Java: Reflection, Cloning

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 12, 16 February 2023

Reflection

Wikipedia
Reflective programming or reflection is the ability of a process to examine, introspect,
and modify its own structure and behaviour.

m Two components involved in reflection

m Introspection
A program can observe, and therefore reason about its own state.

m Intercession
A program can modify its execution state or alter its own interpretation or meaning.

PLC, Lecture 12, 16 Feb 2023 2/27

Madhavan Mukund/S P Suresh Java: Reflection, Cloning

Reflection in Java

m Simple example of introspection

Employee e = new Manager(...);
if (e instanceof Manager){
}
m What if we don’t know the type that we want to check in advance?

m Suppose we want to write a function to check if two different objects are both
instances of the same class?
public static boolean classequal(Object ol, Object 02){

// return true iff ol and o2 point to objects of same type

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

Reflection in Java

public static boolean classequal(Object ol, Object o02){...}

m Can't use instanceof
m Will have to check across all defined classes

m This is not even a fixed set!

m Can't use generic type variables

m The following code is syntactically disallowed
if (ol instance of T) { ...}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 4/27

Introspection in Java

m Can extract the class of an object using getClass ()

m Import package java.lang.reflect
import java.lang.reflect.*;
class MyReflectionClass{
public static boolean classequal(Object ol, Object 02){
return (ol.getClass() == o02.getClass());
3
}
m What does getClass () return?

m An object of type Class that encodes class information

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

m A version of classequal the explicitly uses this fact

import java.lang.reflect.x*;
class MyReflectionClass{

public static boolean classequal(Object ol, Object 02){
Class cl, c2;
cl = ol.getClass();
c2 = o02.getClass();
return (cl == c2);

}

m For each currently loaded class C, Java creates an object of type Class with
information about C

m Encoding execution state as data — reification
m Representing an abstract idea in a concrete form

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

Using the object

m Can create new instances of a class at runtime

Class ¢ = obj.getClassQ);
Object o = c.newInstance();
// Create a new object of same type as obj

m Can also get hold of the class object using the name of the class

String s = "Manager".
Class c = Class.forName(s);
Object o = c.newlnstance();

® ..., or, more compactly

Object o = Class.forName("Manager") .newInstance();

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

m From the Class object for class C, we can extract details about constructors,
methods and fields of C
m Constructors, methods and fields themselves have structure
m Constructors: arguments
m Methods : arguments and return type

m All three: modifiers static, private etc
m Additional classes Constructor, Method, Field

m Use getConstructors(), getMethods () and getFields() to obtain
constructors, methods and fields of C in an array.

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

m Extracting information about constructors, methods and fields

Class ¢ = obj.getClass();

Constructor[] constructors = c.getConstructors();
Method[] methods = c.getMethods();

Field[] fields = c.getFields();

m Constructor, Method, Field in turn have functions to get further details

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 9/27

The class

m Example: Get the list of parameters for each constructor

Class ¢ = obj.getClass();
Constructor[] constructors = c.getConstructors();
for (int i = 0; i < constructors.length; i++){
Class params[] = constructors[i].getParameterTypes();

}

m Each parameter list is a list of types

m Return value is an array of type Class[]

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 10 /27

m We can also invoke methods and examine/set values of fields.

Class ¢ = obj.getClass();

Method[] methods = c.getMethods();
Object[] args = { ... }
// construct an array of arguments
methods [3] . invoke (obj,args) ;
// invoke methods[3] on obj with arguments args

Field[] fields = c.getFields();
Object o = fields[2].get(obj);
// get the value of fields[2] from obj

fields[3].set(obj,value);
// set the value of fields[3] in obj to value

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 11/27

Reflection and security

m Can we extract information about private methods, fields, ...7?
m getConstructors(), ...only return publicly defined values

m Separate functions to also include private components
m getDeclaredConstructors()
m getDeclaredMethods ()
m getDeclaredFields ()

Should this be allowed to all programs?

Security issue!

Access to private components may be restricted through external security policies

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

Using reflection

m BluelJ, a programming environment to learn Java
m Can define and compile Java classes
m For compiled code, create object, invoke methods, examine state

m Uses reflective capabilities of Java — BlueJ need not internally maintain
“debugging” information about each class

m See http://www.bluej.org

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 13 /27

Limitations of Java reflection

m Cannot create or modify classes at run time

m The following is not possible

Class ¢ = new Class(....);

m An environment like BlueJ must invoke Java compiler before you can use a new class

m Contrast with Python
m class XYZ: can be executed at runtime in Python

m Other OO languages like Smalltalk allow redefining methods at run time

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

Erasure of generic information

m Type erasure — Java does not keep record all versions of LinkedList<T> as
separate types

m Cannot write

if (s instanceof LinkedList<String>){ ... }

m At run time, all type variables are promoted to Object

m LinkedList<T> becomes LinkedList<Object>

m Or, the upper bound, if one is available

m LinkedList<? extends Shape> becomes LinkedList<Shape>

m Since no information about T is preserved, cannot use T in expressions like

if (o instanceof T) {...}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

Erasure and overloading

m Type erasure means the comparison in following code fragment returns True

ol new LinkedList<Employee>();
02 = new LinkedList<Date>();

if (ol.getClass() == o2.getClass){
// True, so this block is executed

}

m As a consequence the following overloading is illegal

public class Example {
public void printlist(LinkedList<String> strList) { }
public void printlist(LinkedList<Date> dateList) { }
}

m Both functions have the same signature after type erasure

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 16 / 27

Arrays and generics

m Recall the covariance problem for arrays

m If S extends T then S[] extends T[]

m Can lead to run time type errors

ETicket[] elecarr = new ETicket[10];
Ticket[] ticketarr = elecarr; // OK. ETicket[] is a subtype of Ticket[]

ticketarr[5] = new Ticket(); // Not OK. ticketarr[5] refers to an ETicket!

m To avoid similar problems, can declare a generic array, but cannot instantiate it
T[] newarray; // OK
newarray = new T[100]; // Cannot create!

m An ugly workaround ... generates a compiler warning but works!

T[] newarray;
newarray = (T[]) new Object[100];

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 17 /27

Wrapper classes

m Type erasure — at run time, all type variables are promoted to Object

m LinkedList<T> becomes LinkedList<0Object>
m Basic types int, float, ...are not compatible with Object
m Cannot use basic type in place of a generic type variable T
m Cannot instantiate LinkedList<T> as LinkedList<int>, LinkedList<double>, ...

m Wrapper class for each basic type:

Basic type | Wrapper Class Basic type | Wrapper Class
byte Byte float Float
short Short double Double

int Integer boolean Boolean
long Long char Character

m All wrapper classes other than Boolean, Character extend the class Number

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

Wrapper classes

m Converting from basic type to wrapper class and back

int x = 5;
Integer myx = Integer(x);
int y = myx.intValue();

m Similarly, byteValue (), doubleValue(), ...

m Autoboxing — implicit conversion between base types and wrapper types

int x = 5;
Integer myx = x;
int y = myx;

m Use wrapper types in generic data structures

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 19 /27

Copying an object

public class Employee {
m Normal assignment creates two private String name;
references to the same object private double salary;

m Updates via either name update the public Employee(String n, double s){
object name = n;
salary = s;
m What if we want two separate but }
identical objects?

L o public void setname(String n){
m e2 should be initialized to a disjoint

copy of el }
}

name = n;

m How does one make a faithful copy?

Employee el = new Employee("Dhruv", 21500.0);
Employee e2 = el;
e2.setname ("Eknath"); // el also updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 20/27

The clone() method

public class Employee {
m Object defines a method clone () private String name;
private double salary;
m el.clone() returns a bitwise copy of

el public Employee(String n, double s){
name = n;
m Why a bitwise copy? salary = s;
}

m Object does not have access to
private instance variables public void setname(String n){

m Cannot build up a fresh copy of el . name = n;
from scratch }

m What could go wrong with a bitwise

copy? Employee el = new Employee(”Dhruv", 21500.0) ;

Employee e2 = el.clone();
e2.setname ("Eknath"); // el not updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 21/27

Shallow copy

m What if we add an instance variable public class Employee {

i String name;
5 private g ;
Date to Employee! private double salary;

m Assume update () updates the private Date birthday;

components of a Date object “e e
public void setname(String n){

m Bitwise copy made by el.clone() name = n;
copies the reference to the embedded ¥
Date public void setbday(int dd, int mm, int yy){
m e2.birthday and el.birthday refer birthday.update(dd,mm,yy) ;
to the same object X ¥

m e2.setbday() affects el.birthday

Employee el = new Employee("Dhruv", 21500.0);

m Bitwise copy is a shallow copy Employee e2 = el.clone();

m Nested mutable references are copied e2.setname("Eknath"); // el name not updated
verbatim e2.setbday(16,4,1997); // el bday updated!

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 22 /27

Deep copy

public class Employee {

m Deep copy recursively clones nested
objects

m Override the shallow clone() from
Object
m Object.clone() returns an Object
m Cast super.clone()
m Employee.clone() returns an
Employee

m Allowed to change the return type

}

private String name;
private double salary;
private Date birthday;

public void setname(String n){...}
public void setbday(...){...}

public Employee clone(){
Employee newemp =
(Employee) super.clone()
Date newbday = birthday.clone();
newemp.birthday = newbday;
return newmp;

}

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 23 /27

Deep copy ...

m What if Manager extends Employee?
m New instance variable promodate

m Manager inherits deep copy clone()
from Employee

m However Employee.clone () does not
know that it has to deep copy
promodate!

m Cloning is subtle, so Java puts in some
restrictions

public class Employee {
private String name;
private double salary;
private Date birthday;
public void setname(String n){...}
public void setbday(...){...}
public Employee clone(){...}

public class Manager extends Employee {
private Date promodate;

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 24 /27

Restrictions on clone()

m To allow clone() to be used, a class

has to implement Cloneable interface public class Employee implements Cloneable {
private String name;

private double salary;

private Date birthday;

m Marker interface

public void setname(String n){...}

public void setbday(...){...}
}

Employee el = new Employee("Dhruv", 21500.0);
Employee e2 = el.clone();
e2.setname ("Eknath"); // el not updated

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023 25 /27

Restrictions on clone()

m To allow clone() to be used, a class

has to implement Cloneable interface public class Employee implements Cloneable {
private String name;

private double salary;

m clone() in Object is protected private Date birthday;

m Marker interface

® Only Employee objects can clone() public void setname(String n){...}

m Redefine clone() as public to allow

bli id setbday(...){...
other classes to clone Employee public void setbday(...){...}

m Expanding visibility from protected public Employee clone(){...}
to public is allowed b

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

Restrictions on clone()

m To allow clone() to be used, a class

has to implement Cloneable interface public class Employee implements Cloneable {
private String name;

private double salary;

m clone() in Object is protected private Date birthday;

m Marker interface

= Only Employee objects can clone () public void setname(String n){...}

m Redefine clone() as public to allow

bli id setbday(...){...
other classes to clone Employee public void setbday(...){...}

m Expanding visibility from protected public Employee clone()
to public is allowed throws CloneNotSupportedException {...}

m Object.clone() throws
CloneNotSupportedException

m Catch or report this exception
m Call clone() in try block

Madhavan Mukund/S P Suresh Java: Reflection, Cloning PLC, Lecture 12, 16 Feb 2023

