
Monitors and Threads in Java

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 15, 7 March 2023

Monitors

Monitor is like a class in an OO
language

Data definition — to which access is
restricted across threads

Collections of functions operating on
this data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion —
if one function is active, any other
function will have to wait for it to finish

Implicit queue associated with each
monitor

Contains all processes waiting for
access

In practice, this may be just a set, not
a queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 2 / 21

Condition variables

Thread suspends itself and waits for a
state change — q[source].wait()

Separate internal queue, vs external
queue for initially blocked threads

Notify change — q[target].notify()

Signal and exit — notifying process
immediately exits the monitor

Signal and wait — notifying process
swaps roles with notified process

Signal and continue — notifying process
keeps control till it completes and then
one of the notified processes steps in

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue

// for each account

boolean transfer (double amount,

int source,

int target){

while (accounts[source] < amount){

q[source].wait(); // wait in the queue

// associated with source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue

// associated with target

return true;

}

// compute the balance across all accounts

double audit(){ ...}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 3 / 21

Monitors in Java

Monitors incorporated within existing
class definitions

Function declared synchronized is to
be executed atomically

Each object has a lock

To execute a synchronized method,
thread must acquire lock

Thread gives up lock when the
method exits

Only one thread can have the lock at
any time

Wait for lock in external queue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}
Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 4 / 21

Monitors in Java

wait() and notify() to suspend and
resume

Wait — single internal queue

Notify

notify() signals one (arbitrary)
waiting process

notifyAll() signals all waiting
processes

Java uses signal and continue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}
Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 5 / 21

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

public class XYZ{

Object o = new Object();

public int f(){

..

synchronized(o){ ... }

}

public double g(){

..

synchronized(o){ ... }

}

}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 6 / 21

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Object o = new Object();

public int f(){

..

synchronized(o){

...

o.wait(); // Wait in queue attached to "o"

...

}

}

public double g(){

..

synchronized(o){

...

o.notifyAll(); // Wake up queue attached to "o"

...

}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 7 / 21

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public double h(){

synchronized(this){

...

}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 8 / 21

Object locks . . .

Actually, wait() can be “interrupted” by an InterruptedException

Should write

try{

wait();

}

catch (InterruptedException e) {

...

};

Error to use wait(), notify(), notifyAll() outside synchronized method

IllegalMonitorStateException

Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized
on o

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 9 / 21

Reentrant locks

Separate ReentrantLock class

Similar to a semaphore

lock() is like P(S)

unlock() is like V(S)

Always unlock() in finally — avoid
abort while holding lock

Why reentrant?

Thread holding lock can reacquire it

transfer() may call getBalance()
that also locks bankLock

Hold count increases with lock(),
decreases with unlock()

Lock is available if hold count is 0

public class Bank

{

private Lock bankLock = new ReentrantLock();

...

public void

transfer(int from, int to, int amount) {

bankLock.lock();

try {

accounts[from] -= amount;

accounts[to] += amount;

}

finally {

bankLock.unlock();

}

}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 10 / 21

Locks and conditions

Can associate multiple condition
variables with a lock

Bounded buffer implemented as
circular queue

put() blocks if buffer is full,
take() blocks if buffer is empty

class BoundedBuffer {

...

final Object[] items = new Object[100];

int putptr, takeptr, count;

public void put(Object x) {

...

}

public Object take() {

...

}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 11 / 21

Locks and conditions

Can associate multiple condition
variables with a lock

Bounded buffer implemented as
circular queue

put() blocks if buffer is full,
take() blocks if buffer is empty

Java interface Condition

Methods await() and signal()

Separate conditions to indicate
buffer empty and buffer full

class BoundedBuffer {

final Lock lock = new ReentrantLock();

final Condition notFull = lock.newCondition();

final Condition notEmpty = lock.newCondition();

final Object[] items = new Object[100];

int putptr, takeptr, count;

public void put(Object x) {

...

}

public Object take() {

...

}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 12 / 21

Locks and conditions

Can associate multiple condition
variables with a lock

Bounded buffer implemented as
circular queue

put() blocks if buffer is full,
take() blocks if buffer is empty

Java interface Condition

Methods await() and signal()

Separate conditions to indicate
buffer empty and buffer full

put() awaits notFull, signals
notEmpty

class BoundedBuffer {

final Lock lock = new ReentrantLock();

final Condition notFull = lock.newCondition();

final Condition notEmpty = lock.newCondition();

final Object[] items = new Object[100];

int putptr, takeptr, count;

public void put(Object x) throws InterruptedException {

lock.lock();

try {

while (count == items.length)

notFull.await();

Add an item to the buffer

notEmpty.signal();

} finally {

lock.unlock();

}

}

public Object take() {

...

}

}
Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 13 / 21

Locks and conditions

Can associate multiple condition
variables with a lock

Bounded buffer implemented as
circular queue

put() blocks if buffer is full,
take() blocks if buffer is empty

Java interface Condition

Methods await() and signal()

Separate conditions to indicate
buffer empty and buffer full

put() awaits notFull, signals
notEmpty

take() awaits notEmpty, signals
notFull

class BoundedBuffer {

final Lock lock = new ReentrantLock();

final Condition notFull = lock.newCondition();

final Condition notEmpty = lock.newCondition();

final Object[] items = new Object[100];

int putptr, takeptr, count;

public void put(Object x) throws InterruptedException {

...

}

public Object take() throws InterruptedException {

lock.lock();

try {

while (count == 0)

notEmpty.await();

Remove an item x from the buffer

notFull.signal();

return x;

} finally {

lock.unlock();

}

}

}Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 14 / 21

Summary

Every object in Java implicitly has a lock

Methods tagged synchronized are executed atomically

Implicitly acquire and release the object’s lock

Associated condition variable, single internal queue

wait(), notify(), notifyAll()

Can synchronize an arbitrary block of code using an object

sycnchronized(o) { ... }
o.wait(), o.notify(), o.notifyAll()

Reentrant locks work like semaphores

Can attach multiple condition variables to a lock, await() and signal()

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 15 / 21

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){

for (int j = 0; j < 100; j++){

System.out.println("My id is "+id);

try{

sleep(1000); // Sleep for 1000 ms

}

catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}

Typical output

My id is 0

My id is 3

My id is 2

My id is 1

My id is 4

My id is 0

My id is 2

My id is 3

My id is 4

My id is 1

My id is 0

My id is 3

My id is 1

My id is 2

My id is 4

My id is 0

...

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 16 / 21

Java threads . . .

Cannot always extend Thread

Single inheritance

Instead, implement Runnable

To use Runnable class, explicitly create
a Thread and start() it

public class Parallel implements Runnable{

// only the line above has changed

private int id;

public Parallel(int i){ ... } // Constructor

public void run(){ ... }

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

Thread t[] = new Thread[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

t[i] = new Thread(p[i]);

// Make a thread t[i] from p[i]

t[i].start(); // Start off p[i].run()

// Note: t[i].start(),

} // not p[i].start()

}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 17 / 21

Life cycle of a Java thread

A thread can be in six states — thread status via t.getState()

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 18 / 21

Interrupts

One thread can interrupt another using
interrupt()

p[i].interrupt(); interrupts thread
p[i]

Raises InterruptedException within
wait(), sleep()

No exception raised if thread is running!

interrupt() sets a status flag

interrupted() checks interrupt status
and clears the flag

Detecting an interrupt while running or
waiting

public void run(){

try{

j = 0;

while(!interrupted() && j < 100){

System.out.println("My id is "+id);

sleep(1000); // Sleep for 1000 ms

j++;

}

}

catch(InterruptedException e){}

}

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 19 / 21

More about threads . . .

Check a thread’s interrupt status

Use t.isInterrupted() to check status of t’s interrupt flag

Does not clear flag

Can give up running status

yield() gives up active state to another thread

Static method in Thread

Normally, scheduling of threads is handled by OS — preemptive

Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Waiting for other threads

t.join() waits for t to terminate

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 20 / 21

Summary

To run in parallel, need to extend Thread or implement Runnable

When implmenting Runnable, first create a Thread from Runnable object

t.start() invokes method run() in parallel

Threads can become inactive for different reasons

Block waiting for a lock

Wait in internal queue for a condition to be notified

Wait for a sleep timer to elapse

Threads can be interrupted

Be careful to check both interrupted status and handle InterruptException

Can yield control, or wait for another thread to terminate

Madhavan Mukund/S P Suresh Monitors and Threads in Java PLC, Lecture 15, 7 Mar 2023 21 / 21

