Programming Language Support for Concurrency

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 14, 2 March 2023



Race conditions

m Concurrent update of a shared variable can lead to data inconsistenccy

m Race condition

m Control behaviour of threads to regulate concurrent updates
m Critical sections — sections of code where shared variables are updated

m Mutual exclusion — at most one thread at a time can be in a critical section

m We can construct protocols that guarantee mutual exclusion to critical sections

m Watch out for starvation and deadlock

m These protocols cleverly use regular variables

m No assumptions about initial values, atomicity of updates

m Difficult to generalize such protocols to arbitrary situations

Look to programming language for features that control synchronization

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023



Test and set

m The fundamental issue preventing consistent concurrent updates of shared varuables
is test—and-set

m To increment a counter, check its current value, then add 1
m If more than one thread does this in parallel, updates may overlap and get lost
m Need to combine test and set into an atomic, indivisible step

m Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023



Semaphores

m Programming language support for m P(S) atomically executes the following
mutual exclusion if (S > 0)
decrement S;
m Dijkstra's semaphores else

. . . wait for S to become positive;
m Integer variable with atomic P

test-and-set operation m V(S) atomically executes the following

if (there are threads waiting
for S to become positive)
wake one of them up;
m P(s) — from Dutch passeren, to pass //choice is nondeterministic
else
increment S;

m A semaphore S supports two atomic
operations

m V(s) — from Dutch vrygeven, to
release

PLC, Lecture 14, 2 Mar 2023 4/14

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency



Using semaphores

m Mutual exclusion using semaphores
Thread 1

P(S);
// Enter critical section

// Leave critical section
V(S);

m Semaphores guarantee
m Mutual exclusion
m Freedom from starvation

m Freedom from deadlock

Thread 2
P(S);
// Enter critical section

// Leave critical section
V(S);

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency

PLC, Lecture 14, 2 Mar 2023

5/14



Problems with semaphores

m Too low level
m No clear relationship between a semaphore and the critical region that it protects

m All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

m Can even execute V(S) without having done P (S)

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 6/14



Monitors

m Attach synchronization control to the data
that is being protected

m Monitors — Per Brinch Hansen and CAR
Hoare

m Monitor is like a class in an OO language

m Data definition — to which access is
restricted across threads

m Collections of functions operating on this
data — all are implicitly mutually
exclusive

m Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

Madhavan Mukund/S P Suresh

monitor bank_account{

}

Programming Language Support for Concurrency

double accounts[100];

boolean transfer (double amount,
int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

double audit(){
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100;
balance += accounts[i];
}
return balance;

}

i++){

PLC, Lecture 14, 2 Mar 2023 7/14




Monitors: external queue

m Monitor ensures transfer and audit are

mutually exclusive

m If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

m Implicit queue associated with each
monitor

m Contains all processes waiting for access

m In practice, this may be just a set, not a
queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,
int source,
int target){
if (accounts[source] < amount){
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

double audit(){
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++){
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh

Programming Language Support for Concurrency

PLC, Lecture 14, 2 Mar 2023 8/14



Making monitors more flexible

m Our definition of monitors may be too restrictive

transfer(500.00,1,j);
transfer (400.00,j,k);

m This should always succeed if accounts[i] > 500
m If these calls are reordered and accounts[j] < 400 initially, this will fail

m A possible fix — let an account wait for pending inflows

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){
// wait for another transaction to transfer money
// into accounts[source]
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 9/14



Monitors — wait ()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){
// wait for another transaction to transfer money
// into accounts[source]
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}
m All other processes are blocked out while this process waits!
m Need a mechanism for a thread to suspend itself and give up the monitor
m A suspended process is waiting for monitor to change its state

m Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

m Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023



Monitors — notify ()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){ wait(); 1}

accounts[source] -= amount;
accounts[target] += amount;
notify();
return true;

}

m What happens when a process executes notify()?

m Signal and exit — notifying process immediately exits the monitor

m notify() must be the last instruction

m Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

m Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 11/14



Monitors — wait () and notify

m Should check the wait () condition again on wake up

m Change of state may not be sufficient to continue — e.g., not enough inflow into the
account to allow transfer

m A thread can be again interleaved between notification and running

m At wake-up, the state was fine, but it has changed again due to some other concurrent
action

m wait () should be in a while, not in an if

boolean transfer (double amount, int source, int target){
while (accounts[source] < amount){ wait(); 7}

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 12/14



Condition variables

m After transfer, notify () is only
useful for threads waiting for target
account of transfer to change state

m Makes sense to have more than one
internal queue

m Monitor can have condition variables
to describe internal queues

monitor bank_account{
double accounts[100];
queue q[100]; // one internal queue
// for each account
boolean transfer (double amount,
int source,
int target){
while (accounts[source] < amount){
qlsource] .wait(); // wait in the queue
// associated with source
}
accounts[source] -= amount;
accounts[target] += amount;
qltarget] .notify(); // notify the queue
// associated with target
return true;

}

// compute the balance across all accounts
double audit(O{ ...}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 13 /14



m Test-and-set is at the heart of most race conditions

m Need a high level primitive for atomic test-and-set in the programming language
m Semaphores provide one such solution

m Solutions based on test-and-set are low level and prone to programming errors

m Monitors are like abstract datatypes for concurrent programming
m Encapsulate data and methods to manipulate data
m Methods are implicitly atomic, regulate concurrent access

m Each object has an implicit external queue of processes waiting to execute a method

wait () and notify () allow more flexible operation

m Can have multiple internal queues controlled by condition variables

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 14, 2 Mar 2023 14 /14



