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e Contains information pertaining to a function invocation
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Activation record

e Contains information pertaining to a function invocation

® Added to the top of the stack at the start of the function invocation
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Activation record

e Contains information pertaining to a function invocation
® Added to the top of the stack at the start of the function invocation

® Removed from the stack at the end of the function invocation
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Activation record

e Contains information pertaining to a function invocation
® Added to the top of the stack at the start of the function invocation

® Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function
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Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address
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Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address

System-wide pointers
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Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address
System-wide pointers

® Program counter — address of the next instruction to execute
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Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address
System-wide pointers

® Program counter — address of the next instruction to execute
® Stack pointer — points to the top of the system stack

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023



Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address
System-wide pointers
® Program counter — address of the next instruction to execute

® Stack pointer — points to the top of the system stack
® Frame pointer — points to the start of the topmost frame on stack

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023



Contains information pertaining to a function invocation

Activation record

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address

System-wide pointers

® Program counter — address of the next instruction to execute

® Stack pointer — points to the top of the system stack
® Frame pointer — points to the start of the topmost frame on stack
[ ]

Data in topmost frame accessed via offsets from the frame pointer or stack pointer — offsets can

computed at compile time
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Activation record ...

Control link «— Frame pointer

® Control link points to activation record of caller
Access link

Return address

Return value

Parameters

Locals

Temporaries «— Stack pointer
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Activation record ...

Control link «— Frame pointer

® Control link points to activation record of caller

Access link . .
® Access link is for non-local variable access

Return address

Return value

Parameters

Locals

Temporaries «— Stack pointer
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Activation record ...

Control link «— Frame pointer
® Control link points to activation record of caller
Access link L .
® Access link is for non-local variable access
Return address ® Return address is the address of first instruction to

execute after the function call returns
Return value

Parameters

Locals

Temporaries «— Stack pointer

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31Jan 2023 4/9



Activation record ...

Control link

«— Frame pointer

Access link

® Control link points to activation record of caller

® Access link is for non-local variable access

Return address

® Return address is the address of first instruction to

Return value

execute after the function call returns

Parameters

® Return value stores the return value, which should
be picked up by the caller

Locals

Temporaries

«— Stack pointer
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Activation record ...

Control link

«— Frame pointer

Access link

® Control link points to activation record of caller

® Access link is for non-local variable access

Return address

® Return address is the address of first instruction to

Return value

execute after the function call returns

Parameters

® Return value stores the return value, which should
be picked up by the caller

Locals

® Temporaries are locations to store intermediate

Temporaries

' values in
«— Stack pointer
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® On a new function invocation, create a new frame
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Function calls

® On a new function invocation, create a new frame

® The start of the frame is the control link, so we do the following updates
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Function calls

® On a new function invocation, create a new frame
® The start of the frame is the control link, so we do the following updates

e Stack[SP+1] = FP; SP += 1; FP = SP;
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Function calls

On a new function invocation, create a new frame
The start of the frame is the control link, so we do the following updates
Stack[SP+1] = FP; SP += 1; FP = SP;

Update the program counter (PC) to point to the start of the callee
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Function calls

On a new function invocation, create a new frame

The start of the frame is the control link, so we do the following updates
Stack[SP+1] = FP; SP += 1; FP = SP;

Update the program counter (PC) to point to the start of the callee

Store the next instruction in the caller in the return address just before changing the PC
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Function calls

On a new function invocation, create a new frame

The start of the frame is the control link, so we do the following updates

Stack[SP+1] = FP; SP += 1; FP = SP;

Update the program counter (PC) to point to the start of the callee

Store the next instruction in the caller in the return address just before changing the PC

Store parameters, locals, etc. on stack ...SP will change but not FP!
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e At the end of a function call, set SP
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Function returns

e At the end of a function call, set SP = FP - 1

® Set PC = Stack[FP+2] (thisis the recurn address)
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e At the end of a function call, set SP = FP - 1

® Set PC
® Set FP

Madhavan Mukund/S P Suresh

Stack[FP+21] (this is the return address)

Stack[FP] (this contains the control link)

Variables, functions, allocation

Function returns
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Function returns

At the end of a function call, set SP = FP - 1

Set PC
Set FP

Stack[FP+2] (this is the return address)

Stack[FP] (this contains the control link)

Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)
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Function returns

At the end of a function call, set SP = FP - 1

Set PC

Stack[FP+2] (this is the return address)
Set FP

Stack[FP] (this contains the control link)

Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

The stack frame has been deallocated
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Function returns

At the end of a function call, set SP = FP - 1

Set PC

Stack[FP+2] (this is the return address)

Set FP = Stack[FP] (this contains the control link)

Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

The stack frame has been deallocated

The caller is now the topmost frame
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Function returns

At the end of a function call, set SP = FP - 1

Set PC

Stack[FP+2] (this is the return address)
Set FP

Stack[FP] (this contains the control link)

Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

The stack frame has been deallocated
The caller is now the topmost frame

If another function is called, we overwrite the locations occupied by the previous callee
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func f {
int x = 0;
int fib(int n) { fib(4)
if n < 1 then return n;
else {
X += 1;
return fib(n-1) + fib(n-2);

}
print(fib(4));
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Access links

func f {
int x = 0; ® Count the number of additions in
int fib(int n) { fib(4)

if n < 1 then return n; e xis non-local

else {
X += 1;
return fib(n-1) + fib(n-2);
}
}
print(fib(4));
}
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Access links

func f {
int x = 0; ® Count the number of additions in
int fib(int n) { fib(4)

if n < 1 then return n; e xis non-local

else { _
X 4= 1; ® fib(4)iscalled by f, so x can be
return fib(n-1) + fib(n-2);: accessed by following the control link
}
}
print(fib(4));
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func f {
int x = 0;
int fib(int n) {
if n < 1 then return n;
else {

X += 1;

return fib(n-1) + fib(n-2);

}
print(fib(4));
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Access links

e Count the number of additions in
fib(4)

® xis non-local

® fib(4)iscalled by f, so x can be
accessed by following the control link

® But fib(3) is called by fib(4), so
control link cannot be used to access x
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Access links

func f {
int x = 0; ® Count the number of additions in
int fib(int n) { fib(4)

if n < 1 then return n; e xis non-local

else { .
@ e s e fib(4) iscalled by f,so x can be
return fib(n-1) + fib(n-2);: accessed by following the control link
} ® But fib(3) is called by fib(4), so
} control link cannot be used to access x
print(fib(4)); ® Need a new kind of link — access link
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® This is needed for functions/classes
defined inside the scope of other
functions/classes
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® This is needed for functions/classes
defined inside the scope of other
functions/classes

e Say functions g and h are defined inside
function f
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® This is needed for functions/classes
defined inside the scope of other
functions/classes

e Say functions g and h are defined inside
function f

e Say x is a variable defined inside f
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This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other
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This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh
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This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh

We cannot call them outside the scope
of f
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This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh

We cannot call them outside the scope
of f
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Setting access links
This is needed for functions/classes
defined inside the scope of other
functions/classes

® Access link of each recursive call of g and
h should point to the frame of f

® Anytime g or his called, f is already on
the call stack

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh

We cannot call them outside the scope
of f
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Setting access links

This is needed for functions/classes

defined inside the scope of other e Access link of each recursive call of g and

functions/classes h should point to the frame of f

Say functions g and h are defined inside ® Anytime g or his called, f is already on

function f the call stack

Say x is a variable defined inside f ® When the call to g is made from f, set

i the access link to be the same as the
g and h are recursive and can call each _
control link
other

The body of f cancallgorh

We cannot call them outside the scope
of f
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This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh

We cannot call them outside the scope
of f

Setting access links

Access link of each recursive call of g and
h should point to the frame of f

Any time g or h is called, f is already on
the call stack

When the call to g is made from f, set
the access link to be the same as the
control link

When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!
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® Once can have nested function/class definitions!
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® Once can have nested function/class definitions!

® h defined inside g, which is defined inside
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® Once can have nested function/class definitions!
® h defined inside g, which is defined inside

® Possible for h to access variables defined innside f
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Once can have nested function/class definitions!
h defined inside g, which is defined inside f
Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f
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Chains of access links

Once can have nested function/class definitions!
h defined inside g, which is defined inside f
Possible for h to access variables defined innside f
Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables
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Chains of access links

Once can have nested function/class definitions!

h defined inside g, which is defined inside f

Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables

The number of hops to follow in this chain can be determined at compile time!
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Chains of access links

Once can have nested function/class definitions!

h defined inside g, which is defined inside f

Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables
The number of hops to follow in this chain can be determined at compile time!

Suppose x is declared in f,and y in g
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Chains of access links

Once can have nested function/class definitions!

h defined inside g, which is defined inside f

Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables
The number of hops to follow in this chain can be determined at compile time!
Suppose x is declared in f,and y in g

To access y in h we go to the frame pointed to by access link
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Chains of access links

Once can have nested function/class definitions!

h defined inside g, which is defined inside f

Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables
The number of hops to follow in this chain can be determined at compile time!
Suppose x is declared in f,and y in g

To access y in h we go to the frame pointed to by access link

To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!
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