Heaps and Garbage Collection

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 8, 02 February 2023

So far...

e Static allocation - for global variables

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2/16

So far...

e Static allocation — for global variables

® Data stored in the data segment

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2/16

So far...

e Static allocation — for global variables

® Data stored in the data segment
® Referenced using offsets from a fixed location

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2/16

So far...

e Static allocation — for global variables

® Data stored in the data segment
® Referenced using offsets from a fixed location

e Stack allocation — for local variables, parameters etc.

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2/16

So far...

e Static allocation — for global variables

® Data stored in the data segment
® Referenced using offsets from a fixed location

e Stack allocation — for local variables, parameters etc.

® Data stored in activation record of the function call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2/16

So far...

e Static allocation — for global variables

® Data stored in the data segment
® Referenced using offsets from a fixed location

e Stack allocation — for local variables, parameters etc.

® Data stored in activation record of the function call
® Access to non-local variables by following a chain of access links

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2/16

So far...

e Static allocation — for global variables

® Data stored in the data segment
® Referenced using offsets from a fixed location

e Stack allocation — for local variables, parameters etc.

® Data stored in activation record of the function call
® Access to non-local variables by following a chain of access links
® Control links to go back to caller at the end of the function call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2/16

Dynamic allocation

class A {
int x, y, z;
Alx,y,2) { ® Functions can handle complex data types — arrays / classes, ...
this.x = x;
}
public int f(int n) {
int arr[n];

}

}

main {
A a0bj(2,5,7);
a0bj.f(100);

}

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 3/16

Dynamic allocation

class A {
int x, vy, z;

Alx,y,2) { ® Functions can handle complex data types — arrays / classes, ...
) this.x = x; ® Dynamic data structures like linked lists / graphs
public int f(int n) {

int arr[n];

}

}

main {
A a0bj(2,5,7);
a0bj.f(100);

}

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 3/16

Dynamic allocation

class A {
int x, vy, z;

Alx,y,2) { ® Functions can handle complex data types — arrays / classes, ...

) this.x = x; ® Dynamic data structures like linked lists / graphs
public int f(int n) {

int arr[n];

® No pre-specified bound on the number of elements

}

}

main {
A a0bj(2,5,7);
a0bj.f(100);

}

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

3/16

Dynamic allocation

class A {
int x, vy, z;
Alx,y,2) { ® Functions can handle complex data types — arrays / classes, ...

this.x = x; e Dynamic data structures like linked lists / graphs

iublic int f(int n) { ® No pre-specified bound on the number of elements
int arr[n]; ... ® The activation record for main will store a pointer to the object
} a0bj stored on the heap!
}
main {
A a0bj(2,5,7);
a0bj.f(100);
}

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

3/16

Dynamic allocation

class A {
int x, vy, z;

Alx,y,2) { ® Functions can handle complex data types — arrays / classes, ...
this.x = x;

y e Dynamic data structures like linked lists / graphs
R e
SRR S G) No pre-specified bound on the number of elements
int arr[n]; ... ® The activation record for main will store a pointer to the object
} a0bj stored on the heap!
}) ® a0bj itself has pointers to the class definition
main {
A a0bj(2,5,7);
aObj.f(100);
}

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 3/16

class A {
int x, vy, z;
Al(x,y,z) {
this.x = x;
}
public int f(int n) {
int arr[n];
}
}
main {
A a0bj(2,5,7);
aObj.f(100);
}

Madhavan Mukund/S P Suresh

Dynamic allocation

Functions can handle complex data types — arrays / classes, ...
Dynamic data structures like linked lists / graphs

® No pre-specified bound on the number of elements

The activation record for main will store a pointer to the object
a0bj stored on the heap!

a0bj itself has pointers to the class definition

The AR for f has a pointer to an array stored on heap

Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

3/16

Heap

® Heap — just a chunk of memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 4/16

Heap

® Heap — just a chunk of memory

® Unstructured

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 4/16

Heap

® Heap — just a chunk of memory

® Unstructured
® Nothing to do with the heap data structure used to implement priority queues!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 4/16

Heap

® Heap — just a chunk of memory

® Unstructured
® Nothing to do with the heap data structure used to implement priority queues!

e Typically depicted as “growing upward” (and the stack grows downward)

! Stack

1 Heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 4/16

® Heap — just a chunk of memory

® Unstructured

Heap

® Nothing to do with the heap data structure used to implement priority queues!

e Typically depicted as “growing upward” (and the stack grows downward)

!

Madhavan Mukund/S P Suresh

Stack

Heap

® Consist of chunks of allocated and unallocated
memory

Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

4/16

Stack and Heap

main a0bj ————— x = 2 constructor
f n = 100 = y =5 code for f
O

arr ~ z =7 Code segment

Stack class %é AC..)

2 f(..)

M 100 integers
Heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 5/16

Overriding, inheritance etc.

® The table for each class has a pointer to
the table for its superclass

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6/16

Overriding, inheritance etc.

® The table for each class has a pointer to
the table for its superclass

® |f we refer to a function which is
overloaded, we find its pointer in the
table for the class

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6/16

Overriding, inheritance etc.

® The table for each class has a pointer to
the table for its superclass

® |f we refer to a function which is
overloaded, we find its pointer in the
table for the class

® Otherwise we look at the parent’s table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6/16

Overriding, inheritance etc.

The table for each class has a pointer to
the table for its superclass

If we refer to a function which is
overloaded, we find its pointer in the
table for the class

Otherwise we look at the parent’s table

Might need to follow a chain of pointers
before we determine the code to run on
a method call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection

PLC, Lecture 8, 02 Feb 2023

6/16

Overriding, inheritance etc.

® Runtime polymorphism has a simple

The table for each class has a pointer to . .
implementation

the table for its superclass

If we refer to a function which is
overloaded, we find its pointer in the
table for the class

Otherwise we look at the parent’s table

Might need to follow a chain of pointers
before we determine the code to run on
a method call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6/16

Overriding, inheritance etc.

_ ® Runtime polymorphism has a simple
The table for each class has a pointer to

. implementation
the table for its superclass

) o ® Consider an array of Shapes, each element being
If we refer to a function which is .

_ _) an instance of a subclass
overloaded, we find its pointer in the

table for the class
Otherwise we look at the parent’s table

Might need to follow a chain of pointers
before we determine the code to run on
a method call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6/16

Overriding, inheritance etc.

_ ® Runtime polymorphism has a simple
The table for each class has a pointer to

. implementation
the table for its superclass

® Consider an array of Shapes, each element being

If we refer to a function which is .
an instance of a subclass

overloaded, we find its pointer in the

® The elements of the arrays are pointers to objects
table for the class

Otherwise we look at the parent’s table

Might need to follow a chain of pointers
before we determine the code to run on
a method call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6/16

The table for each class has a pointer to
the table for its superclass

If we refer to a function which is
overloaded, we find its pointer in the
table for the class

Otherwise we look at the parent’s table

Might need to follow a chain of pointers
before we determine the code to run on
a method call

Overriding, inheritance etc.

Runtime polymorphism has a simple
implementation

Consider an array of Shapes, each element being
an instance of a subclass

The elements of the arrays are pointers to objects

The object data has a pointer to the precise
subclass it is an instance of!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

6/16

Overriding, inheritance etc.

_ ® Runtime polymorphism has a simple
The table for each class has a pointer to

. implementation
the table for its superclass . ,
® Consider an array of Shapes, each element being

If we refer to a function which is .
an instance of a subclass

overloaded, we find its pointer in the
® The elements of the arrays are pointers to objects
table for the class
[J
Otherwise we look at the parent’s table The object data has a pointer to the precise
) _) subclass it is an instance of!
Might need to follow a chain of pointers

. e Calling perimeter on each element of the arra
before we determine the code to run on &P y

2 method call runs the code pointed to by the appropriate

subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6/16

Heaps and memory management

e Asfunctions are called, they allocate data on the heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 7/16

Heaps and memory management

e Asfunctions are called, they allocate data on the heap

e At the end of the function, the allocated data on heap might not be needed

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 7/16

Heaps and memory management

e Asfunctions are called, they allocate data on the heap
e At the end of the function, the allocated data on heap might not be needed

e Some data might be inaccessible from stack!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 7/16

Heaps and memory management

As functions are called, they allocate data on the heap
At the end of the function, the allocated data on heap might not be needed
Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself might be in heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

7/16

Heaps and memory management

As functions are called, they allocate data on the heap

At the end of the function, the allocated data on heap might not be needed

Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself might be in heap

Allocated data might no longer have a reference from the stack (direct or indirect)

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

7/16

Heaps and memory management

As functions are called, they allocate data on the heap

At the end of the function, the allocated data on heap might not be needed

Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself might be in heap
Allocated data might no longer have a reference from the stack (direct or indirect)

This is called garbage — waste of memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

7/16

Explicit memory management

® Older languages expect programmer to manage memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8/16

Explicit memory management

® Older languages expect programmer to manage memory

® malloc / freeinC

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8/16

Explicit memory management

® Older languages expect programmer to manage memory
® malloc / freeinC

® new / deletein C++

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8/16

Explicit memory management

Older languages expect programmer to manage memory
malloc / freeinC
new / deletein C++

free / delete tells the system to take back ownership of memory locations from the program —
deallocation

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8/16

Explicit memory management

Older languages expect programmer to manage memory
malloc / freeinC
new / deletein C++

free / delete tells the system to take back ownership of memory locations from the program —
deallocation

Can cause the problem of dangling pointers — pointers to deallocated variables

int *x = malloc(

sizeof(int)); X —— 10
*x = 10; //
- y freed!

free(x); Stack

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8/16

Garbage

® Dangling pointers are a serious problem!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 9/16

Garbage

® Dangling pointers are a serious problem!

® Accessing a deallocated location could give arbitrary results

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 9/16

Garbage

® Dangling pointers are a serious problem!
® Accessing a deallocated location could give arbitrary results

® Huge security risk!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 9/16

Dangling pointers are a serious problem!
Accessing a deallocated location could give arbitrary results
Huge security risk!

Garbage is not so serious, but wastes resources!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection

Garbage

PLC, Lecture 8, 02 Feb 2023

9/16

Garbage

Dangling pointers are a serious problem!

Accessing a deallocated location could give arbitrary results
Huge security risk!

Garbage is not so serious, but wastes resources!

Can happen even with explicit deallocation

int *x = malloc(

sizeof(int));
X = 0x0..0 10
*x = 10;
X = NULL; Stack inaccessible!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 9/16

Automatic garbage collection

® Java and modern languages like Swift provide automatic garbage collection!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10/16

Automatic garbage collection

® Java and modern languages like Swift provide automatic garbage collection!

® Takes explicit deallocation out of the programmer’s hands

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10/16

Automatic garbage collection

® Java and modern languages like Swift provide automatic garbage collection!
® Takes explicit deallocation out of the programmer’s hands

® The problem of dangling references is avoided

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10/16

Automatic garbage collection

Java and modern languages like Swift provide automatic garbage collection!
Takes explicit deallocation out of the programmer’s hands
The problem of dangling references is avoided

The run-time support takes the responsibility of identifying and deallocating garbage

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

10/16

Automatic garbage collection

Java and modern languages like Swift provide automatic garbage collection!

Takes explicit deallocation out of the programmer’s hands

The problem of dangling references is avoided

The run-time support takes the responsibility of identifying and deallocating garbage

Garbage is any block of memory not directly or indirectly accessible from the stack

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

10/16

Automatic garbage collection

Java and modern languages like Swift provide automatic garbage collection!

Takes explicit deallocation out of the programmer’s hands

The problem of dangling references is avoided

The run-time support takes the responsibility of identifying and deallocating garbage
Garbage is any block of memory not directly or indirectly accessible from the stack

The system maintains a free list — blocks of memory that available to be allocated

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

10/16

Automatic garbage collection

Java and modern languages like Swift provide automatic garbage collection!

Takes explicit deallocation out of the programmer’s hands

The problem of dangling references is avoided

The run-time support takes the responsibility of identifying and deallocating garbage
Garbage is any block of memory not directly or indirectly accessible from the stack
The system maintains a free list — blocks of memory that available to be allocated

Garbage collection — identify garbage and add to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

10/16

Automatic garbage collection

Java and modern languages like Swift provide automatic garbage collection!

Takes explicit deallocation out of the programmer’s hands

The problem of dangling references is avoided

The run-time support takes the responsibility of identifying and deallocating garbage
Garbage is any block of memory not directly or indirectly accessible from the stack
The system maintains a free list — blocks of memory that available to be allocated
Garbage collection — identify garbage and add to the free list

Two broad methods — mark-and-sweep and reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

10/16

Mark-and-sweep

Mark phase
// all nodes are white ® The mark phase blackens all nodes reachable from
shade roots; the roots (nodes on the stack)
while (there are gray nodes) {
choose a gray node n;
shade n—left and n—right;
n.color = black;
}
// no gray nodes
// reachable nodes black
shade(n): if n.color = white

n.color = gray;

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 1/16

Mark phase

// all nodes are white

shade roots;

while (there are gray nodes) {
choose a gray node n;
shade n—left and n—right;
n.color = black;

}

// no gray nodes

// reachable nodes black

shade(n): if n.color = white

n.color = gray;

Madhavan Mukund/S P Suresh

Mark-and-sweep
® The mark phase blackens all nodes reachable from

the roots (nodes on the stack)

® The unreachable nodes are white

Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

1/16

Mark-and-sweep
Mark phase

[
// all nodes are white The mark phase blackens all nodes reachable from

the roots (nodes on the stack)
shade roots;

while (there are gray nodes) { ® The unreachable nodes are white
choose a gray node n; ® The sweep phase goes through all memory locations
shade n—left and n—right; in order

n.color = black;
}
// no gray nodes
// reachable nodes black
shade(n): if n.color = white
n.color = gray;

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 1/16

Mark-and-sweep
Mark phase

[
// all nodes are white The mark phase blackens all nodes reachable from

the roots (nodes on the stack)
shade roots;

while (there are gray nodes) { ® The unreachable nodes are white
choose a gray node n; ® The sweep phase goes through all memory locations
shade n—left and n—right; in order
n.color = black; ® |f the node is black, color it white and add it to free

3 list

// no gray nodes

// reachable nodes black

shade(n): if n.color = white
n.color = gray;

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 1/16

Mark-and-sweep
Mark phase
® The mark phase blackens all nodes reachable from
the roots (nodes on the stack)

// all nodes are white
shade roots;

while (there are gray nodes) { ® The unreachable nodes are white
choose a gray node n; ® The sweep phase goes through all memory locations
shade n—left and n—right; in order
n.color = black; ® |f the node is black, color it white and add it to free

3 list

// mo gray nodes e |f the node is white, leave it as it is
// reachable nodes black
shade(n): if n.color = white

n.color = gray;

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 1/16

Mark-and-sweep
Mark phase
® The mark phase blackens all nodes reachable from
the roots (nodes on the stack)

// all nodes are white
shade roots;

while (there are gray nodes) { ® The unreachable nodes are white
choose a gray node n; ® The sweep phase goes through all memory locations
shade n—left and n—right; in order
n.color = black; ® |f the node is black, color it white and add it to free

3 list

no gray nodes
/7 gray e |f the node is white, leave it as it is

// reachable nodes black

o Lo . .
shade(n): if n.color — white Garbage collection is run while pausing other

|
n.color = gray; programs:

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 1/16

Improving garbage collection

® |mprovements to mark-and-sweep GC using the generational hypothesis

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12/16

Improving garbage collection

® Improvements to mark-and-sweep GC using the generational hypothesis

® Most objects die young (as soon as the current stack frame is deallocated)

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12/16

Improving garbage collection

® Improvements to mark-and-sweep GC using the generational hypothesis

® Most objects die young (as soon as the current stack frame is deallocated)
® But if something survives for a certain time it is likely to live long!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12/16

Improving garbage collection

® Improvements to mark-and-sweep GC using the generational hypothesis

® Most objects die young (as soon as the current stack frame is deallocated)
® But if something survives for a certain time it is likely to live long!

® Freshly allocated objects are located in a nursery

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12/16

Improving garbage collection

® Improvements to mark-and-sweep GC using the generational hypothesis

® Most objects die young (as soon as the current stack frame is deallocated)
® But if something survives for a certain time it is likely to live long!

® Freshly allocated objects are located in a nursery

® GCis run frequently on the nursery

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12/16

Improving garbage collection

Improvements to mark-and-sweep GC using the generational hypothesis

® Most objects die young (as soon as the current stack frame is deallocated)
® But if something survives for a certain time it is likely to live long!

Freshly allocated objects are located in a nursery
GC is run frequently on the nursery

Each time an object in the nursery survives a GC run, its generation is incremented

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

12/16

Improving garbage collection

Improvements to mark-and-sweep GC using the generational hypothesis

® Most objects die young (as soon as the current stack frame is deallocated)
® But if something survives for a certain time it is likely to live long!

Freshly allocated objects are located in a nursery
GC is run frequently on the nursery
Each time an object in the nursery survives a GC run, its generation is incremented

If it survives some number of generations, it is moved to the main heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

12/16

Improving garbage collection

Improvements to mark-and-sweep GC using the generational hypothesis

® Most objects die young (as soon as the current stack frame is deallocated)
® But if something survives for a certain time it is likely to live long!

Freshly allocated objects are located in a nursery

GC is run frequently on the nursery

Each time an object in the nursery survives a GC run, its generation is incremented
If it survives some number of generations, it is moved to the main heap

GC on the main heap is run much less frequently as turnover is much less!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

12/16

Improving garbage collection

Improvements to mark-and-sweep GC using the generational hypothesis

® Most objects die young (as soon as the current stack frame is deallocated)
® But if something survives for a certain time it is likely to live long!

Freshly allocated objects are located in a nursery

GC is run frequently on the nursery

Each time an object in the nursery survives a GC run, its generation is incremented
If it survives some number of generations, it is moved to the main heap

GC on the main heap is run much less frequently as turnover is much less!

Such generational garbage collectors have much higher throughput!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

12/16

Improving garbage collection

Improvements to mark-and-sweep GC using the generational hypothesis

® Most objects die young (as soon as the current stack frame is deallocated)
® But if something survives for a certain time it is likely to live long!

Freshly allocated objects are located in a nursery

GC is run frequently on the nursery

Each time an object in the nursery survives a GC run, its generation is incremented
If it survives some number of generations, it is moved to the main heap

GC on the main heap is run much less frequently as turnover is much less!

Such generational garbage collectors have much higher throughput!

Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

12/16

Reference counting

® |anguages like Swift use automatic reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13/16

Reference counting

® |anguages like Swift use automatic reference counting

® Every memory block has some bits reserved to maintain a counter

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13/16

Reference counting

® |anguages like Swift use automatic reference counting
® Every memory block has some bits reserved to maintain a counter

® Keeps track of the number of references into the memory block

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13/16

Reference counting

Languages like Swift use automatic reference counting
Every memory block has some bits reserved to maintain a counter
Keeps track of the number of references into the memory block

If an assignment introduces a new reference to a block, increment the counter

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

13/16

Reference counting

® |anguages like Swift use automatic reference counting
® Every memory block has some bits reserved to maintain a counter

® Keeps track of the number of references into the memory block

If an assignment introduces a new reference to a block, increment the counter

If an assignment makes a reference point away from a location, decrement the counter

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

13/16

Reference counting

Languages like Swift use automatic reference counting

Every memory block has some bits reserved to maintain a counter

Keeps track of the number of references into the memory block

If an assignment introduces a new reference to a block, increment the counter

If an assignment makes a reference point away from a location, decrement the counter

If the counter of node n hits zero ...

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

13/16

Reference counting

Languages like Swift use automatic reference counting

Every memory block has some bits reserved to maintain a counter

Keeps track of the number of references into the memory block

If an assignment introduces a new reference to a block, increment the counter

If an assignment makes a reference point away from a location, decrement the counter
If the counter of node 1 hits zero ...

decrement the counter of all nodes pointed to by n and return n to free list!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

13/16

Reference counting

Languages like Swift use automatic reference counting

Every memory block has some bits reserved to maintain a counter

Keeps track of the number of references into the memory block

If an assignment introduces a new reference to a block, increment the counter

If an assignment makes a reference point away from a location, decrement the counter
If the counter of node 1 hits zero ...

decrement the counter of all nodes pointed to by n and return n to free list!

There are no long pauses due to running garbage collection

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

13/16

Reference counting

Languages like Swift use automatic reference counting

Every memory block has some bits reserved to maintain a counter

Keeps track of the number of references into the memory block

If an assignment introduces a new reference to a block, increment the counter

If an assignment makes a reference point away from a location, decrement the counter
If the counter of node 1 hits zero ...

decrement the counter of all nodes pointed to by n and return n to free list!

There are no long pauses due to running garbage collection

Maintaing the reference count is mostly low-cost!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

13/16

Reference counting

Languages like Swift use automatic reference counting

Every memory block has some bits reserved to maintain a counter

Keeps track of the number of references into the memory block

If an assignment introduces a new reference to a block, increment the counter

If an assignment makes a reference point away from a location, decrement the counter
If the counter of node 1 hits zero ...

decrement the counter of all nodes pointed to by n and return n to free list!

There are no long pauses due to running garbage collection

Maintaing the reference count is mostly low-cost!

Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13/16

Reference counting and cycles

e Reference counting does not handle cycles properly

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 14 /16

Reference counting and cycles

e Reference counting does not handle cycles properly

® Consider a list of nodes n_, ..., n,, with each n, pointing to 11, and 11, points to 1,

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 14 /16

Reference counting and cycles

e Reference counting does not handle cycles properly
® Consider alist of nodes r1_, ..., n,, with each n, pointing to 11,,, and n, points to

® Suppose none of them are reachable from the stack

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 14 /16

Reference counting and cycles

Reference counting does not handle cycles properly
Consider a list of nodes 1, ..., n,, with each n, pointing to 11,,, and n, points to
Suppose none of them are reachable from the stack

The counters of all these nodes never reach o

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

14 /16

Reference counting and cycles

Reference counting does not handle cycles properly

Consider a list of nodes 1, ..., n,, with each n, pointing to 11,,, and n, points to
Suppose none of them are reachable from the stack

The counters of all these nodes never reach o

Cyclic garbage is not reclaimed!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

14 /16

Reference counting and cycles

Reference counting does not handle cycles properly

Consider a list of nodes 1, ..., n,, with each n, pointing to 11,,, and n, points to
Suppose none of them are reachable from the stack

The counters of all these nodes never reach o

Cyclic garbage is not reclaimed!

Can be handled by running mark-and-sweep at less frequent intervals

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

14 /16

Swift and weak references

e Swift reduces cyclic garbage by supporting weak references in programs

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 15/16

Swift and weak references

e Swift reduces cyclic garbage by supporting weak references in programs

® An example usage ...

class Person { class Apartment {
let name: String let unit: String
init(name: String) { init(unit: String) {
self.name = name self.unit = unit
} }
var apartment: Apartment? weak var tenant: Person?

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 15/16

Swift’s ARC (automatic reference counting)

® Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16/16

Swift’s ARC (automatic reference counting)

® Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

® \Weak references are always variables with an optional type (like Maybe in Haskell)

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16/16

Swift’s ARC (automatic reference counting)

® Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

® \Weak references are always variables with an optional type (like Maybe in Haskell)

e Optional values can be nil, so we cannot use them without checking if it is non-nil

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16/16

Swift’s ARC (automatic reference counting)

Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

Weak references are always variables with an optional type (like Maybe in Haskell)
Optional values can be nit, so we cannot use them without checking if it is non-nil

Weak references do not contribute the reference count of a node — only strong references are
counted

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16/16

Swift’s ARC (automatic reference counting)

Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

Weak references are always variables with an optional type (like Maybe in Haskell)
Optional values can be nit, so we cannot use them without checking if it is non-nil

Weak references do not contribute the reference count of a node — only strong references are
counted

So a node can be deallocated if there is no strong reference pointing to it

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

16/16

Swift’s ARC (automatic reference counting)

Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

Weak references are always variables with an optional type (like Maybe in Haskell)
Optional values can be nit, so we cannot use them without checking if it is non-nil

Weak references do not contribute the reference count of a node — only strong references are
counted

So a node can be deallocated if there is no strong reference pointing to it

Swift's ARC automatically changes weak references to deallocated nodes to nil

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023

16/16

Swift’s ARC (automatic reference counting)

Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

Weak references are always variables with an optional type (like Maybe in Haskell)
Optional values can be nit, so we cannot use them without checking if it is non-nil

Weak references do not contribute the reference count of a node — only strong references are
counted

So a node can be deallocated if there is no strong reference pointing to it
Swift's ARC automatically changes weak references to deallocated nodes to nil

Because programmers cannot use optional values without checking if they are non-nil, there is no
safety issues due to dangling pointers

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16/16

