
Concurrency: Threads, Processes, Race Conditions, Mutual Exclusion

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 13, 28 February 2023



Concurrent programming

Multiprocessing

Single processor executes several
computations “in parallel”

Time-slicing to share access

Logically parallel actions within a single
application

Clicking Stop terminates a download
in a browser

User-interface is running in parallel
with network access

Process

Private set of local variables

Time-slicing involves saving the state
of one process and loading the
suspended state of another

Threads

Operated on same local variables

Communicate via “shared memory”

Context switches are easier

Henceforth, we use process and thread
interchangeably

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual Exclusion PLC, Lecture 13, 28 Feb 2023 2 / 17



Shared variables

Browser example: download thread and user-interface thread run in parallel

Shared boolean variable terminate indicates whether download should be interrupted

terminate is initially false

Clicking Stop sets it to true

Download thread checks the value of this variable periodically and aborts if it is set to
true

Watch out for race conditions

Shared variables must be updated consistently

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual Exclusion PLC, Lecture 13, 28 Feb 2023 3 / 17



Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

}
public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){

for (int j = 0; j < 100; j++){

System.out.println("My id is "+id);

try{

sleep(1000); // Sleep for 1000 ms

}

catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}

Typical output

My id is 0

My id is 3

My id is 2

My id is 1

My id is 4

My id is 0

My id is 2

My id is 3

My id is 4

My id is 1

My id is 0

My id is 3

My id is 1

My id is 2

My id is 4

My id is 0

...

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual Exclusion PLC, Lecture 13, 28 Feb 2023 4 / 17



Java threads . . .

Cannot always extend Thread

Single inheritance

Instead, implement Runnable

To use Runnable class, explicitly create
a Thread and start() it

public class Parallel implements Runnable{

// only the line above has changed

private int id;

public Parallel(int i){ ... } // Constructor

public void run(){ ... }

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

Thread t[] = new Thread[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

t[i] = new Thread(p[i]);

// Make a thread t[i] from p[i]

t[i].start(); // Start off p[i].run()

// Note: t[i].start(),

} // not p[i].start()

}

}

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual Exclusion PLC, Lecture 13, 28 Feb 2023 5 / 17



Summary

Common to have logically parallel actions with a single application

Download from one webpage while browsing another

Threads are lightweight processes with shared variables that can run in parallel

Use Thread class or Runnable interface to create parallel threads in Java

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual Exclusion PLC, Lecture 13, 28 Feb 2023 6 / 17



Threads and shared variables

Threads are lightweight processes with shared variables that can run in parallel

Browser example: download thread and user-interface thread run in parallel

Shared boolean variable terminate indicates whether download should be interrupted

terminate is initially false

Clicking Stop sets it to true

Download thread checks the value of this variable periodically and aborts if it is set to
true

Watch out for race conditions

Shared variables must be updated consistently

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual Exclusion PLC, Lecture 13, 28 Feb 2023 7 / 17



Maintaining data consistency

double accounts[100] describes 100
bank accounts

Two functions that operate on accounts:
transfer() and audit()

What are the possibilities when we
execute the following?

Thread 1 Thread 2

... ...

status = System.out.

transfer(500.00,7,8); print(audit());

... ...

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual Exclusion PLC, Lecture 13, 28 Feb 2023 8 / 17



Maintaining data consistency . . .

What are the possibilities when we
execute the following?

Thread 1 Thread 2

... ...

status = System.out.

transfer(500.00,7,8); print(audit());

... ...

audit() can report an overall total that
is 500 more or less than the actual assets

Depends on how actions of transfer
are interleaved with actions of audit

Can even report an error if transfer
happens atomically

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual Exclusion PLC, Lecture 13, 28 Feb 2023 9 / 17



Atomicity of updates

Two threads increment a shared variable n

Thread 1 Thread 2

... ...

m = n; k = n;

m++; k++;

n = m; n = k;

... ...

Expect n to increase by 2 . . .

. . . but, time-slicing may order execution as follows

Thread 1: m = n;

Thread 1: m++;

Thread 2: k = n; // k gets the original value of n

Thread 2: k++;

Thread 1: n = m;

Thread 2: n = k; // Same value as that set by Thread 1

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual ExclusionPLC, Lecture 13, 28 Feb 2023 10 / 17



Race conditions and mutual exclusion

Race condition — concurrent update of
shared variables, unpredictable outcome

Executing transfer() and audit()

concurrently can cause audit() to
report more or less than the actual assets

Avoid this by insisting that transfer()
and audit() do not interleave

Never simultaneously have current control
point of one thread within transfer()

and another thread within audit()

Mutually exclusive access to critical
regions of code

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual ExclusionPLC, Lecture 13, 28 Feb 2023 11 / 17



Summary

Concurrent update of a shared variable can lead to data inconsistenccy

Race condition

Control behaviour of threads to regulate concurrent updates

Critical sections — sections of code where shared variables are updated

Mutual exclusion — at most one thread at a time can be in a critical section

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual ExclusionPLC, Lecture 13, 28 Feb 2023 12 / 17



Mutual exclusion for two processes

First attempt

Thread 1 Thread 2

... ...

while (turn != 1){ while (turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

... ...

Shared variable turn — no assumption about initial value, atomic update

Mutually exclusive access is guaranteed . . .

. . . but one thread is locked out permanently if other thread shuts down

Starvation!

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual ExclusionPLC, Lecture 13, 28 Feb 2023 13 / 17



Mutual exclusion for two processes . . .

Second attempt

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

while (request_2){ while (request_1)

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

Mutually exclusive access is guaranteed . . .

. . . but if both threads try simultaneously, they block each other

Deadlock!

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual ExclusionPLC, Lecture 13, 28 Feb 2023 14 / 17



Peterson’s algorithm

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

turn = 2; turn = 1;

while (request_2 && while (request_1 &&

turn != 1){ turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

Combines the previous two approaches

If both try simultaneously, turn decides who goes through

If only one is alive, request for that process is stuck at false and turn is irrelevant

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual ExclusionPLC, Lecture 13, 28 Feb 2023 15 / 17



Beyond two processes

Generalizing Peterson’s solution to more than two processes is not trivial

For n process mutual exclusion other solutions exist

Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all
waiting processes

Lowest token number gets served next

Still need to break ties — token counter is not atomic

Need specific clever solutions for different situations

Need to argue correctness in each case

Instead, provide higher level support in programming language for synchronization

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual ExclusionPLC, Lecture 13, 28 Feb 2023 16 / 17



Summary

We can construct protocols that guarantee mutual exclusion to critical sections

Watch out for starvation and deadlock

These protocols cleverly use regular variables

No assumptions about initial values, atomicity of updates

Difficult to generalize such protocols to arbitrary situations

Look to programming language for features that control synchronization

Madhavan Mukund/S P Suresh Concurrency: Threads, Processes, Race Conditions, Mutual ExclusionPLC, Lecture 13, 28 Feb 2023 17 / 17


