
Programming Language Support for Concurrency

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 14, 2 March 2023



Race conditions

Concurrent update of a shared variable can lead to data inconsistenccy

Race condition

Control behaviour of threads to regulate concurrent updates

Critical sections — sections of code where shared variables are updated

Mutual exclusion — at most one thread at a time can be in a critical section

We can construct protocols that guarantee mutual exclusion to critical sections

Watch out for starvation and deadlock

These protocols cleverly use regular variables

No assumptions about initial values, atomicity of updates

Difficult to generalize such protocols to arbitrary situations

Look to programming language for features that control synchronization

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 2 / 14



Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 3 / 14



Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following

if (S > 0)

decrement S;

else

wait for S to become positive;

V(S) atomically executes the following

if (there are threads waiting

for S to become positive)

wake one of them up;

//choice is nondeterministic

else

increment S;

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 4 / 14



Using semaphores

Mutual exclusion using semaphores

Thread 1 Thread 2

... ...

P(S); P(S);

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

V(S); V(S);

... ...

Semaphores guarantee

Mutual exclusion

Freedom from starvation

Freedom from deadlock

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 5 / 14



Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 6 / 14



Monitors

Attach synchronization control to the data
that is being protected

Monitors — Per Brinch Hansen and CAR
Hoare

Monitor is like a class in an OO language

Data definition — to which access is
restricted across threads

Collections of functions operating on this
data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 7 / 14



Monitors: external queue

Monitor ensures transfer and audit are
mutually exclusive

If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

Implicit queue associated with each
monitor

Contains all processes waiting for access

In practice, this may be just a set, not a
queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}
Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 8 / 14



Making monitors more flexible

Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

This should always succeed if accounts[i] > 500

If these calls are reordered and accounts[j] < 400 initially, this will fail

A possible fix — let an account wait for pending inflows

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 9 / 14



Monitors — wait()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 10 / 14



Monitors — notify()

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 11 / 14



Monitors — wait() and notify()

Should check the wait() condition again on wake up

Change of state may not be sufficient to continue — e.g., not enough inflow into the
account to allow transfer

A thread can be again interleaved between notification and running

At wake-up, the state was fine, but it has changed again due to some other concurrent
action

wait() should be in a while, not in an if

boolean transfer (double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 12 / 14



Condition variables

After transfer, notify() is only
useful for threads waiting for target
account of transfer to change state

Makes sense to have more than one
internal queue

Monitor can have condition variables
to describe internal queues

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue

// for each account

boolean transfer (double amount,

int source,

int target){

while (accounts[source] < amount){

q[source].wait(); // wait in the queue

// associated with source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue

// associated with target

return true;

}

// compute the balance across all accounts

double audit(){ ...}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 13 / 14



Summary

Test-and-set is at the heart of most race conditions

Need a high level primitive for atomic test-and-set in the programming language

Semaphores provide one such solution

Solutions based on test-and-set are low level and prone to programming errors

Monitors are like abstract datatypes for concurrent programming

Encapsulate data and methods to manipulate data

Methods are implicitly atomic, regulate concurrent access

Each object has an implicit external queue of processes waiting to execute a method

wait() and notify() allow more flexible operation

Can have multiple internal queues controlled by condition variables

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 14 / 14


