
Concurrent programming example;
Thread safe collections

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 16, 9 March 2023



An exercise in concurrent programming

A narrow North-South bridge can accommodate traffic only in one direction at a
time.

When a car arrives at the bridge

Cars on the bridge going in the same direction ⇒ can cross

No other car on the bridge ⇒ can cross (implicitly sets direction)

Cars on the bridge going in the opposite direction ⇒ wait for the bridge to be empty

Cars waiting to cross from one side may enter bridge in any order after direction
switches in their favour.

When bridge becomes empty and cars are waiting, yet another car can enter in the
opposite direction and makes them all wait some more.

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 2 / 18



An example . . .

Design a class Bridge to implement consistent one-way access for cars on the
highway

Should permit multiple cars to be on the bridge at one time (all going in the same
direction!)

Bridge has a public method public void cross(int id, boolean d, int s)

id is identity of car

d indicates direction

true is North

false is South

s indicates time taken to cross (milliseconds)

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 3 / 18



An example . . .

public void cross(int id, boolean d, int s)

Method cross prints out diagnostics

A car is stuck waiting for the direction to change
Car 10 going South stuck at Thu Mar 9 12:42:13 IST 2023

The direction changes
Car 10 switches bridge direction to South at Fri Feb 25 12:42:13 IST

2023

A car enters the bridge
Car 10 going South enters bridge at Thu Mar 9 12:42:13 IST 2023

A car leaves the bridge
Car 10 leaves at Thu Mar 9 12:42:14 IST 2023

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 4 / 18



Analysis

The “data” that is shared is the Bridge

State of the bridge is represented by two quantities

Number of cars on bridge — int bcount

Current direction of bridge — boolean direction

The method public void cross(int id, boolean d, int s)

changes the state of the bridge

Concurrent execution of cross can cause problems . . .

. . . but making cross a synchronized method is too restrictive

Only one car on the bridge at a time

Problem description explicitly disallows such a solution

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 5 / 18



Analysis . . .

Break up cross into a sequence of actions

enter — get on the bridge

travel — drive across the bridge

leave — get off the bridge

enter and leave can print out the diagnostics required

Which of these affect the state of the bridge?

enter : increment number of cars, perhaps change direction

leave : decrement number of cars

Make enter and leave synchronized

travel is just a means to let time elapse — use sleep

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 6 / 18



Analysis . . .

Code for cross

public void cross(int id, boolean d, int s){

// Get onto the bridge (if you can!)

enter(id,d);

// Takes time to cross the bridge

try{

Thread.sleep(s);

}

catch(InterruptedException e){}

// Get off the bridge

leave(id);

}

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 7 / 18



Analysis . . .

Entering the bridge

If the direction of this car matches the direction of the bridge, it can enter

If the direction does not match but the number of cars is zero, it can reset the
direction and enter

Otherwise, wait() for the state of the bridge to change

In each case, print a diagnostic message

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 8 / 18



Code for enter

private synchronized void enter(int id, boolean d){

Date date;

// While there are cars going in the wrong direction

while (d != direction && bcount > 0){

date = new Date();

System.out.println("Car "+id+" going "+direction_name(d)+" stuck at "+date);

// Wait for our turn

try{

wait();

}

catch (InterruptedException e){}

}

...

}
Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 9 / 18



Code for enter

private synchronized void enter(int id, boolean d){

...

while (d != direction && bcount > 0){ ... wait() ...}

...

if (d != direction){ // Switch direction, if needed

direction = d;

date = new Date();

System.out.println("Car "+id+" switches bridge direction

to "+direction_name(direction)+" at "+date);

}

bcount++; // Register our presence on the bridge

date = new Date();

System.out.println("Car "+id+" going "+direction_name(d)+" enters bridge at "+date);

}

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 10 / 18



Code for leave

Leaving the bridge is much simpler

Decrement the car count

notify() waiting cars . . . provided car count is zero

private synchronized void leave(int id){

Date date = new Date();

System.out.println("Car "+id+" leaves at "+date);

// "Check out"

bcount--;

// If everyone on the bridge has checked out, notify the

// cars waiting on the opposite side

if (bcount == 0){

notifyAll();

}

}

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 11 / 18



Summary

Concurrent programming can be tricky

Need to synchronize access to shared resources

. . . while allowing concurrency

This bridge crossing example is a prototype for a number of real world requirements

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 12 / 18



Concurrency and collections

Synchronize access to bank account
array to ensure consistent updates

Noninterfering updates can safely
happen in parallel

Updates to different accounts,
accounts[i] and accounts[j]

Insistence on sequential access affects
performance

Can we implement collections to allow
such concurrent updates in a safe
manner — make them thread safe?

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 13 / 18



Thread safety and correctness

Thread safety guarantees consistency of
individual updates

If two threads increment accounts[i],
neither update is lost

Individual updates are implemented in
an atomic manner

Does not say anything about sequences
of updates

Formally, linearizability

Contrast with serializability in
databases, where transactions
(sequences of updates) appear atomic

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 14 / 18



Thread safe collections

To implement thread safe collections, use locks to make local updates atomic

Granularity of locking depends on data structure

In an array, sufficient to protect a[i]

In a linked list, restrict access to nodes on either side of insert/delete

Java provides built-in collection types that are thread safe

ConcurrentMap interface, implemented as ConcurrentHashMap

BlockingQueue, ConcurrentSkipList, . . .

Appropriate low level locking is done automatically to ensure consistent local updates

Remember that these only guarantee atomicity of individual updates

Sequences of updates (transfer from one account to another) still need to be
manually synchronized to work properly

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 15 / 18



Usings thread safe queues for synchronization

Use a thread safe queue for simpler synchronization of shared objects

Producer–Consumer system

Producer threads insert items into the queue

Consumer threads retrieve them.

Bank account example

Transfer threads insert transfer instructions into shared queue

Update thread processes instructions from the queue, modifies bank accounts

Only the update thread modifies the data structure

No synchronization necessary

How does a consumer thread know when to check the queue?

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 16 / 18



Blocking queues

Blocking queues block when . . .

. . . you try to add an element when the queue is full

. . . you try to remove an element when the queue is empty

Update thread tries to remove an item to process, waits if nothing is available

In general, use blocking queues to coordinate multiple producer and consumer
threads

Producers write intermediate results into the queue

Consumers retrieve these results and make further updates

Blocking automatically balances the workload

Producers wait if consumers are slow and the queue fills up

Consumers wait if producers are slow to provide items to process

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 17 / 18



Summary

When updating collections, locking the entire data structure for individual updates
is wasteful

Sufficient to protect access within a local portion of the structure

Ensure that two updates do not overlap

Region to protect depends on the type of collection

Implement using lower level locks of suitable granularity

Java provides built-in thread safe collections

One of these is a blocking queue

Use a blocking queue to coordinate producers and consumers

Ensure safe access to a shared data structure without explicit synchronization

Madhavan Mukund/S P Suresh Concurrent programming example;Thread safe collections PLC, Lecture 16, 9 Mar 2023 18 / 18


