
Heaps and Garbage Collection

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 8, 02 February 2023



So far …

• Static allocation – for global variables

• Data stored in the data segment
• Referenced using offsets from a fixed location

• Stack allocation – for local variables, parameters etc.

• Data stored in activation record of the function call
• Access to non-local variables by following a chain of access links
• Control links to go back to caller at the end of the function call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2 / 16



So far …

• Static allocation – for global variables
• Data stored in the data segment

• Referenced using offsets from a fixed location

• Stack allocation – for local variables, parameters etc.

• Data stored in activation record of the function call
• Access to non-local variables by following a chain of access links
• Control links to go back to caller at the end of the function call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2 / 16



So far …

• Static allocation – for global variables
• Data stored in the data segment
• Referenced using offsets from a fixed location

• Stack allocation – for local variables, parameters etc.

• Data stored in activation record of the function call
• Access to non-local variables by following a chain of access links
• Control links to go back to caller at the end of the function call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2 / 16



So far …

• Static allocation – for global variables
• Data stored in the data segment
• Referenced using offsets from a fixed location

• Stack allocation – for local variables, parameters etc.

• Data stored in activation record of the function call
• Access to non-local variables by following a chain of access links
• Control links to go back to caller at the end of the function call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2 / 16



So far …

• Static allocation – for global variables
• Data stored in the data segment
• Referenced using offsets from a fixed location

• Stack allocation – for local variables, parameters etc.
• Data stored in activation record of the function call

• Access to non-local variables by following a chain of access links
• Control links to go back to caller at the end of the function call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2 / 16



So far …

• Static allocation – for global variables
• Data stored in the data segment
• Referenced using offsets from a fixed location

• Stack allocation – for local variables, parameters etc.
• Data stored in activation record of the function call
• Access to non-local variables by following a chain of access links

• Control links to go back to caller at the end of the function call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2 / 16



So far …

• Static allocation – for global variables
• Data stored in the data segment
• Referenced using offsets from a fixed location

• Stack allocation – for local variables, parameters etc.
• Data stored in activation record of the function call
• Access to non-local variables by following a chain of access links
• Control links to go back to caller at the end of the function call

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 2 / 16



Dynamic allocation

class A {
int x, y, z;
A(x,y,z) {

this.x = x; FF.
}
public int f(int n) {

int arr[n]; FF.
}

}
main {

A aObj(2,5,7);
aObj.f(100); FF.

}

• Functions can handle complex data types – arrays / classes, …

• Dynamic data structures like linked lists / graphs

• No pre-specified bound on the number of elements

• The activation record for main will store a pointer to the object
aObj stored on the heap!
• aObj itself has pointers to the class definition
• The AR for f has a pointer to an array stored on heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 3 / 16



Dynamic allocation

class A {
int x, y, z;
A(x,y,z) {

this.x = x; FF.
}
public int f(int n) {

int arr[n]; FF.
}

}
main {

A aObj(2,5,7);
aObj.f(100); FF.

}

• Functions can handle complex data types – arrays / classes, …
• Dynamic data structures like linked lists / graphs

• No pre-specified bound on the number of elements

• The activation record for main will store a pointer to the object
aObj stored on the heap!
• aObj itself has pointers to the class definition
• The AR for f has a pointer to an array stored on heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 3 / 16



Dynamic allocation

class A {
int x, y, z;
A(x,y,z) {

this.x = x; FF.
}
public int f(int n) {

int arr[n]; FF.
}

}
main {

A aObj(2,5,7);
aObj.f(100); FF.

}

• Functions can handle complex data types – arrays / classes, …
• Dynamic data structures like linked lists / graphs
• No pre-specified bound on the number of elements

• The activation record for main will store a pointer to the object
aObj stored on the heap!
• aObj itself has pointers to the class definition
• The AR for f has a pointer to an array stored on heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 3 / 16



Dynamic allocation

class A {
int x, y, z;
A(x,y,z) {

this.x = x; FF.
}
public int f(int n) {

int arr[n]; FF.
}

}
main {

A aObj(2,5,7);
aObj.f(100); FF.

}

• Functions can handle complex data types – arrays / classes, …
• Dynamic data structures like linked lists / graphs
• No pre-specified bound on the number of elements

• The activation record for main will store a pointer to the object
aObj stored on the heap!

• aObj itself has pointers to the class definition
• The AR for f has a pointer to an array stored on heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 3 / 16



Dynamic allocation

class A {
int x, y, z;
A(x,y,z) {

this.x = x; FF.
}
public int f(int n) {

int arr[n]; FF.
}

}
main {

A aObj(2,5,7);
aObj.f(100); FF.

}

• Functions can handle complex data types – arrays / classes, …
• Dynamic data structures like linked lists / graphs
• No pre-specified bound on the number of elements

• The activation record for main will store a pointer to the object
aObj stored on the heap!
• aObj itself has pointers to the class definition

• The AR for f has a pointer to an array stored on heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 3 / 16



Dynamic allocation

class A {
int x, y, z;
A(x,y,z) {

this.x = x; FF.
}
public int f(int n) {

int arr[n]; FF.
}

}
main {

A aObj(2,5,7);
aObj.f(100); FF.

}

• Functions can handle complex data types – arrays / classes, …
• Dynamic data structures like linked lists / graphs
• No pre-specified bound on the number of elements

• The activation record for main will store a pointer to the object
aObj stored on the heap!
• aObj itself has pointers to the class definition
• The AR for f has a pointer to an array stored on heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 3 / 16



Heap

• Heap – just a chunk of memory

• Unstructured
• Nothing to do with the heap data structure used to implement priority queues!

• Typically depicted as “growing upward” (and the stack grows downward)

Stack↓

Heap↑

• Consist of chunks of allocated and unallocated
memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 4 / 16



Heap

• Heap – just a chunk of memory
• Unstructured

• Nothing to do with the heap data structure used to implement priority queues!

• Typically depicted as “growing upward” (and the stack grows downward)

Stack↓

Heap↑

• Consist of chunks of allocated and unallocated
memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 4 / 16



Heap

• Heap – just a chunk of memory
• Unstructured
• Nothing to do with the heap data structure used to implement priority queues!

• Typically depicted as “growing upward” (and the stack grows downward)

Stack↓

Heap↑

• Consist of chunks of allocated and unallocated
memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 4 / 16



Heap

• Heap – just a chunk of memory
• Unstructured
• Nothing to do with the heap data structure used to implement priority queues!

• Typically depicted as “growing upward” (and the stack grows downward)

Stack↓

Heap↑

• Consist of chunks of allocated and unallocated
memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 4 / 16



Heap

• Heap – just a chunk of memory
• Unstructured
• Nothing to do with the heap data structure used to implement priority queues!

• Typically depicted as “growing upward” (and the stack grows downward)

Stack↓

Heap↑

• Consist of chunks of allocated and unallocated
memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 4 / 16



Stack and Heap
...

aObjmain
n = 100f

arr

Stack

x = 2
y = 5

z = 7

class
aO

bj
A(…)

f(…)A’
st
ab
le

100 integers

constructor

code for f
Code segment

Heap

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 5 / 16



Overriding, inheritance etc.

• The table for each class has a pointer to
the table for its superclass

• If we refer to a function which is
overloaded, we find its pointer in the
table for the class

• Otherwise we look at the parent’s table

• Might need to follow a chain of pointers
before we determine the code to run on
a method call

• Runtime polymorphism has a simple
implementation

• Consider an array of Shapes, each element being
an instance of a subclass

• The elements of the arrays are pointers to objects

• The object data has a pointer to the precise
subclass it is an instance of!

• Calling perimeter on each element of the array
runs the code pointed to by the appropriate
subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6 / 16



Overriding, inheritance etc.

• The table for each class has a pointer to
the table for its superclass

• If we refer to a function which is
overloaded, we find its pointer in the
table for the class

• Otherwise we look at the parent’s table

• Might need to follow a chain of pointers
before we determine the code to run on
a method call

• Runtime polymorphism has a simple
implementation

• Consider an array of Shapes, each element being
an instance of a subclass

• The elements of the arrays are pointers to objects

• The object data has a pointer to the precise
subclass it is an instance of!

• Calling perimeter on each element of the array
runs the code pointed to by the appropriate
subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6 / 16



Overriding, inheritance etc.

• The table for each class has a pointer to
the table for its superclass

• If we refer to a function which is
overloaded, we find its pointer in the
table for the class

• Otherwise we look at the parent’s table

• Might need to follow a chain of pointers
before we determine the code to run on
a method call

• Runtime polymorphism has a simple
implementation

• Consider an array of Shapes, each element being
an instance of a subclass

• The elements of the arrays are pointers to objects

• The object data has a pointer to the precise
subclass it is an instance of!

• Calling perimeter on each element of the array
runs the code pointed to by the appropriate
subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6 / 16



Overriding, inheritance etc.

• The table for each class has a pointer to
the table for its superclass

• If we refer to a function which is
overloaded, we find its pointer in the
table for the class

• Otherwise we look at the parent’s table

• Might need to follow a chain of pointers
before we determine the code to run on
a method call

• Runtime polymorphism has a simple
implementation

• Consider an array of Shapes, each element being
an instance of a subclass

• The elements of the arrays are pointers to objects

• The object data has a pointer to the precise
subclass it is an instance of!

• Calling perimeter on each element of the array
runs the code pointed to by the appropriate
subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6 / 16



Overriding, inheritance etc.

• The table for each class has a pointer to
the table for its superclass

• If we refer to a function which is
overloaded, we find its pointer in the
table for the class

• Otherwise we look at the parent’s table

• Might need to follow a chain of pointers
before we determine the code to run on
a method call

• Runtime polymorphism has a simple
implementation

• Consider an array of Shapes, each element being
an instance of a subclass

• The elements of the arrays are pointers to objects

• The object data has a pointer to the precise
subclass it is an instance of!

• Calling perimeter on each element of the array
runs the code pointed to by the appropriate
subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6 / 16



Overriding, inheritance etc.

• The table for each class has a pointer to
the table for its superclass

• If we refer to a function which is
overloaded, we find its pointer in the
table for the class

• Otherwise we look at the parent’s table

• Might need to follow a chain of pointers
before we determine the code to run on
a method call

• Runtime polymorphism has a simple
implementation

• Consider an array of Shapes, each element being
an instance of a subclass

• The elements of the arrays are pointers to objects

• The object data has a pointer to the precise
subclass it is an instance of!

• Calling perimeter on each element of the array
runs the code pointed to by the appropriate
subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6 / 16



Overriding, inheritance etc.

• The table for each class has a pointer to
the table for its superclass

• If we refer to a function which is
overloaded, we find its pointer in the
table for the class

• Otherwise we look at the parent’s table

• Might need to follow a chain of pointers
before we determine the code to run on
a method call

• Runtime polymorphism has a simple
implementation

• Consider an array of Shapes, each element being
an instance of a subclass

• The elements of the arrays are pointers to objects

• The object data has a pointer to the precise
subclass it is an instance of!

• Calling perimeter on each element of the array
runs the code pointed to by the appropriate
subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6 / 16



Overriding, inheritance etc.

• The table for each class has a pointer to
the table for its superclass

• If we refer to a function which is
overloaded, we find its pointer in the
table for the class

• Otherwise we look at the parent’s table

• Might need to follow a chain of pointers
before we determine the code to run on
a method call

• Runtime polymorphism has a simple
implementation

• Consider an array of Shapes, each element being
an instance of a subclass

• The elements of the arrays are pointers to objects

• The object data has a pointer to the precise
subclass it is an instance of!

• Calling perimeter on each element of the array
runs the code pointed to by the appropriate
subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6 / 16



Overriding, inheritance etc.

• The table for each class has a pointer to
the table for its superclass

• If we refer to a function which is
overloaded, we find its pointer in the
table for the class

• Otherwise we look at the parent’s table

• Might need to follow a chain of pointers
before we determine the code to run on
a method call

• Runtime polymorphism has a simple
implementation

• Consider an array of Shapes, each element being
an instance of a subclass

• The elements of the arrays are pointers to objects

• The object data has a pointer to the precise
subclass it is an instance of!

• Calling perimeter on each element of the array
runs the code pointed to by the appropriate
subclass table

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 6 / 16



Heaps andmemory management

• As functions are called, they allocate data on the heap

• At the end of the function, the allocated data on heap might not be needed

• Some data might be inaccessible from stack!

• All computation and reference to data starts from the stack, but the data itself might be in heap

• Allocated data might no longer have a reference from the stack (direct or indirect)

• This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 7 / 16



Heaps andmemory management

• As functions are called, they allocate data on the heap

• At the end of the function, the allocated data on heap might not be needed

• Some data might be inaccessible from stack!

• All computation and reference to data starts from the stack, but the data itself might be in heap

• Allocated data might no longer have a reference from the stack (direct or indirect)

• This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 7 / 16



Heaps andmemory management

• As functions are called, they allocate data on the heap

• At the end of the function, the allocated data on heap might not be needed

• Some data might be inaccessible from stack!

• All computation and reference to data starts from the stack, but the data itself might be in heap

• Allocated data might no longer have a reference from the stack (direct or indirect)

• This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 7 / 16



Heaps andmemory management

• As functions are called, they allocate data on the heap

• At the end of the function, the allocated data on heap might not be needed

• Some data might be inaccessible from stack!

• All computation and reference to data starts from the stack, but the data itself might be in heap

• Allocated data might no longer have a reference from the stack (direct or indirect)

• This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 7 / 16



Heaps andmemory management

• As functions are called, they allocate data on the heap

• At the end of the function, the allocated data on heap might not be needed

• Some data might be inaccessible from stack!

• All computation and reference to data starts from the stack, but the data itself might be in heap

• Allocated data might no longer have a reference from the stack (direct or indirect)

• This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 7 / 16



Heaps andmemory management

• As functions are called, they allocate data on the heap

• At the end of the function, the allocated data on heap might not be needed

• Some data might be inaccessible from stack!

• All computation and reference to data starts from the stack, but the data itself might be in heap

• Allocated data might no longer have a reference from the stack (direct or indirect)

• This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 7 / 16



Explicit memory management

• Older languages expect programmer to manage memory

• malloc / free in C
• new / delete in C++
• free / delete tells the system to take back ownership of memory locations from the program –
deallocation
• Can cause the problem of dangling pointers – pointers to deallocated variables

int *x = malloc(
sizeof(int));

*x = 10;
y = x;
free(x);

...

x
y

Stack

10

freed!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8 / 16



Explicit memory management

• Older languages expect programmer to manage memory
• malloc / free in C

• new / delete in C++
• free / delete tells the system to take back ownership of memory locations from the program –
deallocation
• Can cause the problem of dangling pointers – pointers to deallocated variables

int *x = malloc(
sizeof(int));

*x = 10;
y = x;
free(x);

...

x
y

Stack

10

freed!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8 / 16



Explicit memory management

• Older languages expect programmer to manage memory
• malloc / free in C
• new / delete in C++

• free / delete tells the system to take back ownership of memory locations from the program –
deallocation
• Can cause the problem of dangling pointers – pointers to deallocated variables

int *x = malloc(
sizeof(int));

*x = 10;
y = x;
free(x);

...

x
y

Stack

10

freed!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8 / 16



Explicit memory management

• Older languages expect programmer to manage memory
• malloc / free in C
• new / delete in C++
• free / delete tells the system to take back ownership of memory locations from the program –
deallocation

• Can cause the problem of dangling pointers – pointers to deallocated variables

int *x = malloc(
sizeof(int));

*x = 10;
y = x;
free(x);

...

x
y

Stack

10

freed!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8 / 16



Explicit memory management

• Older languages expect programmer to manage memory
• malloc / free in C
• new / delete in C++
• free / delete tells the system to take back ownership of memory locations from the program –
deallocation
• Can cause the problem of dangling pointers – pointers to deallocated variables

int *x = malloc(
sizeof(int));

*x = 10;
y = x;
free(x);

...

x
y

Stack

10

freed!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 8 / 16



Garbage

• Dangling pointers are a serious problem!

• Accessing a deallocated location could give arbitrary results

• Huge security risk!

• Garbage is not so serious, but wastes resources!

• Can happen even with explicit deallocation

int *x = malloc(
sizeof(int));

*x = 10;
x = NULL;

...

x = 0x0…0

Stack

10

inaccessible!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 9 / 16



Garbage

• Dangling pointers are a serious problem!

• Accessing a deallocated location could give arbitrary results

• Huge security risk!

• Garbage is not so serious, but wastes resources!

• Can happen even with explicit deallocation

int *x = malloc(
sizeof(int));

*x = 10;
x = NULL;

...

x = 0x0…0

Stack

10

inaccessible!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 9 / 16



Garbage

• Dangling pointers are a serious problem!

• Accessing a deallocated location could give arbitrary results

• Huge security risk!

• Garbage is not so serious, but wastes resources!

• Can happen even with explicit deallocation

int *x = malloc(
sizeof(int));

*x = 10;
x = NULL;

...

x = 0x0…0

Stack

10

inaccessible!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 9 / 16



Garbage

• Dangling pointers are a serious problem!

• Accessing a deallocated location could give arbitrary results

• Huge security risk!

• Garbage is not so serious, but wastes resources!

• Can happen even with explicit deallocation

int *x = malloc(
sizeof(int));

*x = 10;
x = NULL;

...

x = 0x0…0

Stack

10

inaccessible!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 9 / 16



Garbage

• Dangling pointers are a serious problem!

• Accessing a deallocated location could give arbitrary results

• Huge security risk!

• Garbage is not so serious, but wastes resources!

• Can happen even with explicit deallocation

int *x = malloc(
sizeof(int));

*x = 10;
x = NULL;

...

x = 0x0…0

Stack

10

inaccessible!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 9 / 16



Automatic garbage collection

• Java and modern languages like Swift provide automatic garbage collection!

• Takes explicit deallocation out of the programmer’s hands

• The problem of dangling references is avoided

• The run-time support takes the responsibility of identifying and deallocating garbage

• Garbage is any block of memory not directly or indirectly accessible from the stack

• The system maintains a free list – blocks of memory that available to be allocated

• Garbage collection – identify garbage and add to the free list

• Two broad methods –mark-and-sweep and reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10 / 16



Automatic garbage collection

• Java and modern languages like Swift provide automatic garbage collection!

• Takes explicit deallocation out of the programmer’s hands

• The problem of dangling references is avoided

• The run-time support takes the responsibility of identifying and deallocating garbage

• Garbage is any block of memory not directly or indirectly accessible from the stack

• The system maintains a free list – blocks of memory that available to be allocated

• Garbage collection – identify garbage and add to the free list

• Two broad methods –mark-and-sweep and reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10 / 16



Automatic garbage collection

• Java and modern languages like Swift provide automatic garbage collection!

• Takes explicit deallocation out of the programmer’s hands

• The problem of dangling references is avoided

• The run-time support takes the responsibility of identifying and deallocating garbage

• Garbage is any block of memory not directly or indirectly accessible from the stack

• The system maintains a free list – blocks of memory that available to be allocated

• Garbage collection – identify garbage and add to the free list

• Two broad methods –mark-and-sweep and reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10 / 16



Automatic garbage collection

• Java and modern languages like Swift provide automatic garbage collection!

• Takes explicit deallocation out of the programmer’s hands

• The problem of dangling references is avoided

• The run-time support takes the responsibility of identifying and deallocating garbage

• Garbage is any block of memory not directly or indirectly accessible from the stack

• The system maintains a free list – blocks of memory that available to be allocated

• Garbage collection – identify garbage and add to the free list

• Two broad methods –mark-and-sweep and reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10 / 16



Automatic garbage collection

• Java and modern languages like Swift provide automatic garbage collection!

• Takes explicit deallocation out of the programmer’s hands

• The problem of dangling references is avoided

• The run-time support takes the responsibility of identifying and deallocating garbage

• Garbage is any block of memory not directly or indirectly accessible from the stack

• The system maintains a free list – blocks of memory that available to be allocated

• Garbage collection – identify garbage and add to the free list

• Two broad methods –mark-and-sweep and reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10 / 16



Automatic garbage collection

• Java and modern languages like Swift provide automatic garbage collection!

• Takes explicit deallocation out of the programmer’s hands

• The problem of dangling references is avoided

• The run-time support takes the responsibility of identifying and deallocating garbage

• Garbage is any block of memory not directly or indirectly accessible from the stack

• The system maintains a free list – blocks of memory that available to be allocated

• Garbage collection – identify garbage and add to the free list

• Two broad methods –mark-and-sweep and reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10 / 16



Automatic garbage collection

• Java and modern languages like Swift provide automatic garbage collection!

• Takes explicit deallocation out of the programmer’s hands

• The problem of dangling references is avoided

• The run-time support takes the responsibility of identifying and deallocating garbage

• Garbage is any block of memory not directly or indirectly accessible from the stack

• The system maintains a free list – blocks of memory that available to be allocated

• Garbage collection – identify garbage and add to the free list

• Two broad methods –mark-and-sweep and reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10 / 16



Automatic garbage collection

• Java and modern languages like Swift provide automatic garbage collection!

• Takes explicit deallocation out of the programmer’s hands

• The problem of dangling references is avoided

• The run-time support takes the responsibility of identifying and deallocating garbage

• Garbage is any block of memory not directly or indirectly accessible from the stack

• The system maintains a free list – blocks of memory that available to be allocated

• Garbage collection – identify garbage and add to the free list

• Two broad methods –mark-and-sweep and reference counting

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 10 / 16



Mark-and-sweep
Mark phase

// all nodes are white
shade roots;
while (there are gray nodes) {

choose a gray node n;
shade nF>left and nF>right;
n.color = black;

}
// no gray nodes
// reachable nodes black
shade(n): if n.color F= white

n.color = gray;

• Themark phase blackens all nodes reachable from
the roots (nodes on the stack)

• The unreachable nodes are white

• The sweep phase goes through all memory locations
in order

• If the node is black, color it white and add it to free
list

• If the node is white, leave it as it is

• Garbage collection is run while pausing other
programs!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 11 / 16



Mark-and-sweep
Mark phase

// all nodes are white
shade roots;
while (there are gray nodes) {

choose a gray node n;
shade nF>left and nF>right;
n.color = black;

}
// no gray nodes
// reachable nodes black
shade(n): if n.color F= white

n.color = gray;

• Themark phase blackens all nodes reachable from
the roots (nodes on the stack)

• The unreachable nodes are white

• The sweep phase goes through all memory locations
in order

• If the node is black, color it white and add it to free
list

• If the node is white, leave it as it is

• Garbage collection is run while pausing other
programs!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 11 / 16



Mark-and-sweep
Mark phase

// all nodes are white
shade roots;
while (there are gray nodes) {

choose a gray node n;
shade nF>left and nF>right;
n.color = black;

}
// no gray nodes
// reachable nodes black
shade(n): if n.color F= white

n.color = gray;

• Themark phase blackens all nodes reachable from
the roots (nodes on the stack)

• The unreachable nodes are white

• The sweep phase goes through all memory locations
in order

• If the node is black, color it white and add it to free
list

• If the node is white, leave it as it is

• Garbage collection is run while pausing other
programs!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 11 / 16



Mark-and-sweep
Mark phase

// all nodes are white
shade roots;
while (there are gray nodes) {

choose a gray node n;
shade nF>left and nF>right;
n.color = black;

}
// no gray nodes
// reachable nodes black
shade(n): if n.color F= white

n.color = gray;

• Themark phase blackens all nodes reachable from
the roots (nodes on the stack)

• The unreachable nodes are white

• The sweep phase goes through all memory locations
in order

• If the node is black, color it white and add it to free
list

• If the node is white, leave it as it is

• Garbage collection is run while pausing other
programs!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 11 / 16



Mark-and-sweep
Mark phase

// all nodes are white
shade roots;
while (there are gray nodes) {

choose a gray node n;
shade nF>left and nF>right;
n.color = black;

}
// no gray nodes
// reachable nodes black
shade(n): if n.color F= white

n.color = gray;

• Themark phase blackens all nodes reachable from
the roots (nodes on the stack)

• The unreachable nodes are white

• The sweep phase goes through all memory locations
in order

• If the node is black, color it white and add it to free
list

• If the node is white, leave it as it is

• Garbage collection is run while pausing other
programs!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 11 / 16



Mark-and-sweep
Mark phase

// all nodes are white
shade roots;
while (there are gray nodes) {

choose a gray node n;
shade nF>left and nF>right;
n.color = black;

}
// no gray nodes
// reachable nodes black
shade(n): if n.color F= white

n.color = gray;

• Themark phase blackens all nodes reachable from
the roots (nodes on the stack)

• The unreachable nodes are white

• The sweep phase goes through all memory locations
in order

• If the node is black, color it white and add it to free
list

• If the node is white, leave it as it is

• Garbage collection is run while pausing other
programs!

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 11 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis

• Most objects die young (as soon as the current stack frame is deallocated)
• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis
• Most objects die young (as soon as the current stack frame is deallocated)

• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis
• Most objects die young (as soon as the current stack frame is deallocated)
• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis
• Most objects die young (as soon as the current stack frame is deallocated)
• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis
• Most objects die young (as soon as the current stack frame is deallocated)
• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis
• Most objects die young (as soon as the current stack frame is deallocated)
• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis
• Most objects die young (as soon as the current stack frame is deallocated)
• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis
• Most objects die young (as soon as the current stack frame is deallocated)
• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis
• Most objects die young (as soon as the current stack frame is deallocated)
• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Improving garbage collection

• Improvements to mark-and-sweep GC using the generational hypothesis
• Most objects die young (as soon as the current stack frame is deallocated)
• But if something survives for a certain time it is likely to live long!

• Freshly allocated objects are located in a nursery

• GC is run frequently on the nursery

• Each time an object in the nursery survives a GC run, its generation is incremented

• If it survives some number of generations, it is moved to the main heap

• GC on the main heap is run much less frequently as turnover is much less!

• Such generational garbage collectors have much higher throughput!

• Each GC run will return a higher fraction of the visited nodes to the free list

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 12 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting

• Languages like Swift use automatic reference counting

• Every memory block has some bits reserved to maintain a counter

• Keeps track of the number of references into the memory block

• If an assignment introduces a new reference to a block, increment the counter

• If an assignment makes a reference point away from a location, decrement the counter

• If the counter of node n hits zero …

• decrement the counter of all nodes pointed to by n and return n to free list!

• There are no long pauses due to running garbage collection

• Maintaing the reference count is mostly low-cost!

• Infrequently, a decrement to the reference count might trigger a chain of deallocations

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 13 / 16



Reference counting and cycles

• Reference counting does not handle cycles properly

• Consider a list of nodes n0 , . . . ,nk , with each ni pointing to ni+1 and nk points to n0
• Suppose none of them are reachable from the stack

• The counters of all these nodes never reach 0

• Cyclic garbage is not reclaimed!

• Can be handled by running mark-and-sweep at less frequent intervals

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 14 / 16



Reference counting and cycles

• Reference counting does not handle cycles properly

• Consider a list of nodes n0 , . . . ,nk , with each ni pointing to ni+1 and nk points to n0

• Suppose none of them are reachable from the stack

• The counters of all these nodes never reach 0

• Cyclic garbage is not reclaimed!

• Can be handled by running mark-and-sweep at less frequent intervals

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 14 / 16



Reference counting and cycles

• Reference counting does not handle cycles properly

• Consider a list of nodes n0 , . . . ,nk , with each ni pointing to ni+1 and nk points to n0
• Suppose none of them are reachable from the stack

• The counters of all these nodes never reach 0

• Cyclic garbage is not reclaimed!

• Can be handled by running mark-and-sweep at less frequent intervals

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 14 / 16



Reference counting and cycles

• Reference counting does not handle cycles properly

• Consider a list of nodes n0 , . . . ,nk , with each ni pointing to ni+1 and nk points to n0
• Suppose none of them are reachable from the stack

• The counters of all these nodes never reach 0

• Cyclic garbage is not reclaimed!

• Can be handled by running mark-and-sweep at less frequent intervals

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 14 / 16



Reference counting and cycles

• Reference counting does not handle cycles properly

• Consider a list of nodes n0 , . . . ,nk , with each ni pointing to ni+1 and nk points to n0
• Suppose none of them are reachable from the stack

• The counters of all these nodes never reach 0

• Cyclic garbage is not reclaimed!

• Can be handled by running mark-and-sweep at less frequent intervals

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 14 / 16



Reference counting and cycles

• Reference counting does not handle cycles properly

• Consider a list of nodes n0 , . . . ,nk , with each ni pointing to ni+1 and nk points to n0
• Suppose none of them are reachable from the stack

• The counters of all these nodes never reach 0

• Cyclic garbage is not reclaimed!

• Can be handled by running mark-and-sweep at less frequent intervals

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 14 / 16



Swift and weak references

• Swift reduces cyclic garbage by supporting weak references in programs

• An example usage …

class Person {
let name: String
init(name: String) {

self.name = name
}
var apartment: Apartment?

}

class Apartment {
let unit: String
init(unit: String) {

self.unit = unit
}
weak var tenant: Person?

}

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 15 / 16



Swift and weak references

• Swift reduces cyclic garbage by supporting weak references in programs

• An example usage …

class Person {
let name: String
init(name: String) {

self.name = name
}
var apartment: Apartment?

}

class Apartment {
let unit: String
init(unit: String) {

self.unit = unit
}
weak var tenant: Person?

}

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 15 / 16



Swift’s ARC (automatic reference counting)

• Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

• Weak references are always variables with an optional type (like Maybe in Haskell)
• Optional values can be nil, so we cannot use them without checking if it is non-nil

• Weak references do not contribute the reference count of a node – only strong references are
counted

• So a node can be deallocated if there is no strong reference pointing to it

• Swift’s ARC automatically changes weak references to deallocated nodes to nil
• Because programmers cannot use optional values without checking if they are non-nil, there is no
safety issues due to dangling pointers

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16 / 16



Swift’s ARC (automatic reference counting)

• Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

• Weak references are always variables with an optional type (like Maybe in Haskell)

• Optional values can be nil, so we cannot use them without checking if it is non-nil

• Weak references do not contribute the reference count of a node – only strong references are
counted

• So a node can be deallocated if there is no strong reference pointing to it

• Swift’s ARC automatically changes weak references to deallocated nodes to nil
• Because programmers cannot use optional values without checking if they are non-nil, there is no
safety issues due to dangling pointers

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16 / 16



Swift’s ARC (automatic reference counting)

• Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

• Weak references are always variables with an optional type (like Maybe in Haskell)
• Optional values can be nil, so we cannot use them without checking if it is non-nil

• Weak references do not contribute the reference count of a node – only strong references are
counted

• So a node can be deallocated if there is no strong reference pointing to it

• Swift’s ARC automatically changes weak references to deallocated nodes to nil
• Because programmers cannot use optional values without checking if they are non-nil, there is no
safety issues due to dangling pointers

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16 / 16



Swift’s ARC (automatic reference counting)

• Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

• Weak references are always variables with an optional type (like Maybe in Haskell)
• Optional values can be nil, so we cannot use them without checking if it is non-nil

• Weak references do not contribute the reference count of a node – only strong references are
counted

• So a node can be deallocated if there is no strong reference pointing to it

• Swift’s ARC automatically changes weak references to deallocated nodes to nil
• Because programmers cannot use optional values without checking if they are non-nil, there is no
safety issues due to dangling pointers

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16 / 16



Swift’s ARC (automatic reference counting)

• Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

• Weak references are always variables with an optional type (like Maybe in Haskell)
• Optional values can be nil, so we cannot use them without checking if it is non-nil

• Weak references do not contribute the reference count of a node – only strong references are
counted

• So a node can be deallocated if there is no strong reference pointing to it

• Swift’s ARC automatically changes weak references to deallocated nodes to nil
• Because programmers cannot use optional values without checking if they are non-nil, there is no
safety issues due to dangling pointers

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16 / 16



Swift’s ARC (automatic reference counting)

• Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

• Weak references are always variables with an optional type (like Maybe in Haskell)
• Optional values can be nil, so we cannot use them without checking if it is non-nil

• Weak references do not contribute the reference count of a node – only strong references are
counted

• So a node can be deallocated if there is no strong reference pointing to it

• Swift’s ARC automatically changes weak references to deallocated nodes to nil

• Because programmers cannot use optional values without checking if they are non-nil, there is no
safety issues due to dangling pointers

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16 / 16



Swift’s ARC (automatic reference counting)

• Swift encourages programmers to prevent obvious reference cycles by making some references
weak (typically from a “subordinate object” to a superior object)

• Weak references are always variables with an optional type (like Maybe in Haskell)
• Optional values can be nil, so we cannot use them without checking if it is non-nil

• Weak references do not contribute the reference count of a node – only strong references are
counted

• So a node can be deallocated if there is no strong reference pointing to it

• Swift’s ARC automatically changes weak references to deallocated nodes to nil
• Because programmers cannot use optional values without checking if they are non-nil, there is no
safety issues due to dangling pointers

Madhavan Mukund/S P Suresh Heaps and Garbage Collection PLC, Lecture 8, 02 Feb 2023 16 / 16


