xz-((Ply=2z])[x=N]), where y # x, y  fv(N), and z does not occur in P or N
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[
ylx=NJ] =y, whereye Varandy # x

® (PQ)lx:=NJ]=(Plx=N])(Q[x:=N])

® (\x-P)[x=N]=Xx-P

® (A\y-P)[x=N]=Ay-(P[x=N]),wherey #xandy ¢ fv(N)

® (\y-P)x=N]=xz-((Ply=2z])[x=N]), where y # x, y  fv(N), and z does not occur in P or N

® We fix a global ordering on Var and choose 7 to be the first variable not occurring in either P or N
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M[x = N]

x[x=N]=N
® y[x=N] =y whereyeVarandy # x

® (PQ)lx:=NJ]=(Plx=N])(Q[x:=N])

® (Ax-P)[x=N]=Ax-P

® (A\y-P)[x=N]=Ay-(P[x=N]),wherey #xandy ¢ fv(N)

® (\y-P)x=N]=xz-((Ply=2z])[x=N]), where y # x, y  fv(N), and z does not occur in P or N

® We fix a global ordering on Var and choose 7 to be the first variable not occurring in either P or N
® Makes the definition deterministic
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Applying 3 in context

® We can contract a redex appearing anywhere inside an expression
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Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

e Captured by the following rules

/ / /

b)

Ox-MN —5 Mx=N]  MN —s5 M'N /\/IN—>P)/\/IN/ M- M —g A M
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Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

e Captured by the following rules

/ / /

b)

(- MN — M[x:=N]  MN—sg5 M'N /\/IN—>B/\/IN/ MM —g - M’

® M ——, N: repeatedly apply >-reduction to get N
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Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

e Captured by the following rules

/ / /

b)

Ox-MN—g Mx:=N]  MN—s M'N  MN —p MN" MM —g - M
° M —*—>@ N: repeatedly apply (3-reduction to get N
® Thereisa sequence M _,M,,...,M, such that

M:MO—>(J;MW—)(5—>?AM/<:N
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Encoding arithmetic

® |n set theory, use nesting to encode numbers
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Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
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Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
® n= {o,1,...,n-1}
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Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
L4 n:{o,1,...,n-1}~
® Thus

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 1/12



Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
L4 n:{o,1,...,n-1}~
® Thus

® o=@
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Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
® n= {o,1,...,n-1}

® Thus
®o0=0
* 1={g}
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Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
L4 n:{o,1,...,n-1}~
® Thus

® o=@

*1={g}

* 2={z {o}}
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Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n
L4 n:{o,1,...,n-1}~
® Thus

® o=@

° 1={g}
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Encoding arithmetic

® |n set theory, use nesting to encode numbers

® Encoding of n: n

® n= {o,1,...,n-1}

® Thus
® 0=Q
° 1={g}
* 2={g{o}}
* 3={g{olizialh

® |n A-calculus, we encode n by the number of times we apply a function (successor) to an element

(zero)
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Church numerals

® n=\fx-f"x
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Church numerals

® n=\fx-f"x

® fox=x
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Church numerals

® n=\fx-f"x
® fox=x

® frix=£(f"x)
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Church numerals

® n=\fx-f"x
® fox=x
® fx=f(f"x)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times
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Church numerals

® n=\fx-f"x
® fox=x
® fx=f(f"x)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® [orinstance
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Church numerals

® n=\fx-f"x
® fox=x
® fx=f(f"x)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® [orinstance

® 0= )\fx-x
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Church numerals

® n=\fx-f"x

® fox=x

® f"ix=f(f"%)

® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times
® Forinstance

® 0= )\fx-x

® 1=Afx-fx
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Church numerals

® n=\fx-f"x

® fox=x

® f"ix=f(f"%)

® Thusf"x=f(f(---(fx)---)), wherefis applied repeatedly n times
® Forinstance

® 0= )\fx-x

® 1=\fx-fx

® 2= Xfx-f(fx)
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Church numerals

® n=\fx-f"x
® fox=x
® fﬂJﬂX:f(an)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® [orinstance

® 0= )\fx-x
® 1=\fx-fx
® 2= Afx-f(fX)

3= Mx-f(f(fx)

Madhavan Mukund/S P Suresh Lambda calculus PLC, Lecture 17, 14 Mar 2023 12/12



Church numerals

® n=\fx-f"x
® fox=x
® fﬂJﬂX:f(an)
® Thusf"x=f(f(---(fx)---)), where fis applied repeatedly n times

® [orinstance

® 0= )\fx-x

® 1=\fx-fx

® 2= Afx-f(fX)

* 3= Ax-f(f(fx)
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Church numerals

® n=\fx-f"x

® fox=x

® f"ix=f(f"x)

® Thusf"x=f(f(---(fx)---)), wherefis applied repeatedly n times
® Forinstance

® 0= )\fx-x

® 1=\fx-fx

® 2= Xfx-f(fx)

® 3= Ax-f(f(fx)

n

® ngy= Xfo (2 ))gy —p 8- (gy)--)=g"y
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