Function calls and Stack

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 7
31January 2023

General layout of a program in memory

Code Segment

Data Segment

Madhavan Mukund/S P Suresh

Variables, functions, allocation

Stack

Heap

PLC, Lecture 7, 31Jan 2023

2/9

e Contains information pertaining to a function invocation

Madhavan Mukund/S P Suresh Variables, functions, allocation

Activation record

PLC, Lecture 7, 31Jan 2023

Activation record

e Contains information pertaining to a function invocation

® Added to the top of the stack at the start of the function invocation

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Activation record

e Contains information pertaining to a function invocation
® Added to the top of the stack at the start of the function invocation

® Removed from the stack at the end of the function invocation

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Activation record

e Contains information pertaining to a function invocation
® Added to the top of the stack at the start of the function invocation

® Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address

System-wide pointers

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address
System-wide pointers

® Program counter — address of the next instruction to execute

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address
System-wide pointers

® Program counter — address of the next instruction to execute
® Stack pointer — points to the top of the system stack

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address
System-wide pointers
® Program counter — address of the next instruction to execute

® Stack pointer — points to the top of the system stack
® Frame pointer — points to the start of the topmost frame on stack

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Contains information pertaining to a function invocation

Activation record

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address

System-wide pointers

® Program counter — address of the next instruction to execute

® Stack pointer — points to the top of the system stack
® Frame pointer — points to the start of the topmost frame on stack
[]

Data in topmost frame accessed via offsets from the frame pointer or stack pointer — offsets can

computed at compile time

Madhavan Mukund/S P Suresh

Variables, functions, allocation

PLC, Lecture 7, 31Jan 2023

Activation record ...

Control link «— Frame pointer

® Control link points to activation record of caller
Access link

Return address

Return value

Parameters

Locals

Temporaries «— Stack pointer

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31Jan 2023 4/9

Activation record ...

Control link «— Frame pointer

® Control link points to activation record of caller

Access link . .
® Access link is for non-local variable access

Return address

Return value

Parameters

Locals

Temporaries «— Stack pointer

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31Jan 2023 4/9

Activation record ...

Control link «— Frame pointer
® Control link points to activation record of caller
Access link L .
® Access link is for non-local variable access
Return address ® Return address is the address of first instruction to

execute after the function call returns
Return value

Parameters

Locals

Temporaries «— Stack pointer

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31Jan 2023 4/9

Activation record ...

Control link

«— Frame pointer

Access link

® Control link points to activation record of caller

® Access link is for non-local variable access

Return address

® Return address is the address of first instruction to

Return value

execute after the function call returns

Parameters

® Return value stores the return value, which should
be picked up by the caller

Locals

Temporaries

«— Stack pointer

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Activation record ...

Control link

«— Frame pointer

Access link

® Control link points to activation record of caller

® Access link is for non-local variable access

Return address

® Return address is the address of first instruction to

Return value

execute after the function call returns

Parameters

® Return value stores the return value, which should
be picked up by the caller

Locals

® Temporaries are locations to store intermediate

Temporaries

' values in
«— Stack pointer

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

® On a new function invocation, create a new frame

Madhavan Mukund/S P Suresh Variables, functions, allocation

Function calls

PLC, Lecture 7, 31Jan 2023

Function calls

® On a new function invocation, create a new frame

® The start of the frame is the control link, so we do the following updates

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Function calls

® On a new function invocation, create a new frame
® The start of the frame is the control link, so we do the following updates

e Stack[SP+1] = FP; SP += 1; FP = SP;

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Function calls

On a new function invocation, create a new frame
The start of the frame is the control link, so we do the following updates
Stack[SP+1] = FP; SP += 1; FP = SP;

Update the program counter (PC) to point to the start of the callee

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Function calls

On a new function invocation, create a new frame

The start of the frame is the control link, so we do the following updates
Stack[SP+1] = FP; SP += 1; FP = SP;

Update the program counter (PC) to point to the start of the callee

Store the next instruction in the caller in the return address just before changing the PC

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Function calls

On a new function invocation, create a new frame

The start of the frame is the control link, so we do the following updates

Stack[SP+1] = FP; SP += 1; FP = SP;

Update the program counter (PC) to point to the start of the callee

Store the next instruction in the caller in the return address just before changing the PC

Store parameters, locals, etc. on stack ...SP will change but not FP!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

e At the end of a function call, set SP

Madhavan Mukund/S P Suresh

FP - 1

Variables, functions, allocation

Function returns

PLC, Lecture 7, 31Jan 2023

6/9

Function returns

e At the end of a function call, set SP = FP - 1

® Set PC = Stack[FP+2] (thisis the recurn address)

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

e At the end of a function call, set SP = FP - 1

® Set PC
® Set FP

Madhavan Mukund/S P Suresh

Stack[FP+21] (this is the return address)

Stack[FP] (this contains the control link)

Variables, functions, allocation

Function returns

PLC, Lecture 7, 31Jan 2023

6/9

Function returns

At the end of a function call, set SP = FP - 1

Set PC
Set FP

Stack[FP+2] (this is the return address)

Stack[FP] (this contains the control link)

Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

6/9

Function returns

At the end of a function call, set SP = FP - 1

Set PC

Stack[FP+2] (this is the return address)
Set FP

Stack[FP] (this contains the control link)

Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

The stack frame has been deallocated

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

6/9

Function returns

At the end of a function call, set SP = FP - 1

Set PC

Stack[FP+2] (this is the return address)

Set FP = Stack[FP] (this contains the control link)

Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

The stack frame has been deallocated

The caller is now the topmost frame

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

6/9

Function returns

At the end of a function call, set SP = FP - 1

Set PC

Stack[FP+2] (this is the return address)
Set FP

Stack[FP] (this contains the control link)

Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

The stack frame has been deallocated
The caller is now the topmost frame

If another function is called, we overwrite the locations occupied by the previous callee

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

6/9

func f {
int x = 0;
int fib(int n) { fib(4)
if n < 1 then return n;
else {
X += 1;
return fib(n-1) + fib(n-2);

}
print(fib(4));

Madhavan Mukund/S P Suresh Variables, functions, allocation

Access links

e Count the number of additions in

PLC, Lecture 7, 31Jan 2023

Access links

func f {
int x = 0; ® Count the number of additions in
int fib(int n) { fib(4)

if n < 1 then return n; e xis non-local

else {
X += 1;
return fib(n-1) + fib(n-2);
}
}
print(fib(4));
}
Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31Jan 2023

Access links

func f {
int x = 0; ® Count the number of additions in
int fib(int n) { fib(4)

if n < 1 then return n; e xis non-local

else { _
X 4= 1; ® fib(4)iscalled by f, so x can be
return fib(n-1) + fib(n-2);: accessed by following the control link
}
}
print(fib(4));

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

func f {
int x = 0;
int fib(int n) {
if n < 1 then return n;
else {

X += 1;

return fib(n-1) + fib(n-2);

}
print(fib(4));

Madhavan Mukund/S P Suresh

Access links

e Count the number of additions in
fib(4)

® xis non-local

® fib(4)iscalled by f, so x can be
accessed by following the control link

® But fib(3) is called by fib(4), so
control link cannot be used to access x

Variables, functions, allocation PLC, Lecture 7, 31Jan 2023

Access links

func f {
int x = 0; ® Count the number of additions in
int fib(int n) { fib(4)

if n < 1 then return n; e xis non-local

else { .
@ e s e fib(4) iscalled by f,so x can be
return fib(n-1) + fib(n-2);: accessed by following the control link
} ® But fib(3) is called by fib(4), so
} control link cannot be used to access x
print(fib(4)); ® Need a new kind of link — access link

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31Jan 2023 719

® This is needed for functions/classes
defined inside the scope of other
functions/classes

Madhavan Mukund/S P Suresh

Variables, functions, allocation

Setting access links

PLC, Lecture 7, 31Jan 2023

8/9

® This is needed for functions/classes
defined inside the scope of other
functions/classes

e Say functions g and h are defined inside
function f

Madhavan Mukund/S P Suresh Variables, functions, allocation

Setting access links

PLC, Lecture 7, 31Jan 2023

8/9

® This is needed for functions/classes
defined inside the scope of other
functions/classes

e Say functions g and h are defined inside
function f

e Say x is a variable defined inside f

Madhavan Mukund/S P Suresh Variables, functions, allocation

Setting access links

PLC, Lecture 7, 31Jan 2023

8/9

This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

Madhavan Mukund/S P Suresh Variables, functions, allocation

Setting access links

PLC, Lecture 7, 31Jan 2023

8/9

This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh

Madhavan Mukund/S P Suresh Variables, functions, allocation

Setting access links

PLC, Lecture 7, 31Jan 2023

8/9

This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh

We cannot call them outside the scope
of f

Madhavan Mukund/S P Suresh Variables, functions, allocation

Setting access links

PLC, Lecture 7, 31Jan 2023

8/9

This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh

We cannot call them outside the scope
of f

Madhavan Mukund/S P Suresh Variables, functions, allocation

Setting access links

® Access link of each recursive call of g and
h should point to the frame of f

PLC, Lecture 7, 31Jan 2023

8/9

Setting access links
This is needed for functions/classes
defined inside the scope of other
functions/classes

® Access link of each recursive call of g and
h should point to the frame of f

® Anytime g or his called, f is already on
the call stack

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh

We cannot call them outside the scope
of f

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Setting access links

This is needed for functions/classes

defined inside the scope of other e Access link of each recursive call of g and

functions/classes h should point to the frame of f

Say functions g and h are defined inside ® Anytime g or his called, f is already on

function f the call stack

Say x is a variable defined inside f ® When the call to g is made from f, set

i the access link to be the same as the
g and h are recursive and can call each _
control link
other

The body of f cancallgorh

We cannot call them outside the scope
of f

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

This is needed for functions/classes
defined inside the scope of other
functions/classes

Say functions g and h are defined inside
function f

Say x is a variable defined inside f

g and h are recursive and can call each
other

The body of f cancallgorh

We cannot call them outside the scope
of f

Setting access links

Access link of each recursive call of g and
h should point to the frame of f

Any time g or h is called, f is already on
the call stack

When the call to g is made from f, set
the access link to be the same as the
control link

When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

8/9

® Once can have nested function/class definitions!

Madhavan Mukund/S P Suresh Variables, functions, allocation

Chains of access links

PLC, Lecture 7, 31Jan 2023

® Once can have nested function/class definitions!

® h defined inside g, which is defined inside

Madhavan Mukund/S P Suresh Variables, functions, allocation

Chains of access links

PLC, Lecture 7, 31Jan 2023

® Once can have nested function/class definitions!
® h defined inside g, which is defined inside

® Possible for h to access variables defined innside f

Madhavan Mukund/S P Suresh Variables, functions, allocation

Chains of access links

PLC, Lecture 7, 31Jan 2023

Once can have nested function/class definitions!
h defined inside g, which is defined inside f
Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f

Madhavan Mukund/S P Suresh Variables, functions, allocation

Chains of access links

PLC, Lecture 7, 31Jan 2023

Chains of access links

Once can have nested function/class definitions!
h defined inside g, which is defined inside f
Possible for h to access variables defined innside f
Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Chains of access links

Once can have nested function/class definitions!

h defined inside g, which is defined inside f

Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables

The number of hops to follow in this chain can be determined at compile time!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Chains of access links

Once can have nested function/class definitions!

h defined inside g, which is defined inside f

Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables
The number of hops to follow in this chain can be determined at compile time!

Suppose x is declared in f,and y in g

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Chains of access links

Once can have nested function/class definitions!

h defined inside g, which is defined inside f

Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables
The number of hops to follow in this chain can be determined at compile time!
Suppose x is declared in f,and y in g

To access y in h we go to the frame pointed to by access link

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

Chains of access links

Once can have nested function/class definitions!

h defined inside g, which is defined inside f

Possible for h to access variables defined innside f

Access link of h points to g, that of g points to f

We might have to follow a chain of access links to access non-local variables
The number of hops to follow in this chain can be determined at compile time!
Suppose x is declared in f,and y in g

To access y in h we go to the frame pointed to by access link

To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023

