
Java: abstract classes, interfaces

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 5, 19 January 2023



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function
public double perimeter()

Could define a function in Shape that returns an absurd value
public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?
Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 2 / 17



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function
public double perimeter()

Could define a function in Shape that returns an absurd value
public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?
Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 2 / 17



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function
public double perimeter()

Could define a function in Shape that returns an absurd value
public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?
Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 2 / 17



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function
public double perimeter()

Could define a function in Shape that returns an absurd value
public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?
Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 2 / 17



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function
public double perimeter()

Could define a function in Shape that returns an absurd value
public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?
Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 2 / 17



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function
public double perimeter()

Could define a function in Shape that returns an absurd value
public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?
Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 2 / 17



Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function
public double perimeter()

Could define a function in Shape that returns an absurd value
public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?
Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 2 / 17



Abstract classes

A better solution
Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 3 / 17



Abstract classes

A better solution
Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 3 / 17



Abstract classes

A better solution
Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 3 / 17



Abstract classes

A better solution
Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

public abstract class Shape{
...
public abstract double perimeter();
...

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 3 / 17



Abstract classes …

Can still declare variables whose type is an abstract class

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 4 / 17



Abstract classes …

Can still declare variables whose type is an abstract class

Shape shapearr[] = new Shape[3];
int sizearr[] = new int[3];

shapearr[0] = new Circle(...);
shapearr[1] = new Square(...);
shapearr[2] = new Rectangle(...);

for (i = 0; i < 3; i++){
sizearr[i] = shapearr[i].perimeter();

// each shapearr[i] calls the appropriate method
...

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 4 / 17



Generic functions

Use abstract classes to specify generic properties

public abstract class Comparable{
public abstract int cmp(Comparable s);

// return -1 if this < s,
// 0 if this == 0,
// +1 if this > s

}

Now we can sort any array of objects that extend Comparable

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 5 / 17



Generic functions

Use abstract classes to specify generic properties

public abstract class Comparable{
public abstract int cmp(Comparable s);

// return -1 if this < s,
// 0 if this == 0,
// +1 if this > s

}

Now we can sort any array of objects that extend Comparable

public class SortFunctions{
public static void quicksort(Comparable[] a){

...
// Usual code for quicksort, except that
// to compare a[i] and a[j] we use a[i].cmp(a[j])

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 5 / 17



Generic functions …
public class SortFunctions{

public static void quicksort(Comparable[] a){
...

}
}

To use this definition of quicksort, we write

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 6 / 17



Generic functions …
public class SortFunctions{

public static void quicksort(Comparable[] a){
...

}
}

To use this definition of quicksort, we write

public class Myclass extends Comparable{
private double size; // quantity used for comparison

public int cmp(Comparable s){
if (s instanceof Myclass){

// compare this.size and ((Myclass) s).size
// Note the cast to access s.size

}
}

}
Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 6 / 17



Mutiple inheritance
Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape
Java does not allow Circle to also extend Comparable!

An interface is an abstract class with no concrete components

A class that extends an interface is said to implement it:

Can extend only one class, but can implement multiple interfaces

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 7 / 17



Mutiple inheritance
Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape
Java does not allow Circle to also extend Comparable!

An interface is an abstract class with no concrete components
public interface Comparable{

public abstract int cmp(Comparable s);
}

A class that extends an interface is said to implement it:

Can extend only one class, but can implement multiple interfaces

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 7 / 17



Mutiple inheritance
Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape
Java does not allow Circle to also extend Comparable!

An interface is an abstract class with no concrete components
public interface Comparable{

public abstract int cmp(Comparable s);
}

A class that extends an interface is said to implement it:
public class Circle extends Shape implements Comparable{

public double perimeter(){...}
public int cmp(Comparable s){...}

...
}

Can extend only one class, but can implement multiple interfaces

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 7 / 17



Mutiple inheritance
Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape
Java does not allow Circle to also extend Comparable!

An interface is an abstract class with no concrete components
public interface Comparable{

public abstract int cmp(Comparable s);
}

A class that extends an interface is said to implement it:
public class Circle extends Shape implements Comparable{

public double perimeter(){...}
public int cmp(Comparable s){...}

...
}

Can extend only one class, but can implement multiple interfaces
Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 7 / 17



Interfaces

An interface is a purely abstract class
All methods are abstract

A class implements an interface
Provide concrete code for each abstract function

Classes can implement multiple interfaces
Abstract functions, so no contradictory inheritance

Interfaces describe relevant aspects of a class
Abstract functions describe a specific “slice” of capabilities
Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 8 / 17



Exposing limited capabilities

Generic quicksort for any datatype
that supports comparisons

Express this capability by making the
argument type Comparable[]

Only information that quicksort
needs about the underlying type
All other aspects are irrelevant

Describe the relevant functions
supported by Comparable objects
through an interface

However, we cannot express the
intended behaviour of cmp explicitly

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 9 / 17



Exposing limited capabilities

Generic quicksort for any datatype
that supports comparisons

Express this capability by making the
argument type Comparable[]

Only information that quicksort
needs about the underlying type
All other aspects are irrelevant

Describe the relevant functions
supported by Comparable objects
through an interface

However, we cannot express the
intended behaviour of cmp explicitly

public class SortFunctions{
public static void quicksort(Comparable[] a){

...
// Usual code for quicksort, except that
// to compare a[i] and a[j] we use
// a[i].cmp(a[j])

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 9 / 17



Exposing limited capabilities

Generic quicksort for any datatype
that supports comparisons

Express this capability by making the
argument type Comparable[]

Only information that quicksort
needs about the underlying type
All other aspects are irrelevant

Describe the relevant functions
supported by Comparable objects
through an interface

However, we cannot express the
intended behaviour of cmp explicitly

public class SortFunctions{
public static void quicksort(Comparable[] a){

...
// Usual code for quicksort, except that
// to compare a[i] and a[j] we use
// a[i].cmp(a[j])

}
}

public interface Comparable{
public abstract int cmp(Comparable s);

// return -1 if this < s,
// 0 if this == 0,
// +1 if this > s

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 9 / 17



Exposing limited capabilities

Generic quicksort for any datatype
that supports comparisons

Express this capability by making the
argument type Comparable[]

Only information that quicksort
needs about the underlying type
All other aspects are irrelevant

Describe the relevant functions
supported by Comparable objects
through an interface

However, we cannot express the
intended behaviour of cmp explicitly

public class SortFunctions{
public static void quicksort(Comparable[] a){

...
// Usual code for quicksort, except that
// to compare a[i] and a[j] we use
// a[i].cmp(a[j])

}
}

public interface Comparable{
public abstract int cmp(Comparable s);

// return -1 if this < s,
// 0 if this == 0,
// +1 if this > s

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 9 / 17



Adding methods to interfaces

Java interfaces extended to allow
functions to be added

Static functions
Cannot access instance variables
Invoke directly or using interface
name: Comparable.cmpdoc()

Default functions
Provide a default implementation
for some functions
Class can override these
Invoke like normal method, using
object name: a[i].cmp(a[j])

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 10 / 17



Adding methods to interfaces

Java interfaces extended to allow
functions to be added

Static functions
Cannot access instance variables
Invoke directly or using interface
name: Comparable.cmpdoc()

Default functions
Provide a default implementation
for some functions
Class can override these
Invoke like normal method, using
object name: a[i].cmp(a[j])

public interface Comparable{
public static String cmpdoc(){

String s;
s = "Return -1 if this < s, ";
s = s + "0 if this == s, ";
s = s + "+1 if this > s.";
return(s);

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 10 / 17



Adding methods to interfaces

Java interfaces extended to allow
functions to be added

Static functions
Cannot access instance variables
Invoke directly or using interface
name: Comparable.cmpdoc()

Default functions
Provide a default implementation
for some functions
Class can override these
Invoke like normal method, using
object name: a[i].cmp(a[j])

public interface Comparable{
public static String cmpdoc(){

String s;
s = "Return -1 if this < s, ";
s = s + "0 if this == s, ";
s = s + "+1 if this > s.";
return(s);

}
}

public interface Comparable{
public default int cmp(Comparable s) {

return(0);
}

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 10 / 17



Dealing with conflicts

Old problem of multiple inheritance
returns

Conflict between static/default
methods

Subclass must provide a fresh
implementation

Conflict could be between a class and
an interface

Employee inherits from class Person
and implements Designation
Method inherited from the class
“wins”
Motivated by reverse compatibility

public interface Person{
public default String getName() {

return("No name");
}

}

public interface Designation{
public default String getName() {

return("No designation");
}

}

public class Employee
implements Person, Designation {...}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 11 / 17



Dealing with conflicts

Old problem of multiple inheritance
returns

Conflict between static/default
methods

Subclass must provide a fresh
implementation

Conflict could be between a class and
an interface

Employee inherits from class Person
and implements Designation
Method inherited from the class
“wins”
Motivated by reverse compatibility

public interface Person{
public default String getName() {

return("No name");
}

}

public interface Designation{
public default String getName() {

return("No designation");
}

}

public class Employee
implements Person, Designation {
...
public String getName(){

...
}

}
Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 11 / 17



Dealing with conflicts

Old problem of multiple inheritance
returns

Conflict between static/default
methods

Subclass must provide a fresh
implementation

Conflict could be between a class and
an interface

Employee inherits from class Person
and implements Designation
Method inherited from the class
“wins”
Motivated by reverse compatibility

public class Person{
public String getName() {

return("No name");
}

}

public interface Designation{
public default String getName() {

return("No designation");
}

}

public class Employee
extends Person implements Designation {
...

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 11 / 17



Private classes

An instance variable can be a user
defined type

Employee uses Date

Date is a public class, also available
to other classes

When could a private class make
sense?

public class Employee{
private String name;
private double salary;
private Date joindate;

...

}

public class Date {
private int day, month year;

...
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 12 / 17



Private classes

An instance variable can be a user
defined type

Employee uses Date

Date is a public class, also available
to other classes

When could a private class make
sense?

public class Employee{
private String name;
private double salary;
private Date joindate;

...

}

public class Date {
private int day, month year;

...
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 12 / 17



Private classes

An instance variable can be a user
defined type

Employee uses Date

Date is a public class, also available
to other classes

When could a private class make
sense?

public class Employee{
private String name;
private double salary;
private Date joindate;

...

}

public class Date {
private int day, month year;

...
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 12 / 17



Nested objects

LinkedList is built using Node

Why should Node be public?
May want to enhance with prev
field, doubly linked list
Does not affect interface of
LinkedList

Instead, make Node a private class
Nested within LinkedList
Also called an inner class

Objects of private class can see
private components of enclosing class

public class Node {
public Object data;
public Node next;
...

}

public class LinkedList{
private int size;
private Node first;

public Object head(){
Object returnval = null;
if (first != null){

returnval = first.data;
first = first.next;

}
return(returnval);

}
}

public void insert(Object newdata){
...

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 13 / 17



Nested objects

LinkedList is built using Node

Why should Node be public?
May want to enhance with prev
field, doubly linked list
Does not affect interface of
LinkedList

Instead, make Node a private class
Nested within LinkedList
Also called an inner class

Objects of private class can see
private components of enclosing class

public class Node {
public Object data;
public Node next;
...

}

public class LinkedList{
private int size;
private Node first;

public Object head(){
Object returnval = null;
if (first != null){

returnval = first.data;
first = first.next;

}
return(returnval);

}
}

public void insert(Object newdata){
...

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 13 / 17



Nested objects

LinkedList is built using Node

Why should Node be public?
May want to enhance with prev
field, doubly linked list
Does not affect interface of
LinkedList

Instead, make Node a private class
Nested within LinkedList
Also called an inner class

Objects of private class can see
private components of enclosing class

public class LinkedList{
private int size;
private Node first;

public Object head(){ ... }

public void insert(Object newdata){
...

}

private class Node {
public Object data;
public Node next;
...

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 13 / 17



Nested objects

LinkedList is built using Node

Why should Node be public?
May want to enhance with prev
field, doubly linked list
Does not affect interface of
LinkedList

Instead, make Node a private class
Nested within LinkedList
Also called an inner class

Objects of private class can see
private components of enclosing class

public class LinkedList{
private int size;
private Node first;

public Object head(){ ... }

public void insert(Object newdata){
...

}

private class Node {
public Object data;
public Node next;
...

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 13 / 17



Manipulating objects

Encapsulation is a key principle of
object oriented programming

Internal data is private
Access to the data is regulated
through public methods
Accessor and mutator methods

Can ensure data integrity by regulating
access

Update date as a whole, rather than
individual components

Does this provide sufficient control?

public class Date {
private int day, month year;

public void getDay(int d) {...}
public void getMonth(int m) {...}
public void getYear(int y) {...}

public void setDay(int d) {...}
public void setMonth(int m) {...}
public void setYear(int y) {...}

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 14 / 17



Manipulating objects

Encapsulation is a key principle of
object oriented programming

Internal data is private
Access to the data is regulated
through public methods
Accessor and mutator methods

Can ensure data integrity by regulating
access

Update date as a whole, rather than
individual components

Does this provide sufficient control?

public class Date {
private int day, month year;

public void getDay(int d) {...}
public void getMonth(int m) {...}
public void getYear(int y) {...}

public void setDay(int d) {...}
public void setMonth(int m) {...}
public void setYear(int y) {...}

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 14 / 17



Manipulating objects

Encapsulation is a key principle of
object oriented programming

Internal data is private
Access to the data is regulated
through public methods
Accessor and mutator methods

Can ensure data integrity by regulating
access

Update date as a whole, rather than
individual components

Does this provide sufficient control?

public class Date {
private int day, month year;

public void getDay(int d) {...}
public void getMonth(int m) {...}
public void getYear(int y) {...}

public void setDate(int d, int m, int y) {
...
// Validate d-m-y combination

}

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 14 / 17



Manipulating objects

Encapsulation is a key principle of
object oriented programming

Internal data is private
Access to the data is regulated
through public methods
Accessor and mutator methods

Can ensure data integrity by regulating
access

Update date as a whole, rather than
individual components

Does this provide sufficient control?

public class Date {
private int day, month year;

public void getDay(int d) {...}
public void getMonth(int m) {...}
public void getYear(int y) {...}

public void setDate(int d, int m, int y) {
...
// Validate d-m-y combination

}

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 14 / 17



Interactions with state

Object stores train reservation
information

Can query availability for a given train,
date

To control spamming by bots, require
user to log in before querying

Need to connect the query to the
logged in status of the user

“Interaction with state”

public class RailwayBooking {
private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {
// Return number of seats available
// on train number trainno on date d
...

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 15 / 17



Interactions with state

Object stores train reservation
information

Can query availability for a given train,
date

To control spamming by bots, require
user to log in before querying

Need to connect the query to the
logged in status of the user

“Interaction with state”

public class RailwayBooking {
private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {
// Return number of seats available
// on train number trainno on date d
...

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 15 / 17



Interactions with state

Object stores train reservation
information

Can query availability for a given train,
date

To control spamming by bots, require
user to log in before querying

Need to connect the query to the
logged in status of the user

“Interaction with state”

public class RailwayBooking {
private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {
// Return number of seats available
// on train number trainno on date d
...

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 15 / 17



Interactions with state

Object stores train reservation
information

Can query availability for a given train,
date

To control spamming by bots, require
user to log in before querying

Need to connect the query to the
logged in status of the user

“Interaction with state”

public class RailwayBooking {
private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {
// Return number of seats available
// on train number trainno on date d
...

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 15 / 17



Querying a database

Need to connect the query to the
logged in status of the user

Use objects!
On log in, user receives an object that
can make a query
Object is created from private class
that can look up railwaydb

How does user know the capabilities of
private class QueryObject?

Use an interface!
Interface describes the capability of
the object returned on login

public class RailwayBooking {
private BookingDB railwaydb;

public int getStatus(int trainno, Date d) {
// Return number of seats available
// on train number trainno on date d
...

}
}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 16 / 17



Querying a database

Need to connect the query to the
logged in status of the user

Use objects!
On log in, user receives an object that
can make a query
Object is created from private class
that can look up railwaydb

How does user know the capabilities of
private class QueryObject?

Use an interface!
Interface describes the capability of
the object returned on login

public class RailwayBooking {
private BookingDB railwaydb;

public QueryObject login(String u, String p){
QueryObject qobj;
if (valid_login(u,p)) {

qobj = new QueryObject();
return(qobj);

}
}

private class QueryObject {
public int getStatus(int trainno, Date d) {

// Return number of seats available
// on train number trainno on date d
...

}
}

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 16 / 17



Querying a database

Need to connect the query to the
logged in status of the user

Use objects!
On log in, user receives an object that
can make a query
Object is created from private class
that can look up railwaydb

How does user know the capabilities of
private class QueryObject?

Use an interface!
Interface describes the capability of
the object returned on login

public class RailwayBooking {
private BookingDB railwaydb;

public QueryObject login(String u, String p){
QueryObject qobj;
if (valid_login(u,p)) {

qobj = new QueryObject();
return(qobj);

}
}

private class QueryObject {
public int getStatus(int trainno, Date d) {

// Return number of seats available
// on train number trainno on date d
...

}
}

}

Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 16 / 17



Querying a database

Need to connect the query to the
logged in status of the user

Use objects!
On log in, user receives an object that
can make a query
Object is created from private class
that can look up railwaydb

How does user know the capabilities of
private class QueryObject?

Use an interface!
Interface describes the capability of
the object returned on login

public interface QIF{
public abstract int

getStatus(int trainno, Date d);
}

public class RailwayBooking {
private BookingDB railwaydb;
public QIF login(String u, String p){

QueryObject qobj;
if (valid_login(u,p)) {

qobj = new QueryObject();
return(qobj);

}
}
private class QueryObject implements QIF {

public int getStatus(int trainno, Date d){
...

}
}

}
Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 16 / 17



Querying a database

Query object allows unlimited number
of queries

Limit the number of queries per login?

Maintain a counter
Add instance variables to object
returned on login
Query object can remember the state
of the interaction

public interface QIF{
public abstract int

getStatus(int trainno, Date d);
}

public class RailwayBooking {
private BookingDB railwaydb;
public QIF login(String u, String p){

QueryObject qobj;
if (valid_login(u,p)) {

qobj = new QueryObject();
return(qobj);

}
}
private class QueryObject implements QIF {

public int getStatus(int trainno, Date d){
...

}
}

}
Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 17 / 17



Querying a database

Query object allows unlimited number
of queries

Limit the number of queries per login?

Maintain a counter
Add instance variables to object
returned on login
Query object can remember the state
of the interaction

public interface QIF{
public abstract int

getStatus(int trainno, Date d);
}

public class RailwayBooking {
private BookingDB railwaydb;
public QIF login(String u, String p){

QueryObject qobj;
if (valid_login(u,p)) {

qobj = new QueryObject();
return(qobj);

}
}
private class QueryObject implements QIF {

public int getStatus(int trainno, Date d){
...

}
}

}
Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 17 / 17



Querying a database

Query object allows unlimited number
of queries

Limit the number of queries per login?

Maintain a counter
Add instance variables to object
returned on login
Query object can remember the state
of the interaction

public class RailwayBooking {
private BookingDB railwaydb;
public QIF login(String u, String p){

QueryObject qobj;
if (valid_login(u,p)) {

qobj = new QueryObject();
return(qobj);

}
}
private class QueryObject implements QIF {

private int numqueries;
private static int QLIM;

public int getStatus(int trainno, Date d){
if (numqueries < QLIM){

// respond, increment numqueries
}

}
}

}
Madhavan Mukund/S P Suresh Java: abstract classes, interfaces PLC, Lecture 5, 19 Jan 2023 17 / 17


