
Function calls and Stack

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 7

31 January 2023



General layout of a program in memory

Code Segment

Data Segment

Stack↓

Heap↑

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 2 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address
• System-wide pointers

• Program counter – address of the next instruction to execute
• Stack pointer – points to the top of the system stack
• Frame pointer – points to the start of the topmost frame on stack
• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can

computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address
• System-wide pointers

• Program counter – address of the next instruction to execute
• Stack pointer – points to the top of the system stack
• Frame pointer – points to the start of the topmost frame on stack
• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can

computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address
• System-wide pointers

• Program counter – address of the next instruction to execute
• Stack pointer – points to the top of the system stack
• Frame pointer – points to the start of the topmost frame on stack
• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can

computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address
• System-wide pointers

• Program counter – address of the next instruction to execute
• Stack pointer – points to the top of the system stack
• Frame pointer – points to the start of the topmost frame on stack
• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can

computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address

• System-wide pointers

• Program counter – address of the next instruction to execute
• Stack pointer – points to the top of the system stack
• Frame pointer – points to the start of the topmost frame on stack
• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can

computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address
• System-wide pointers

• Program counter – address of the next instruction to execute
• Stack pointer – points to the top of the system stack
• Frame pointer – points to the start of the topmost frame on stack
• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can

computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address
• System-wide pointers
• Program counter – address of the next instruction to execute

• Stack pointer – points to the top of the system stack
• Frame pointer – points to the start of the topmost frame on stack
• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can

computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address
• System-wide pointers
• Program counter – address of the next instruction to execute
• Stack pointer – points to the top of the system stack

• Frame pointer – points to the start of the topmost frame on stack
• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can

computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address
• System-wide pointers
• Program counter – address of the next instruction to execute
• Stack pointer – points to the top of the system stack
• Frame pointer – points to the start of the topmost frame on stack

• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can
computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record

• Contains information pertaining to a function invocation

• Added to the top of the stack at the start of the function invocation

• Removed from the stack at the end of the function invocation

• Stores parameters, local variables, temporary variables used in running the function

• Various pointers – Control link, access link, return address
• System-wide pointers
• Program counter – address of the next instruction to execute
• Stack pointer – points to the top of the system stack
• Frame pointer – points to the start of the topmost frame on stack
• Data in topmost frame accessed via offsets from the frame pointer or stack pointer – offsets can

computed at compile time

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 3 / 9



Activation record …

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

• Control link points to activation record of caller

• Access link is for non-local variable access

• Return address is the address of first instruction to
execute after the function call returns

• Return value stores the return value, which should
be picked up by the caller

• Temporaries are locations to store intermediate
values in

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 4 / 9



Activation record …

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

• Control link points to activation record of caller

• Access link is for non-local variable access

• Return address is the address of first instruction to
execute after the function call returns

• Return value stores the return value, which should
be picked up by the caller

• Temporaries are locations to store intermediate
values in

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 4 / 9



Activation record …

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

• Control link points to activation record of caller

• Access link is for non-local variable access

• Return address is the address of first instruction to
execute after the function call returns

• Return value stores the return value, which should
be picked up by the caller

• Temporaries are locations to store intermediate
values in

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 4 / 9



Activation record …

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

• Control link points to activation record of caller

• Access link is for non-local variable access

• Return address is the address of first instruction to
execute after the function call returns

• Return value stores the return value, which should
be picked up by the caller

• Temporaries are locations to store intermediate
values in

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 4 / 9



Activation record …

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

• Control link points to activation record of caller

• Access link is for non-local variable access

• Return address is the address of first instruction to
execute after the function call returns

• Return value stores the return value, which should
be picked up by the caller

• Temporaries are locations to store intermediate
values in

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 4 / 9



Function calls

• On a new function invocation, create a new frame

• The start of the frame is the control link, so we do the following updates

• Stack[SP+1] = FP; SP += 1; FP = SP;
• Update the program counter (PC) to point to the start of the callee

• Store the next instruction in the caller in the return address just before changing the PC

• Store parameters, locals, etc. on stack …SP will change but not FP!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 5 / 9



Function calls

• On a new function invocation, create a new frame

• The start of the frame is the control link, so we do the following updates

• Stack[SP+1] = FP; SP += 1; FP = SP;
• Update the program counter (PC) to point to the start of the callee

• Store the next instruction in the caller in the return address just before changing the PC

• Store parameters, locals, etc. on stack …SP will change but not FP!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 5 / 9



Function calls

• On a new function invocation, create a new frame

• The start of the frame is the control link, so we do the following updates

• Stack[SP+1] = FP; SP += 1; FP = SP;

• Update the program counter (PC) to point to the start of the callee

• Store the next instruction in the caller in the return address just before changing the PC

• Store parameters, locals, etc. on stack …SP will change but not FP!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 5 / 9



Function calls

• On a new function invocation, create a new frame

• The start of the frame is the control link, so we do the following updates

• Stack[SP+1] = FP; SP += 1; FP = SP;
• Update the program counter (PC) to point to the start of the callee

• Store the next instruction in the caller in the return address just before changing the PC

• Store parameters, locals, etc. on stack …SP will change but not FP!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 5 / 9



Function calls

• On a new function invocation, create a new frame

• The start of the frame is the control link, so we do the following updates

• Stack[SP+1] = FP; SP += 1; FP = SP;
• Update the program counter (PC) to point to the start of the callee

• Store the next instruction in the caller in the return address just before changing the PC

• Store parameters, locals, etc. on stack …SP will change but not FP!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 5 / 9



Function calls

• On a new function invocation, create a new frame

• The start of the frame is the control link, so we do the following updates

• Stack[SP+1] = FP; SP += 1; FP = SP;
• Update the program counter (PC) to point to the start of the callee

• Store the next instruction in the caller in the return address just before changing the PC

• Store parameters, locals, etc. on stack …SP will change but not FP!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 5 / 9



Function returns

• At the end of a function call, set SP = FP - 1

• Set PC = Stack[FP+2] (this is the return address)
• Set FP = Stack[FP] (this contains the control link)
• Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

• The stack frame has been deallocated

• The caller is now the topmost frame

• If another function is called, we overwrite the locations occupied by the previous callee

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 6 / 9



Function returns

• At the end of a function call, set SP = FP - 1
• Set PC = Stack[FP+2] (this is the return address)

• Set FP = Stack[FP] (this contains the control link)
• Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

• The stack frame has been deallocated

• The caller is now the topmost frame

• If another function is called, we overwrite the locations occupied by the previous callee

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 6 / 9



Function returns

• At the end of a function call, set SP = FP - 1
• Set PC = Stack[FP+2] (this is the return address)
• Set FP = Stack[FP] (this contains the control link)

• Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

• The stack frame has been deallocated

• The caller is now the topmost frame

• If another function is called, we overwrite the locations occupied by the previous callee

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 6 / 9



Function returns

• At the end of a function call, set SP = FP - 1
• Set PC = Stack[FP+2] (this is the return address)
• Set FP = Stack[FP] (this contains the control link)
• Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

• The stack frame has been deallocated

• The caller is now the topmost frame

• If another function is called, we overwrite the locations occupied by the previous callee

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 6 / 9



Function returns

• At the end of a function call, set SP = FP - 1
• Set PC = Stack[FP+2] (this is the return address)
• Set FP = Stack[FP] (this contains the control link)
• Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

• The stack frame has been deallocated

• The caller is now the topmost frame

• If another function is called, we overwrite the locations occupied by the previous callee

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 6 / 9



Function returns

• At the end of a function call, set SP = FP - 1
• Set PC = Stack[FP+2] (this is the return address)
• Set FP = Stack[FP] (this contains the control link)
• Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

• The stack frame has been deallocated

• The caller is now the topmost frame

• If another function is called, we overwrite the locations occupied by the previous callee

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 6 / 9



Function returns

• At the end of a function call, set SP = FP - 1
• Set PC = Stack[FP+2] (this is the return address)
• Set FP = Stack[FP] (this contains the control link)
• Set Stack[FP+offset] = Stack[SP+4] (copy the return value to the local variable that
expects the value)

• The stack frame has been deallocated

• The caller is now the topmost frame

• If another function is called, we overwrite the locations occupied by the previous callee

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 6 / 9



Access links

func f {
int x = 0;
int fib(int n) {

if n F= 1 then return n;
else {

x += 1;
return fib(n-1) + fib(n-2);

}
}
print(fib(4));

}

• Count the number of additions in
fib(4)

• x is non-local
• fib(4) is called by f, so x can be
accessed by following the control link

• But fib(3) is called by fib(4), so
control link cannot be used to access x
• Need a new kind of link – access link

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 7 / 9



Access links

func f {
int x = 0;
int fib(int n) {

if n F= 1 then return n;
else {

x += 1;
return fib(n-1) + fib(n-2);

}
}
print(fib(4));

}

• Count the number of additions in
fib(4)
• x is non-local

• fib(4) is called by f, so x can be
accessed by following the control link

• But fib(3) is called by fib(4), so
control link cannot be used to access x
• Need a new kind of link – access link

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 7 / 9



Access links

func f {
int x = 0;
int fib(int n) {

if n F= 1 then return n;
else {

x += 1;
return fib(n-1) + fib(n-2);

}
}
print(fib(4));

}

• Count the number of additions in
fib(4)
• x is non-local
• fib(4) is called by f, so x can be
accessed by following the control link

• But fib(3) is called by fib(4), so
control link cannot be used to access x
• Need a new kind of link – access link

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 7 / 9



Access links

func f {
int x = 0;
int fib(int n) {

if n F= 1 then return n;
else {

x += 1;
return fib(n-1) + fib(n-2);

}
}
print(fib(4));

}

• Count the number of additions in
fib(4)
• x is non-local
• fib(4) is called by f, so x can be
accessed by following the control link

• But fib(3) is called by fib(4), so
control link cannot be used to access x

• Need a new kind of link – access link

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 7 / 9



Access links

func f {
int x = 0;
int fib(int n) {

if n F= 1 then return n;
else {

x += 1;
return fib(n-1) + fib(n-2);

}
}
print(fib(4));

}

• Count the number of additions in
fib(4)
• x is non-local
• fib(4) is called by f, so x can be
accessed by following the control link

• But fib(3) is called by fib(4), so
control link cannot be used to access x
• Need a new kind of link – access link

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 7 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f
• Say x is a variable defined inside f
• g and h are recursive and can call each
other

• The body of f can call g or h
• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f
• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f

• Say x is a variable defined inside f
• g and h are recursive and can call each
other

• The body of f can call g or h
• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f
• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f
• Say x is a variable defined inside f

• g and h are recursive and can call each
other

• The body of f can call g or h
• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f
• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f
• Say x is a variable defined inside f
• g and h are recursive and can call each
other

• The body of f can call g or h
• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f
• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f
• Say x is a variable defined inside f
• g and h are recursive and can call each
other

• The body of f can call g or h

• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f
• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f
• Say x is a variable defined inside f
• g and h are recursive and can call each
other

• The body of f can call g or h
• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f
• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f
• Say x is a variable defined inside f
• g and h are recursive and can call each
other

• The body of f can call g or h
• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f

• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f
• Say x is a variable defined inside f
• g and h are recursive and can call each
other

• The body of f can call g or h
• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f
• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f
• Say x is a variable defined inside f
• g and h are recursive and can call each
other

• The body of f can call g or h
• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f
• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Setting access links
• This is needed for functions/classes
defined inside the scope of other
functions/classes

• Say functions g and h are defined inside
function f
• Say x is a variable defined inside f
• g and h are recursive and can call each
other

• The body of f can call g or h
• We cannot call them outside the scope
of f

• Access link of each recursive call of g and
h should point to the frame of f
• Any time g or h is called, f is already on
the call stack

• When the call to g is made from f, set
the access link to be the same as the
control link

• When there is a call from g/h to g/h, set
the access link of the callee to be the
same as the access link of the caller!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 8 / 9



Chains of access links

• Once can have nested function/class definitions!

• h defined inside g, which is defined inside f
• Possible for h to access variables defined innside f
• Access link of h points to g, that of g points to f
• We might have to follow a chain of access links to access non-local variables

• The number of hops to follow in this chain can be determined at compile time!

• Suppose x is declared in f, and y in g
• To access y in h we go to the frame pointed to by access link

• To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 9 / 9



Chains of access links

• Once can have nested function/class definitions!

• h defined inside g, which is defined inside f

• Possible for h to access variables defined innside f
• Access link of h points to g, that of g points to f
• We might have to follow a chain of access links to access non-local variables

• The number of hops to follow in this chain can be determined at compile time!

• Suppose x is declared in f, and y in g
• To access y in h we go to the frame pointed to by access link

• To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 9 / 9



Chains of access links

• Once can have nested function/class definitions!

• h defined inside g, which is defined inside f
• Possible for h to access variables defined innside f

• Access link of h points to g, that of g points to f
• We might have to follow a chain of access links to access non-local variables

• The number of hops to follow in this chain can be determined at compile time!

• Suppose x is declared in f, and y in g
• To access y in h we go to the frame pointed to by access link

• To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 9 / 9



Chains of access links

• Once can have nested function/class definitions!

• h defined inside g, which is defined inside f
• Possible for h to access variables defined innside f
• Access link of h points to g, that of g points to f

• We might have to follow a chain of access links to access non-local variables

• The number of hops to follow in this chain can be determined at compile time!

• Suppose x is declared in f, and y in g
• To access y in h we go to the frame pointed to by access link

• To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 9 / 9



Chains of access links

• Once can have nested function/class definitions!

• h defined inside g, which is defined inside f
• Possible for h to access variables defined innside f
• Access link of h points to g, that of g points to f
• We might have to follow a chain of access links to access non-local variables

• The number of hops to follow in this chain can be determined at compile time!

• Suppose x is declared in f, and y in g
• To access y in h we go to the frame pointed to by access link

• To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 9 / 9



Chains of access links

• Once can have nested function/class definitions!

• h defined inside g, which is defined inside f
• Possible for h to access variables defined innside f
• Access link of h points to g, that of g points to f
• We might have to follow a chain of access links to access non-local variables

• The number of hops to follow in this chain can be determined at compile time!

• Suppose x is declared in f, and y in g
• To access y in h we go to the frame pointed to by access link

• To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 9 / 9



Chains of access links

• Once can have nested function/class definitions!

• h defined inside g, which is defined inside f
• Possible for h to access variables defined innside f
• Access link of h points to g, that of g points to f
• We might have to follow a chain of access links to access non-local variables

• The number of hops to follow in this chain can be determined at compile time!

• Suppose x is declared in f, and y in g

• To access y in h we go to the frame pointed to by access link

• To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 9 / 9



Chains of access links

• Once can have nested function/class definitions!

• h defined inside g, which is defined inside f
• Possible for h to access variables defined innside f
• Access link of h points to g, that of g points to f
• We might have to follow a chain of access links to access non-local variables

• The number of hops to follow in this chain can be determined at compile time!

• Suppose x is declared in f, and y in g
• To access y in h we go to the frame pointed to by access link

• To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 9 / 9



Chains of access links

• Once can have nested function/class definitions!

• h defined inside g, which is defined inside f
• Possible for h to access variables defined innside f
• Access link of h points to g, that of g points to f
• We might have to follow a chain of access links to access non-local variables

• The number of hops to follow in this chain can be determined at compile time!

• Suppose x is declared in f, and y in g
• To access y in h we go to the frame pointed to by access link

• To access x in h we go to the frame pointed to by access link, go to the frame pointed to by the
access link there, and access x!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 7, 31 Jan 2023 9 / 9


