
Variables, Functions and Allocation Strategies

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 6

24 January 2023



Modularity

• The principles of abstraction andmodularity pervade computer science

• Present at the lowest levels of computation

• Modularity in the von Neumann architecture: CPU + addressable memory

• Computation performed by CPU, inputs in expected places (registers)

• Data resides in memory, transferred to registers and back as needed

• x = y+z ⇝

LOAD y
LOAD z
ADD
STORE x

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 2 / 11



Modularity

• The principles of abstraction andmodularity pervade computer science

• Present at the lowest levels of computation

• Modularity in the von Neumann architecture: CPU + addressable memory

• Computation performed by CPU, inputs in expected places (registers)

• Data resides in memory, transferred to registers and back as needed

• x = y+z ⇝

LOAD y
LOAD z
ADD
STORE x

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 2 / 11



Modularity

• The principles of abstraction andmodularity pervade computer science

• Present at the lowest levels of computation

• Modularity in the von Neumann architecture: CPU + addressable memory

• Computation performed by CPU, inputs in expected places (registers)

• Data resides in memory, transferred to registers and back as needed

• x = y+z ⇝

LOAD y
LOAD z
ADD
STORE x

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 2 / 11



Modularity

• The principles of abstraction andmodularity pervade computer science

• Present at the lowest levels of computation

• Modularity in the von Neumann architecture: CPU + addressable memory

• Computation performed by CPU, inputs in expected places (registers)

• Data resides in memory, transferred to registers and back as needed

• x = y+z ⇝

LOAD y
LOAD z
ADD
STORE x

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 2 / 11



Modularity

• The principles of abstraction andmodularity pervade computer science

• Present at the lowest levels of computation

• Modularity in the von Neumann architecture: CPU + addressable memory

• Computation performed by CPU, inputs in expected places (registers)

• Data resides in memory, transferred to registers and back as needed

• x = y+z ⇝

LOAD y
LOAD z
ADD
STORE x

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 2 / 11



Modularity

• The principles of abstraction andmodularity pervade computer science

• Present at the lowest levels of computation

• Modularity in the von Neumann architecture: CPU + addressable memory

• Computation performed by CPU, inputs in expected places (registers)

• Data resides in memory, transferred to registers and back as needed

• x = y+z ⇝

LOAD y
LOAD z
ADD
STORE x

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 2 / 11



Abstraction

• Basic unit of abstraction: variables and function names

• Complex expressions and high-level control statements

• Variables represent data residing in a memory location

• We need a map from variables and names to addresses

• Main job of a compiler

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 3 / 11



Abstraction

• Basic unit of abstraction: variables and function names

• Complex expressions and high-level control statements

• Variables represent data residing in a memory location

• We need a map from variables and names to addresses

• Main job of a compiler

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 3 / 11



Abstraction

• Basic unit of abstraction: variables and function names

• Complex expressions and high-level control statements

• Variables represent data residing in a memory location

• We need a map from variables and names to addresses

• Main job of a compiler

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 3 / 11



Abstraction

• Basic unit of abstraction: variables and function names

• Complex expressions and high-level control statements

• Variables represent data residing in a memory location

• We need a map from variables and names to addresses

• Main job of a compiler

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 3 / 11



Abstraction

• Basic unit of abstraction: variables and function names

• Complex expressions and high-level control statements

• Variables represent data residing in a memory location

• We need a map from variables and names to addresses

• Main job of a compiler

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 3 / 11



Static allocation

var x = 0;
var y = 1;
while (x < 100) {

x = y;
y = x+y;

}
print x;

Code segment

0000 OPCONST 1 '0' Indirect
0002 OPGLOBAL 0 'x' addressing
0004 OPCONST 3 '1' using
0006 OPGLOBAL 2 'y' offsets
0010 OPCONST 5 '100' from 0039

…
0038 OPRET

Data segment

0039 0x00…00 'x'
0040 0x00…00
0041 0x00…00 'y'
0042 0x00…01
0044 0x00…64

Suitable when all variables are global – no functions or blocks
Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 4 / 11



Functions

• Makes programsmodular

• Complexities introduced by recursion

• Many versions of the same local variable active at the same time

• Need a way to keep track of all copies of a local x
• Figure out which copy of x is referred to at any point of the execution
• Need to understand the scope and lifetime of a variable declaration

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 5 / 11



Functions

• Makes programsmodular

• Complexities introduced by recursion

• Many versions of the same local variable active at the same time

• Need a way to keep track of all copies of a local x
• Figure out which copy of x is referred to at any point of the execution
• Need to understand the scope and lifetime of a variable declaration

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 5 / 11



Functions

• Makes programsmodular

• Complexities introduced by recursion

• Many versions of the same local variable active at the same time

• Need a way to keep track of all copies of a local x
• Figure out which copy of x is referred to at any point of the execution
• Need to understand the scope and lifetime of a variable declaration

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 5 / 11



Functions

• Makes programsmodular

• Complexities introduced by recursion

• Many versions of the same local variable active at the same time

• Need a way to keep track of all copies of a local x

• Figure out which copy of x is referred to at any point of the execution
• Need to understand the scope and lifetime of a variable declaration

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 5 / 11



Functions

• Makes programsmodular

• Complexities introduced by recursion

• Many versions of the same local variable active at the same time

• Need a way to keep track of all copies of a local x
• Figure out which copy of x is referred to at any point of the execution

• Need to understand the scope and lifetime of a variable declaration

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 5 / 11



Functions

• Makes programsmodular

• Complexities introduced by recursion

• Many versions of the same local variable active at the same time

• Need a way to keep track of all copies of a local x
• Figure out which copy of x is referred to at any point of the execution
• Need to understand the scope and lifetime of a variable declaration

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 5 / 11



Scope

• Consider the following program block

{
int x = 2;
int y = 4;
{

int y = 3;
x = x+2; y = x+y;
print(x,y);

}
x = x+2; y = x+y;
print(x,y);

}

Outer y is hidden.
Updated y value is not propagated outside
4, 7

Outer y value and updated x value
6, 10

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 6 / 11



Scope and Lifetime

• Scope – A region of text in which a declaration is visible

• Lifetime –The duration, during a run of a program, in which a location is allocated as the result of a
specific declaration

• Consider the example below

{ int x = FF.;
{ int y = FF.;

{ int x = FF.;
FF.

}
}

}

• Scope of outer x is the two outer blocks
• Scope of the inner x is the innermost block

• Lifetime of inner x is the time during which innermost block is
active

• Lifetime of outer x is the time during which outermost block is
active (includes the lifetime of inner x)

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 7 / 11



Scope and Lifetime

• Scope – A region of text in which a declaration is visible

• Lifetime –The duration, during a run of a program, in which a location is allocated as the result of a
specific declaration

• Consider the example below

{ int x = FF.;
{ int y = FF.;

{ int x = FF.;
FF.

}
}

}

• Scope of outer x is the two outer blocks
• Scope of the inner x is the innermost block

• Lifetime of inner x is the time during which innermost block is
active

• Lifetime of outer x is the time during which outermost block is
active (includes the lifetime of inner x)

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 7 / 11



Scope and Lifetime

• Scope – A region of text in which a declaration is visible

• Lifetime –The duration, during a run of a program, in which a location is allocated as the result of a
specific declaration

• Consider the example below

{ int x = FF.;
{ int y = FF.;

{ int x = FF.;
FF.

}
}

}

• Scope of outer x is the two outer blocks
• Scope of the inner x is the innermost block

• Lifetime of inner x is the time during which innermost block is
active

• Lifetime of outer x is the time during which outermost block is
active (includes the lifetime of inner x)

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 7 / 11



Scope and Lifetime

• Scope – A region of text in which a declaration is visible

• Lifetime –The duration, during a run of a program, in which a location is allocated as the result of a
specific declaration

• Consider the example below

{ int x = FF.;
{ int y = FF.;

{ int x = FF.;
FF.

}
}

}

• Scope of outer x is the two outer blocks

• Scope of the inner x is the innermost block

• Lifetime of inner x is the time during which innermost block is
active

• Lifetime of outer x is the time during which outermost block is
active (includes the lifetime of inner x)

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 7 / 11



Scope and Lifetime

• Scope – A region of text in which a declaration is visible

• Lifetime –The duration, during a run of a program, in which a location is allocated as the result of a
specific declaration

• Consider the example below

{ int x = FF.;
{ int y = FF.;

{ int x = FF.;
FF.

}
}

}

• Scope of outer x is the two outer blocks
• Scope of the inner x is the innermost block

• Lifetime of inner x is the time during which innermost block is
active

• Lifetime of outer x is the time during which outermost block is
active (includes the lifetime of inner x)

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 7 / 11



Scope and Lifetime

• Scope – A region of text in which a declaration is visible

• Lifetime –The duration, during a run of a program, in which a location is allocated as the result of a
specific declaration

• Consider the example below

{ int x = FF.;
{ int y = FF.;

{ int x = FF.;
FF.

}
}

}

• Scope of outer x is the two outer blocks
• Scope of the inner x is the innermost block

• Lifetime of inner x is the time during which innermost block is
active

• Lifetime of outer x is the time during which outermost block is
active (includes the lifetime of inner x)

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 7 / 11



Scope and Lifetime

• Scope – A region of text in which a declaration is visible

• Lifetime –The duration, during a run of a program, in which a location is allocated as the result of a
specific declaration

• Consider the example below

{ int x = FF.;
{ int y = FF.;

{ int x = FF.;
FF.

}
}

}

• Scope of outer x is the two outer blocks
• Scope of the inner x is the innermost block

• Lifetime of inner x is the time during which innermost block is
active

• Lifetime of outer x is the time during which outermost block is
active (includes the lifetime of inner x)

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 7 / 11



static and lifetimes

• We use static variables to store class attributes rather than object attributes

class A {
static int howManyAs = 0;
int id;
public A(int id) {

aCount += 1;
this.id = id;

}
}

• The static variable counts the number of
instances of A that are created
• Lifetime spans the execution of the entire program

• Scope is limited to the class A

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 8 / 11



static and lifetimes

• We use static variables to store class attributes rather than object attributes

class A {
static int howManyAs = 0;
int id;
public A(int id) {

aCount += 1;
this.id = id;

}
}

• The static variable counts the number of
instances of A that are created

• Lifetime spans the execution of the entire program

• Scope is limited to the class A

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 8 / 11



static and lifetimes

• We use static variables to store class attributes rather than object attributes

class A {
static int howManyAs = 0;
int id;
public A(int id) {

aCount += 1;
this.id = id;

}
}

• The static variable counts the number of
instances of A that are created
• Lifetime spans the execution of the entire program

• Scope is limited to the class A

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 8 / 11



static and lifetimes

• We use static variables to store class attributes rather than object attributes

class A {
static int howManyAs = 0;
int id;
public A(int id) {

aCount += 1;
this.id = id;

}
}

• The static variable counts the number of
instances of A that are created
• Lifetime spans the execution of the entire program

• Scope is limited to the class A

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 8 / 11



Activation Record

• For local variables and function parameters, we need to store one copy for each function
invocation (or activation)

• Activation record – collection of all data related to a function invocation

• Includes space for local variables, parameters, intermediate results, and some pointers

• Also called a stack frame – the reason will be clear later

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 9 / 11



Activation Record

• For local variables and function parameters, we need to store one copy for each function
invocation (or activation)

• Activation record – collection of all data related to a function invocation

• Includes space for local variables, parameters, intermediate results, and some pointers

• Also called a stack frame – the reason will be clear later

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 9 / 11



Activation Record

• For local variables and function parameters, we need to store one copy for each function
invocation (or activation)

• Activation record – collection of all data related to a function invocation

• Includes space for local variables, parameters, intermediate results, and some pointers

• Also called a stack frame – the reason will be clear later

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 9 / 11



Activation Record

• For local variables and function parameters, we need to store one copy for each function
invocation (or activation)

• Activation record – collection of all data related to a function invocation

• Includes space for local variables, parameters, intermediate results, and some pointers

• Also called a stack frame – the reason will be clear later

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 9 / 11



Call graph

A call graph helps us visualize the function calls during a program execution

main

f

g

f f

f

h

f g

f g

• The set of active function calls at
any point of time lies is a path from
root to some node in the graph

• If f calls g, then g is completed
before f
• Store the activation records on a
stack

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 10 / 11



Call graph

A call graph helps us visualize the function calls during a program execution

main

f

g

f f

f

h

f g

f g

• The set of active function calls at
any point of time lies is a path from
root to some node in the graph

• If f calls g, then g is completed
before f

• Store the activation records on a
stack

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 10 / 11



Call graph

A call graph helps us visualize the function calls during a program execution

main

f

g

f f

f

h

f g

f g

• The set of active function calls at
any point of time lies is a path from
root to some node in the graph

• If f calls g, then g is completed
before f
• Store the activation records on a
stack

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 10 / 11



Activation records on stack

• We can place the activation records on a stack, which grows and shrinks as a program executes

• Assume that main has local variables a and b, f has x and y, and g has z
• The stack evolves as follows:

main a,b a,b a,b a,b a,b
f x,y x,y x,y x,y

g z z z
f x,y

• More on activation records in the next lecture!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 11 / 11



Activation records on stack

• We can place the activation records on a stack, which grows and shrinks as a program executes

• Assume that main has local variables a and b, f has x and y, and g has z

• The stack evolves as follows:
main a,b a,b a,b a,b a,b

f x,y x,y x,y x,y
g z z z

f x,y
• More on activation records in the next lecture!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 11 / 11



Activation records on stack

• We can place the activation records on a stack, which grows and shrinks as a program executes

• Assume that main has local variables a and b, f has x and y, and g has z
• The stack evolves as follows:

main a,b a,b a,b a,b a,b
f x,y x,y x,y x,y

g z z z
f x,y

• More on activation records in the next lecture!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 11 / 11



Activation records on stack

• We can place the activation records on a stack, which grows and shrinks as a program executes

• Assume that main has local variables a and b, f has x and y, and g has z
• The stack evolves as follows:

main a,b a,b a,b a,b a,b
f x,y x,y x,y x,y

g z z z
f x,y

• More on activation records in the next lecture!

Madhavan Mukund/S P Suresh Variables, functions, allocation PLC, Lecture 6, 24 Jan 2023 11 / 11


